Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2402-2415.DOI: 10.3969/j.issn.1004-1524.20231227
• Review • Previous Articles Next Articles
REN Shitan1,2(), ZHENG Lin2, JIANG Tingbo1, ZHOU Boru1,*(
), WANG Hongzhi2,*(
)
Received:
2023-10-31
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
REN Shitan, ZHENG Lin, JIANG Tingbo, ZHOU Boru, WANG Hongzhi. Research progress on the structure and assembly of plant supramolecular cellulose synthase complexes[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2402-2415.
Fig.1 Structure of cellulose synthase and model of rosette formation A, Cellulose synthase secondary structure diagram of PttCESA8. TM, Transmembrane domain; NTD, N-terminal domain, including RING domain and variable domain 1 (VR1); PCR, Plant conserved domain; CSR, Class specific domain; IF, Cytoplasmic helical structure. B, Three-dimensional structure diagram of PttCESA8 core monomer. C, PttCESA8 core homotrimer assembly diagram. D, Low-resolution three-dimensional structure diagram of full-length PttCESA8. Stalk is a petiole-mounted structure composed of NTD. E, Assembly diagram of cellulose synthase 18 polymers. F, Schematic diagram of the rosette structure. CSC’s rosette structure has six petals, each of which is composed of a CesA homotrimer.
Fig.2 Alignment of CesA protein sequences from Arabidopsis thaliana, Oryza sativa and Populus The CesAs protein sequences of Arabidopsis, rice and poplar were obtained from https://phytozome-next.jgi.doe.gov/, and the sequence alignment was performed by MEGA6 and GeneDoc software. According to the structural characteristics of poplar PtCESA8, functionally important regions of 10 CesAs and related mutation sites were marked: RING domain is marked in navy blue; Variable region is marked in green; plant conserved domain (PCR) is marked in blue; class-specific domain (CSR) is marked in pink; transmembrane domain (TM) is marked in gray; small red box marks the mutation site; red arrow marks the premature termination position of mutant protein translation; blue and black straight lines indicate β-stands and α-helices of CesAs, respectively; blue boxes mark the conserved D, D, D, QxxRW motifs; red and black circles indicate residues implicated in CesAs trimerization and cellulose coordination, respectively.
Fig.3 Model of supramolecular cellulose synthase complex CC, Companion of cellulose synthase; PM, Plasma membrane; MT, Microtubule; CesA, Cellulose synthase; CSI, POM-POM2/cellulose synthase interacting 1.
[1] | HAIGLER C H, BROWN R M. Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture[J]. Protoplasma, 1986, 134(2): 111-120. |
[2] | ANDERSON C T. We be jammin: an update on pectin biosynthesis, trafficking and dynamics[J]. Journal of Experimental Botany, 2016, 67(2): 495-502. |
[3] | ANDERSON C T, KIEBER J J. Dynamic construction, perception, and remodeling of plant cell walls[J]. Annual Review of Plant Biology, 2020, 71: 39-69. |
[4] | TSEKOS I. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes[J]. Journal of Phycology, 1999, 35(4): 635-655. |
[5] | KUREK I, KAWAGOE Y, JACOB-WILK D, et al. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(17): 11109-11114. |
[6] | PEAR J R, KAWAGOE Y, SCHRECKENGOST W E, et al. Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(22): 12637-12642. |
[7] | HEIDARI P, AHMADIZADEH M, IZANLO F, et al. In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: focus on post-translation modifications[J]. Plant Gene, 2019, 19: 100189. |
[8] | GEISLER-LEE J, GEISLER M, COUTINHO P M, et al. Poplar carbohydrate-active enzymes. gene identification and expression analyses[J]. Plant Physiology, 2006, 140(3): 946-962. |
