Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2391-2401.DOI: 10.3969/j.issn.1004-1524.20231241
• Review • Previous Articles Next Articles
ZHANG Siyi(), CUI Bowen, WANG Jialing, LIN Jixiang, YANG Qingjie*(
)
Received:
2023-11-03
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
ZHANG Siyi, CUI Bowen, WANG Jialing, LIN Jixiang, YANG Qingjie. Research progress on physiological and molecular responses of plant roots under abiotic stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2391-2401.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231241
Fig.1 Schematic representation of plant root response under abiotic stresses A, Plant roots under abiotic stress; B,The specific process of root response to environmental stress; C, Explanations for each phase of the response. 1, Perception and conduction of plant root stress signals; 2, Transcriptional response; 3, Synthesis of related proteins; 4, Regulation of secondary metabolism and reconstruction of cellular homeostasis (accumulation of osmotically regulated substances and defense of the antioxidant system, etc).
胁迫类型 stress type | 调控因子 Regulatory factor |
---|---|
干旱Drought | bZIP、MYB、NAC、DREB、WRKY、bHLH、GRAS、MAPK、SnRK、CIPK、CDPK、Ca+、NO |
淹水Flooding | AP2/ERF、bZIP、WRKY、MYB、MAPK、CIPK、CDPK、SnRK、Ca+ |
盐碱Saline-alkali | bZIP、WRKY、NAC、ZFP、MAPK、PKS5、CDPK、SnRK、Ca+、SOS1、NHX1 |
低温Low temperature | AP2/ERF、WRKY、NAC、ICE1、MYB、PIF、MAPK、CDPK、Ca+ |
高温High temperature | HSF、DREB、MAPK、CDPK、Ca+ |
Table 1 Summary of plant root regulators under abiotic stress
胁迫类型 stress type | 调控因子 Regulatory factor |
---|---|
干旱Drought | bZIP、MYB、NAC、DREB、WRKY、bHLH、GRAS、MAPK、SnRK、CIPK、CDPK、Ca+、NO |
淹水Flooding | AP2/ERF、bZIP、WRKY、MYB、MAPK、CIPK、CDPK、SnRK、Ca+ |
盐碱Saline-alkali | bZIP、WRKY、NAC、ZFP、MAPK、PKS5、CDPK、SnRK、Ca+、SOS1、NHX1 |
低温Low temperature | AP2/ERF、WRKY、NAC、ICE1、MYB、PIF、MAPK、CDPK、Ca+ |
高温High temperature | HSF、DREB、MAPK、CDPK、Ca+ |
[1] | DOS REIS S P, LIMA A M, DE SOUZA C R B. Recent molecular advances on downstream plant responses to abiotic stress[J]. International Journal of Molecular Sciences, 2012, 13(7): 8628-8647. |
[2] | PANDEY P, RAMEGOWDA V, SENTHIL-KUMAR M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms[J]. Frontiers in Plant Science, 2015, 6: 723. |
[3] | PENG X B, LI J R, SUN L C, et al. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction[J]. Chemosphere, 2022, 294: 133842. |
[4] | ZHOU J, YUAN W D, DI B, et al. Relationship among electrical signals, chlorophyll fluorescence, and root vitality of strawberry seedlings under drought stress[J]. Agronomy, 2022, 12(6): 1428. |
[5] | KARLOVA R, BOER D, HAYES S, et al. Root plasticity under abiotic stress[J]. Plant Physiology, 2021, 187(3): 1057-1070. |
[6] | CASTAÑEDA V, DE LA PEÑA M, AZCÁRATE L, et al. Functional analysis of the taproot and fibrous roots of Medicago truncatula: sucrose and proline catabolism primary response to water deficit[J]. Agricultural Water Management, 2019, 216: 473-483. |
[7] | CAI K F, GAO H Z, WU X J, et al. The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley[J]. International Journal of Molecular Sciences, 2019, 20(17): 4111. |
[8] | 单皓, 罗海婧, 张松, 等. 不同抗旱性小豆根系对干旱-复水的生理生态响应[J]. 干旱地区农业研究, 2023, 41(1): 94-100. |
SHAN H, LUO H J, ZHANG S, et al. Physiological and ecological response of different drought-tolerant adzuki beans root system to drought-rehydration[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 94-100. (in Chinese with English abstract). | |
[9] | ZHOU Y Y, HE R, GUO Y L, et al. A novel ABA functional analogue B2 enhances drought tolerance in wheat[J]. Scientific Reports, 2019, 9(1): 2887. |
[10] | FANG Z H, LIU J N, WU X M, et al. Full-length transcriptome of in Medicago sativa L. roots in response to drought stress[J]. Frontiers in Genetics, 2022, 13: 1086356. |
[11] | SHANG X G, YU Y J, ZHU L J, et al. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis[J]. Plant Science, 2020, 296: 110498. |