[9] | YOON H S, HACKETT J D, CINIGLIA C, et al. A molecular timeline for the origin of photosynthetic eukaryotes[J]. Molecular Biology and Evolution, 2004, 21(5): 809-818. |
[10] | HAIGLER C H, ROBERTS A W. Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective[J]. Cellulose, 2019, 26(1): 227-247. |
[11] | KUMAR M, TURNER S. Plant cellulose synthesis: CESA proteins crossing Kingdoms[J]. Phytochemistry, 2015, 112: 91-99. |
[12] | RAMÍREZ-RODRÍGUEZ E A, MCFARLANE H E. Insights from the structure of a plant cellulose synthase trimer[J]. Trends in Plant Science, 2021, 26(1): 4-7. |
[13] | PURUSHOTHAM P, HO R, ZIMMER J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex[J]. Science, 2020, 369(6507): 1089-1094. |
[14] | CHAN J, COEN E. Interaction between autonomous and microtubule guidance systems controls cellulose synthase trajectories[J]. Current Biology, 2020, 30(5): 941-947. |
[15] | MCFARLANE H E, MUTWIL-ANDERWALD D, VERBANČIČ J, et al. A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis[J]. Developmental Cell, 2021, 56(10): 1484-1497. |
[16] | PANCALDI F, VAN LOO E N, SCHRANZ M E, et al. Genomic architecture and evolution of the cellulose synthase gene superfamily as revealed by phylogenomic analysis[J]. Frontiers in Plant Science, 2022, 13: 870818. |
[17] | CARROLL A, SPECHT C D. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences[J]. Frontiers in Plant Science, 2011, 2: 5. |
[18] | KUMAR M, THAMMANNAGOWDA S, BULONE V, et al. An update on the nomenclature for the cellulose synthase genes in Populus[J]. Trends in Plant Science, 2009, 14(5): 248-254. |
[19] | PERSSON S, PAREDEZ A, CARROLL A, et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15566-15571. |
[20] | FAGARD M, DESNOS T, DESPREZ T, et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis[J]. The Plant Cell, 2000, 12(12): 2409-2424. |
[21] | ARIOLI T, PENG L, BETZNER A S, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis[J]. Science, 1998, 279(5351): 717-720. |
[22] | SCHEIBLE W R, ESHED R, RICHMOND T, et al. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(18): 10079-10084. |
[23] | TAYLOR N G, SCHEIBLE W R, CUTLER S, et al. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis[J]. The Plant Cell, 1999, 11(5): 769-780. |
[24] | TAYLOR N G, LAURIE S, TURNER S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. The Plant Cell, 2000, 12(12): 2529-2540. |
[25] | TURNER S R, SOMERVILLE C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. The Plant Cell, 1997, 9(5): 689-701. |
[26] | TAYLOR N G, HOWELLS R M, HUTTLY A K, et al. Interactions among three distinct CesA proteins essential for cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1450-1455. |
[27] | TIMMERS J, VERNHETTES S, DESPREZ T, et al. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall[J]. FEBS Letters, 2009, 583(6): 978-982. |
[28] | SULLIVAN S, RALET M C, BERGER A, et al. CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds[J]. Plant Physiology, 2011, 156(4): 1725-1739. |
[29] | STORK J, HARRIS D, GRIFFITHS J, et al. CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells[J]. Plant Physiology, 2010, 153(2): 580-589. |
[30] | FUJITA M, HIMMELSPACH R, WARD J, et al. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes[J]. Plant Physiology, 2013, 162(1): 74-85. |
[31] | BEECKMAN T, PRZEMECK G K H, STAMATIOU G, et al. Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis[J]. Plant Physiology, 2002, 130(4): 1883-1893. |
[32] | CAÑO-DELGADO A I, METZLAFF K, BEVAN M W. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana[J]. Development, 2000, 127(15): 3395-3405. |