[12] | BANDURSKA H. Drought stress responses: coping strategy and resistance[J]. Plants, 2022, 11(7): 922. |
[13] | WANG L, LEE M, YE B Q, et al. Genes,pathways and networks responding to drought stress in oil palm roots[J]. Scientific Reports, 2020, 10(1): 21303. |
[14] | KAUR G, ASTHIR B. Molecular responses to drought stress in plants[J]. Biologia Plantarum, 2017, 61(2): 201-209. |
[15] | GRONDIN A, MAULEON R, VADEZ V, et al. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.)[J]. Plant, Cell & Environment, 2016, 39(2): 347-365. |
[16] | VERMA H, DEVI K, BARUAH A R, et al. Relationship of root aquaporin genes, OsPIP1;3, OsPIP2;4, OsPIP2;5, OsTIP2;1 and OsNIP2;1 expression with drought tolerance in rice[J]. Indian Journal of Genetics and Plant Breeding, 2020, 80(1): 50-57. |
[17] | DALAL M, SAHU S, TIWARI S, et al. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat[J]. Plant Physiology and Biochemistry, 2018, 130: 482-492. |
[18] | VOESENEK L A C J, BAILEY-SERRES J. Flood adaptive traits and processes: an overview[J]. The New Phytologist, 2015, 206(1): 57-73. |
[19] | ZHANG Y P, OU L J, ZHAO J, et al. Transcriptome analysis of hot pepper plants identifies waterlogging resistance related genes[J]. Chilean Journal of Agricultural Research, 2019, 79(2): 296-306. |
[20] | 王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988-2000. |
WANG S Y, ZHENG D F, FENG N J, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021, 47(10): 1988-2000. (in Chinese with English abstract) | |
[21] | AHMED S, NAWATA E, HOSOKAWA M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2002, 163(1): 117-123. |
[22] | NAJEEB U, TAN D K Y, BANGE M P, et al. Protecting cotton crops under elevated CO2 from waterlogging by managing ethylene[J]. Functional Plant Biology, 2018, 45(3): 340-349. |
[23] | QI X H, LI Q Q, MA X T, et al. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling[J]. Plant, Cell & Environment, 2019, 42(5): 1458-1470. |
[24] | BAI D F, LI Z, HU C G, et al. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress[J]. Scientia Horticulturae, 2021, 281: 109994. |
[25] | 尹冬梅, 王月悦, 董婷婷, 等. 乙烯响应因子PhERF2对矮牵牛耐涝性的影响[J]. 北方园艺, 2021(22): 82-90. |
YIN D M, WANG Y Y, DONG T T, et al. Influence of ethylene response factor PhERF2 on waterlogging resistance of petunias[J]. Northern Horticulture, 2021(22): 82-90. (in Chinese with English abstract) | |
[26] | VIANA V E, MARINI N, BUSANELLO C, et al. Regulation of rice responses to submergence by WRKY transcription factors[J]. Biologia Plantarum, 2018, 62(3): 551-560. |
[27] | ZHANG M, LIU Y H, SHI H, et al. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1): 159. |
[28] | KOMATSU S, NAKAMURA T, SUGIMOTO Y, et al. Proteomic and metabolomic analyses of soybean root tips under flooding stress[J]. Protein and Peptide Letters, 2014, 21(9): 865-884. |
[29] | LIU B S, KANG C L, WANG X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress[J]. Grassland Science, 2015, 61(4): 217-226. |
[30] | GAO Y G, JIN Y L, GUO W, et al. Metabolic and physiological changes in the roots of two oat cultivars in response to complex saline-alkali stress[J]. Frontiers in Plant Science, 2022, 13: 835414. |
[31] | DU Y L, ZHAO Q, CHEN L R, et al. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiology and Biochemistry, 2020, 146: 1-12. |
[32] | 唐晓倩, 李焕勇, 杨秀艳, 等. NaCl胁迫对西伯利亚白刺根系生长及K+/Na+平衡的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 83-89. |
TANG X Q, LI H Y, YANG X Y, et al. Effect of NaCl stress on root growth and K+/Na+ balance of Nitraria sibirica Pall. seedlings[J]. Journal of Northwest A & F University(Natural Science Edition), 2019, 47(8): 83-89. (in Chinese with English abstract) | |
[33] | FENG S, REN L L, SUN H W, et al. Morphological and physiological responses of two willow species from different habitats to salt stress[J]. Scientific Reports, 2020, 10(1): 18228. |