[33] | CAÑO-DELGADO A, PENFIELD S, SMITH C, et al. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana[J]. The Plant Journal, 2003, 34(3): 351-362. |
[34] | BROWN D M, ZEEF L A H, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell, 2005, 17(8): 2281-2295. |
[35] | BOSCA S, BARTON C J, TAYLOR N G, et al. Interactions between MUR10/CesA7-dependent secondary cellulose biosynthesis and primary cell wall structure[J]. Plant Physiology, 2006, 142(4): 1353-1363. |
[36] | ZHONG R Q, MORRISON W H 3rd, FRESHOUR G D, et al. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis[J]. Plant Physiology, 2003, 132(2): 786-795. |
[37] | MA X Z, LI C M, HUANG R, et al. Rice brittle Culm19 encoding cellulose synthase subunit CESA4 causes dominant brittle phenotype but has No distinct influence on growth and grain yield[J]. Rice, 2021, 14(1): 95. |
[38] | YAN C J, YAN S, ZENG X H, et al. Fine mapping and isolation of Bc7(t), allelic to OsCesA4[J]. Journal of Genetics and Genomics, 2007, 34(11): 1019-1027. |
[39] | WANG D F, QIN Y L, FANG J J, et al. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice[J]. PLoS One, 2016, 11(4): e0153993. |
[40] | TANAKA K, MURATA K, YAMAZAKI M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J]. Plant Physiology, 2003, 133(1): 73-83. |
[41] | KOTAKE T, AOHARA T, HIRANO K, et al. Rice brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls[J]. Journal of Experimental Botany, 2011, 62(6): 2053-2062. |
[42] | WANG D F, YUAN S J, YIN L, et al. A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice[J]. Plant Science, 2012, 196: 117-124. |
[43] | XU W J, CHENG H, ZHU S R, et al. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts[J]. The New Phytologist, 2021, 231(4): 1478-1495. |
[44] | YE Y F, WANG S X, WU K, et al. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice[J]. Rice, 2021, 14(1): 19. |
[45] | CHEN Z Z, HONG X H, ZHANG H R, et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1 enhances drought and osmotic stress tolerance in Arabidopsis[J]. The Plant Journal, 2005, 43(2): 273-283. |
[46] | SONG X Q, LIU L F, JIANG Y J, et al. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants[J]. Molecular Plant, 2013, 6(3): 768-780. |
[47] | HEIM D R, ROBERTS J L, PIKE P D, et al. A second locus, ixr B1 in Arabidopsis thaliana, that confers resistance to the herbicide isoxaben[J]. Plant Physiology, 1990, 92(3): 858-861. |
[48] | DESPREZ T, VERNHETTES S, FAGARD M, et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6[J]. Plant Physiology, 2002, 128(2): 482-490. |
[49] | ZHANG B C, DENG L W, QIAN Q, et al. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice[J]. Plant Molecular Biology, 2009, 71(4/5): 509-524. |
[50] | ELLIS C, TURNER J G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens[J]. The Plant Cell, 2001, 13(5): 1025-1033. |
[51] | LI F C, XIE G S, HUANG J F, et al. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice[J]. Plant Biotechnology Journal, 2017, 15(9): 1093-1104. |
[52] | NAYERI S, BAGHBAN KOHNEHROUZ B, AHMADIKHAH A, et al. CRISPR/Cas9-mediated PCR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar[J]. Plant Biotechnology Journal, 2022, 20(6): 1197-1212. |
[53] | LI F C, LIU S T, XU H, et al. A novel FC17/CESA4 mutation causes increased biomass saccharification and lodging resistance by remodeling cell wall in rice[J]. Biotechnology for Biofuels, 2018, 11: 298. |
[54] | RÖMLING U, GALPERIN M Y. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions[J]. Trends in Microbiology, 2015, 23(9): 545-557. |
[55] | MORGAN J L W, MCNAMARA J T, FISCHER M, et al. Observing cellulose biosynthesis and membrane translocation in crystallo[J]. Nature, 2016, 531(7594): 329-334. |
[56] | MORGAN J L W, MCNAMARA J T, ZIMMER J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP[J]. Nature Structural & Molecular Biology, 2014, 21(5): 489-496. |
[57] | MORGAN J L W, STRUMILLO J, ZIMMER J. Crystallographic snapshot of cellulose synthesis and membrane translocation[J]. Nature, 2013, 493(7431): 181-186. |
[58] | NICOLAS W J, GHOSAL D, TOCHEVA E I, et al. Structure of the bacterial cellulose ribbon and its assembly-guiding cytoskeleton by electron cryotomography[J]. Journal of Bacteriology, 2021, 203(3): e00371-20. |
[59] | HU S Q, GAO Y G, TAJIMA K, et al. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 17957-17961. |
[60] | SUNAGAWA N, FUJIWARA T, YODA T, et al. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum[J]. Journal of Bioscience and Bioengineering, 2013, 115(6): 607-612. |
[61] | MUELLER S C, BROWN R M J. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants[J]. The Journal of Cell Biology, 1980, 84(2): 315-326. |
[62] | HILL J L J, HAMMUDI M B, MING T E. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry[J]. The Plant Cell, 2014, 26(12): 4834-4842. |
[63] | PURUSHOTHAM P, CHO S H, DÍAZ-MORENO S M, et al. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(40): 11360-11365. |
[64] | VANDAVASI V G, PUTNAM D K, ZHANG Q, et al. A structural study of CESA1 catalytic domain of Arabidopsis cellulose synthesis complex: evidence for CESA trimers[J]. Plant Physiology, 2016, 170(1): 123-135. |
[65] | JARVIS M C. Cellulose biosynthesis: counting the chains[J]. Plant Physiology, 2013, 163(4): 1485-1486. |
[66] | NEWMAN R H, HILL S J, HARRIS P J. Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls[J]. Plant Physiology, 2013, 163(4): 1558-1567. |
[67] | NIXON B T, MANSOURI K, SINGH A, et al. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex[J]. Scientific Reports, 2016, 6: 28696. |
[68] | WILSON T H, KUMAR M, TURNER S R. The molecular basis of plant cellulose synthase complex organisation and assembly[J]. Biochemical Society Transactions, 2021, 49(1): 379-391. |
[69] | MORCILLO R J, SINGH S K, HE D X, et al. Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner[J]. The EMBO Journal, 2020, 39(2): e102602. |
[70] | MORRIS J L, PUTTICK M N, CLARK J W, et al. The timescale of early land plant evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2274-2283. |
[71] | ROBERTS A W, ROBERTS E M, HAIGLER C H. Moss cell walls: structure and biosynthesis[J]. Frontiers in Plant Science, 2012, 3: 166. |
[72] | KUMAR M, ATANASSOV I, TURNER S. Functional analysis of cellulose synthase (CESA) protein class specificity[J]. Plant Physiology, 2017, 173(2): 970-983. |
[73] | GARDINER J C, TAYLOR N G, TURNER S R. Control of cellulose synthase complex localization in developing xylem[J]. The Plant Cell, 2003, 15(8): 1740-1748. |
[74] | RUSHTON P S, OLEK A T, MAKOWSKI L, et al. Rice cellulose synthase A8 plant-conserved region is a coiled-coil at the catalytic core entrance[J]. Plant Physiology, 2017, 173(1): 482-494. |
[75] | SETHAPHONG L, DAVIS J K, SLABAUGH E, et al. Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis[J]. Cellulose, 2016, 23(1): 145-161. |
[76] | SETHAPHONG L, HAIGLER C H, KUBICKI J D, et al. Tertiary model of a plant cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18): 7512-7517. |
[77] | GONNEAU M, DESPREZ T, GUILLOT A, et al. Catalytic subunit stoichiometry within the cellulose synthase complex[J]. Plant Physiology, 2014, 166(4): 1709-1712. |
[78] | POLKO J K, KIEBER J J. The regulation of cellulose biosynthesis in plants[J]. The Plant Cell, 2019, 31(2): 282-296. |