[34] | YANG L J, WANG Y F, YANG K J. Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress[J]. PeerJ, 2021, 9: e11963. |
[35] | WANG G D, SHEN W Z, ZHANG Z N, et al. The effect of neutral salt and alkaline stress with the same Na+ concentration on root growth of soybean [Glycine max(L.) merr.] seedlings[J]. Agronomy, 2022, 12(11): 2708. |
[36] | 梁敏, 许兴, 丁向真, 等. 盐胁迫下宁夏枸杞Na+吸收及Na+/H+转运蛋白与H+-ATPase基因表达的研究[J]. 核农学报, 2020, 34(4): 745-751. |
LIANG M, XU X, DING X Z, et al. Effects of salt stress on Na+ uptake and expression of Na+/H+ transporter and H+-ATPase genes in Lycium barbarum L[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 745-751. (in Chinese with English abstract) | |
[37] | REZAEI MOSHAEI M, ALI NEMATZADEH G, ASKARI H, et al. Quantitative gene expression analysis of some sodium ion transporters under salinity stress in Aeluropus littoralis[J]. Saudi Journal of Biological Sciences, 2014, 21(5): 394-399. |
[38] | LIU L, WANG B, LIU D, et al. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots[J]. BMC Plant Biology, 2020, 20(1): 138. |
[39] | 洪茵恬, 王晨光, 张永香, 等. 盐胁迫对线辣椒根系生长及基因表达的影响[J]. 西北农业学报, 2019, 28(7): 1129-1137. |
HONG Y T, WANG C G, ZHANG Y X, et al. Effects of salt stress on root growth and gene expression of Capsicum annuum L[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(7): 1129-1137. (in Chinese with English abstract) | |
[40] | WU S Y, ZHU P H, JIA B W, et al. A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa[J]. BMC Plant Biology, 2018, 18(1): 234. |
[41] | MA Q B, XIA Z L, CAI Z D, et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2018, 9: 1979. |
[42] | CAO L, YU Y, DING X D, et al. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity[J]. Plant Molecular Biology, 2017, 95(3): 253-268. |
[43] | GUAN Q J, MA H Y, WANG Z J, et al. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice[J]. BMC Genomics, 2016, 17: 142. |
[44] | DE ARAÚJO N O, DE SOUSA SANTOS M N, DE ARAUJO F F, et al. Balance between oxidative stress and the antioxidant system is associated with the level of cold tolerance in sweet potato roots[J]. Postharvest Biology and Technology, 2021, 172: 111359. |
[45] | 张玉霞, 丛百明, 王显国, 等. 苜蓿抗寒性与根系抗氧化酶活性相关性分析[J]. 草地学报, 2021, 29(2): 244-249. |
ZHANG Y X, CONG B M, WANG X G, et al. Correlation analysis of cold resistance and antioxidant enzyme activities in alfalfa roots[J]. Acta Agrestia Sinica, 2021, 29(2): 244-249. (in Chinese with English abstract) | |
[46] | JIA Y, LIU H L, WANG H, et al. Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage[J]. Field Crops Research, 2022, 277: 108395. |
[47] | 成京晋, 李浩, 早浩龙, 等. 植物响应低温胁迫的分子调控机制[J]. 分子植物育种, 2021, 19(9): 3104-3115. |
CHENG J J, LI H, ZAO H L, et al. Molecular regulation mechanism of plant response to cold stress[J]. Molecular Plant Breeding, 2021, 19(9): 3104-3115. (in Chinese with English abstract) | |
[48] | ZHOU A M, LIU E H, LI H, et al. PsCor413pm2, a plasma membrane-localized, cold-regulated protein from Phlox subulata, confers low temperature tolerance in Arabidopsis[J]. International Journal of Molecular Sciences, 2018, 19(9): 2579. |
[49] | 赵艳青, 杜建厂, 王盼乔, 等. 哈氏黄瓜NAC转录因子的鉴定及低温表达分析[J]. 园艺学报, 2019, 46(7): 1303-1319. |
ZHAO Y Q, DU J A/C, WANG P Q, et al. Identification and expression analysis of NAC transcription factor gene family under low temperature in Cucumis sativus var. hardwickii[J]. Acta Horticulturae Sinica, 2019, 46(7): 1303-1319. (in Chinese with English abstract) | |
[50] | LIU Q G, WANG S P, WEN J X, et al. Genome-wide identification and analysis of the WRKY gene family and low-temperature stress response in Prunus sibirica[J]. BMC Genomics, 2023, 24(1): 358. |
[51] | CATALÁ R, SALINAS J. Temperature-perception, molecules and mechanisms[J]. Journal of Applied Biomedicine, 2010, 8(4): 189-198. |
[52] | KUWAGATA T, ISHIKAWA-SAKURAI J, HAYASHI H, et al. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants[J]. Plant & Cell Physiology, 2012, 53(8): 1418-1431. |
[53] | AHAMED A, MURAI-HATANO M, ISHIKAWA-SAKURAI J, et al. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins[J]. Plant & Cell Physiology, 2012, 53(8): 1445-1456. |
[54] | AL-ZAHRANI H S, ALHARBY H F, FAHAD S. Antioxidative defense system, hormones, and metabolite accumulation in different plant parts of two contrasting rice cultivars as influenced by plant growth regulators under heat stress[J]. Frontiers in Plant Science, 2022, 13: 911846. |
[55] | ASTHIR B, KOUNDAL A, BAINS N S. Putrescine modulates antioxidant defense response in wheat under high temperature stress[J]. Biologia Plantarum, 2012, 56(4): 757-761. |
[56] | XU Y, BURGESS P, HUANG B R. Root antioxidant mechanisms in relation to root thermotolerance in perennial grass species contrasting in heat tolerance[J]. PLoS One, 2015, 10(9): e0138268. |
[57] | SUN M, LIN C, ZHANG A L, et al. Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress[J]. Journal of Agronomy and Crop Science, 2021, 207(4): 768-773. |
[58] | SWINDELL W R, HUEBNER M, WEBER A P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways[J]. BMC Genomics, 2007, 8: 125. |
[59] | ZHU B G, YE C J, LÜ H Y, et al. Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max)[J]. Journal of Plant Research, 2006, 119(3): 247-256. |
[60] | ZHANG S X, XU Z S, LI P S, et al. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures[J]. Plant Molecular Biology Reporter, 2013, 31(3): 688-697. |
[61] | AHSAN N, DONNART T, NOURI M Z, et al. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach[J]. Journal of Proteome Research, 2010, 9(8): 4189-4204. |
[62] | YIN M R, HU R Q, SONG A P, et al. Genome-wide identification and expression analysis of HSP70 gene family in Chrysanthemum lavandulifolium under heat stress[J]. Horticulturae, 2023, 9(2): 238. |
[1] | OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041. |
[2] | TIAN Xiaoming, XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan. Drought tolerance evaluation of four species of Ormosia [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 308-324. |
[3] | ZHANG Yu, JIN Mingwei, REN Li, ZHANG Yiying, ZHAO Hong, LIU Kun, DENG Shan, CHU Yunxia, LI Shouguo, ZHANG Jingli, HUANG Jingyan, CHEN Hairong. Expression patterns and transcriptional autoactivation analysis of CaERF70 in chili pepper [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2247-2256. |
[4] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
[5] | XIN Xiaoyue, LIU Peng. Research progress on molecular mechanisms of seed dormancy and germination regulated by plant hormones [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1485-1496. |
[6] | YU Bo, WANG Yuyan, REN Qin, DANG Yulei, ZHANG Zhipeng, WANG Yu. Effects of straw returning on soil structure and spring maize growth [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2446-2455. |
[7] | JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900. |
[8] | LI Chunmei, WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai. Progress of long non-coding RNA regulating growth, development and response to stress in plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2066-2076. |
[9] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[10] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[11] | LIU Tao, CHEN Hairong, WANG Chengzhong, REN Li, ZHANG Di. Physiology of stress resistance of Agapanthus praecox under drought and salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. |
[12] | SHANG Jiayin, ZHANG Xinjian, LI Kai, ZHANG He, WANG Dan. Effects of different covering materials on root distribution and soil physical and chemical properties of protected cultivation of grape [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2240-2250. |
[13] | XIONG Xue, ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1625-1639. |
[14] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[15] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||