[79] | ZHANG X Y, DOMINGUEZ P G, KUMAR M, et al. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce[J]. Plant Physiology, 2018, 177(3): 1096-1107. |
[80] | CROWELL E F, BISCHOFF V, DESPREZ T, et al. Pausing of golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis[J]. The Plant Cell, 2009, 21(4): 1141-1154. |
[81] | MARSH J A, TEICHMANN S A. Structure, dynamics, assembly, and evolution of protein complexes[J]. Annual Review of Biochemistry, 2015, 84: 551-575. |
[82] | TURNER S, KUMAR M. Cellulose synthase complex organization and cellulose microfibril structure[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2112): 20170048. |
[83] | ZHANG T, ZHENG Y Z, COSGROVE D J. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy[J]. The Plant Journal, 2016, 85(2): 179-192. |
[84] | VERBANČIČ J, HUANG J J, MCFARLANE H E. Analysis of cellulose synthase activity in Arabidopsis using spinning disk microscopy[J]. STAR Protocols, 2021, 2(4): 100863. |
[85] | ENDLER A, KESTEN C, SCHNEIDER R, et al. A mechanism for sustained cellulose synthesis during salt stress[J]. Cell, 2015, 162(6): 1353-1364. |
[86] | LI S D, LEI L, SOMERVILLE C R, et al. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 185-190. |
[87] | LIU Z Y, SCHNEIDER R, KESTEN C, et al. Cellulose-microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis[J]. Developmental Cell, 2016, 38(3): 305-315. |
[88] | VAIN T, CROWELL E F, TIMPANO H, et al. The cellulase KORRIGAN is part of the cellulose synthase complex[J]. Plant Physiology, 2014, 165(4): 1521-1532. |
[89] | NICOL F, HIS I, JAUNEAU A, et al. A plasma membrane-bound putative endo-1, 4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis[J]. The EMBO Journal, 1998, 17(19): 5563-5576. |
[90] | SÁNCHEZ-RODRÍGUEZ C, BAUER S, HÉMATY K, et al. Chitinase-like1/Pom-Pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 589-607. |
[91] | ZHANG Y, NIKOLOVSKI N, SORIEUL M, et al. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis[J]. Nature Communications, 2016, 7: 11656. |
[92] | NÜHSE T S, BOTTRILL A R, JONES A M E, et al. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses[J]. The Plant Journal, 2007, 51(5): 931-940. |
[93] | NÜHSE T S, STENSBALLE A, JENSEN O N, et al. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database[J]. The Plant Cell, 2004, 16(9): 2394-2405. |
[94] | CHEN S L, EHRHARDT D W, SOMERVILLE C R. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17188-17193. |
[95] | SÁNCHEZ-RODRÍGUEZ C, KETELAAR K, SCHNEIDER R, et al. BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3533-3538. |
[96] | HEMSLEY P A. S-acylation in plants: an expanding field[J]. Biochemical Society Transactions, 2020, 48(2): 529-536. |
[97] | HEMSLEY P A. An outlook on protein S-acylation in plants: what are the next steps?[J]. Journal of Experimental Botany, 2017, 68(12): 3155-3164. |
[98] | HURST C H, HEMSLEY P A. Current perspective on protein S-acylation in plants: more than just a fatty anchor?[J]. Journal of Experimental Botany, 2015, 66(6): 1599-1606. |
[99] | CHAMBERLAIN L H, SHIPSTON M J. The physiology of protein S-acylation[J]. Physiological Reviews, 2015, 95(2): 341-376. |
[100] | KUMAR M, WIGHTMAN R, ATANASSOV I, et al. S-acylation of the cellulose synthase complex is essential for its plasma membrane localization[J]. Science, 2016, 353(6295): 166-169. |
[101] | PEDERSEN G B, BLASCHEK L, FRANDSEN K E H, et al. Cellulose synthesis in land plants[J]. Molecular Plant, 2023, 16(1): 206-231. |
[102] | MAIR A, XU S L, BRANON T C, et al. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID[J]. eLife, 2019, 8: e47864. |
[103] | SAHU I D, LORIGAN G A. Probing structural dynamics of membrane proteins using electron paramagnetic resonance spectroscopic techniques[J]. Biophysica, 2021, 1(2): 106-125. |
[104] | SLABAUGH E, DAVIS J K, HAIGLER C H, et al. Cellulose synthases: new insights from crystallography and modeling[J]. Trends in Plant Science, 2014, 19(2): 99-106. |
[1] | ZHANG Xinpeng, WANG Xin, SUN Jian, YI Guoyun, LI Songling. Isolation and identification of a Pseudomonas strain and its application potential in rape straw composting in Qinghai, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 343-351. |
[2] | HOU Jinghan, WAN Yingling, LIU Aiqing, HONG Aiying, LIU Yan. Content changes of cell wall composition during stem development in different varieties of Paeonia lactiflora [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2220-2229. |
[3] | FENG Xinxin, LI Fenglan, XU Yongqing, LI Lei, HE Fumeng, FENG Yanzhong, YUAN Qiang, LIU Di. Screening of cellulase producing strains from rotten wood in Xinjiang cold area and analysis of their characteristics of enzyme production at low temperature [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1468-1476. |
[4] | LI Qian, XU Zhiyang, RUAN Wenquan. Improvement of methane production potential by post-treatment of vinegar residue with Phanerochaete chrysosporium [J]. , 2020, 32(5): 904-911. |
[5] | XU Suyun, CUI Minghao, YAN Yan, LI Qinfeng, WANG Yulei. Study on hydrolysis characteristics of asparagus old stem in non-closed system [J]. , 2020, 32(1): 134-140. |
[6] | CAO Yan, XIA Qile, CHEN Jianbing, SHAN Zhichu. Production of bacterial cellulose by Gluconacetobacter xylinus using rice milk [J]. , 2019, 31(11): 1918-1925. |
[7] | YANG Ying, TANG Weimin, LU Shengmin. Effects of processing conditions on physicochemical properties of bacterial cellulose pellicle [J]. , 2018, 30(4): 661-665. |
[8] | YANG Ying, TANG Weimin, XING Jianrong, ZHENG Meiyu, LU Shengmin. Study on bacterial cellulose production from citrus dregs by intermittent shaking culture [J]. , 2018, 30(2): 307-313. |
[9] | ZHAO Mengliang, ZHONG Qiwen, LIU Mingchi, LI Li. Leaf traits analysis of 22 Helianthus tuberosus germplasm resources introduced from abroad [J]. , 2017, 29(7): 1151-1157. |
[10] | QIU Xiuwen, ZHOU guixiang, WANG Huijuan, YANG Lili. Isolation and scrcening of cellulose degrading bacterium and its decomposition characteristics of straw [J]. , 2017, 29(4): 637-643. |
[11] | WANG An\|ke1, BI Yu\|fang1, YANG Hui\|min1, WU Zai\|xing1, YU Yi2, ZHANG Ru\|min3, WANG Yu\|kui1,*. Evaluation of antimicrobial activity of CCCSNs on several kinds of wood rotting fungi#br# [J]. , 2015, 27(9): 1606-. |
[12] | ZHAO Lian\|di1, MENG Shun\|li1, SHI Zhao\|guo1,*, ZHANG Li2, HAN Da\|yong2, LIU Hai\|xia2, XIA Pei\|qi2. Optimization of liquid fermentation for cellulase production by Trihoderma viride [J]. , 2015, 27(3): 442-. |
[13] | TIAN Wei;ZHANG Zhenhua;WANG Zhen;WANG Xia;LI Yan;LIU Zhenhua*. Lignocelluloses degradation and related biological characteristics during thermophilic composting of cow dung [J]. , 2014, 26(2): 0-432438. |
[14] | WANG Zhi-gang;XU Wei-hui;LI Yue;ZHONG Peng;WANG Jian-li;MO Ji-xian. Synergism of cellulosedecomposing microorganisms and influence factors of crude enzyme liquid [J]. , 2012, 24(2): 0-283. |
[15] | GONG Jian—sen;ZHANG Xiao.yan;SHAN Yan-ju;YU Yan;LIU Xue-xian *. Preparation of an inactivated vaccine witlI microcapsule shape against fowl cholera by drying in liquid [J]. , 2009, 21(1): 0-48. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 404
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||