Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2885-2894.DOI: 10.3969/j.issn.1004-1524.20231397
• Review • Previous Articles Next Articles
YE Tao(), SUN Qinyu, CHEN Weili, SHAN Wenshu, LIAN Wenxu, NIU Tingting, ZHANG Jiaxia(
)
Received:
2023-12-14
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
YE Tao, SUN Qinyu, CHEN Weili, SHAN Wenshu, LIAN Wenxu, NIU Tingting, ZHANG Jiaxia. Research progress of bZIP gene family in plant-pathogenic fungi[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2885-2894.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231397
Fig.1 Structural domain characteristics of bZIP family members A, Three-dimensional structure of bZIP protein; B, Sequence logo of the bZIP domain generated in WebLogo.
[1] | 安昌, 陆琳, 沈梦千, 等. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10):1-16. |
AN C, LU L, SHEN M Q, et al. Research progress of bHLH gene family in plants and its application prospects in medical plants[J]. Biotechnology Bulletin, 2023, 39(10):1-16. (in Chinese with English abstract) | |
[2] | 李白, 张子妍, 张强, 等. 灰葡萄孢bZIP家族基因的全基因组鉴定与表达规律分析[J]. 农业生物技术学报, 2022, 30(4):762-771. |
LI B, ZHANG Z Y, ZHANG Q, et al. Genome-wide identification and expression analysis of bZIP family genes in Botrytis cinerea[J]. Journal of Agricultural Biotechnology, 2022, 30(4):762-771. (in Chinese with English abstract) | |
[3] | HUBER E M, HORTSCHANSKY P, SCHEVEN M T, et al. Structural insights into cooperative DNA recognition by the CCAAT-binding complex and its bZIP transcription factor HapX[J]. Structure, 2022, 30(7):934-946. |
[4] | LAI X L, STIGLIANI A, VACHON G, et al. Building transcription factor binding site models to understand gene regulation in plants[J]. Molecular Plant, 2019, 12(6):743-763. |
[5] | KIM S, PARK S Y, KIM K S, et al. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae[J]. PLoS Genetics, 2009, 5(12):e1000757. |
[6] | VANDEL J, CASSAN O, LÈBRE S, et al. Probing transcription factor combinatorics in different promoter classes and in enhancers[J]. BMC Genomics, 2019, 20(1):103. |
[7] | LEVO M, AVNIT-SAGI T, LOTAN-POMPAN M, et al. Systematic investigation of transcription factor activity in the context of chromatin using massively parallel binding and expression assays[J]. Molecular Cell, 2017, 65(4):604-617. |
[8] | ZABET N R, FOY R, ADRYAN B. The influence of transcription factor competition on the relationship between occupancy and affinity[J]. PLoS One, 2013, 8(9):e73714. |
[9] | SCHWECHHEIMER C, ZOURELIDOU M, BEVAN M W. Plant transcription factor studies[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:127-150. |
[10] | COWELL I G, SKINNER A, HURST H C. Transcriptional repression by a novel member of the bZIP family of transcription factors[J]. Molecular and Cellular Biology, 1992, 12(7):3070-3077. |
[11] | JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111. |
[12] | WONG K C. DNA motif recognition modeling from protein sequences[J]. iScience, 2018, 7:198-211. |
[13] | CHAROENSAWAN V, WILSON D, TEICHMANN S A. Genomic repertoires of DNA-binding transcription factors across the tree of life[J]. Nucleic Acids Research, 2010, 38(21):7364-7377. |
[14] | LEITER É, EMRI T, PÁKOZDI K, et al. The impact of bZIP Atf1ortholog global regulators in fungi[J]. Applied Microbiology and Biotechnology, 2021, 105(14/15):5769-5783. |
[15] | LI P, ZHENG T C, LI L L, et al. Genome-wide investigation of the bZIP transcription factor gene family in Prunus mume:classification, evolution, expression profile and low-temperature stress responses[J]. Horticultural Plant Journal, 2022, 8(2):230-242. |
[16] | ZHANG M, LIU Y H, LI Z X, et al. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean[J]. iScience, 2021, 24(6):102642. |
[17] | FOSTER R, IZAWA T, CHUA N H. Plant bZIP proteins gather at ACGT elements[J]. FASEB Journal, 1994, 8(2):192-200. |
[18] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2):333-350. |
[19] | HU W, YANG H B, YAN Y, et al. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava[J]. Scientific Reports, 2016, 6:22783. |
[20] | 邓璇, 陈春兵, 刘练练, 等. 白桑bZIP基因家族的全基因组鉴定及表达谱分析[J]. 蚕业科学, 2022, 48(6):477-488. |
DENG X, CHEN C B, LIU L L, et al. Genome-wide identification and expression profile of bZIP gene family in white mulberry, Morus alba L[J]. Acta Sericologica Sinica, 2022, 48(6):477-488. (in Chinese) | |
[21] | 张珍珠, 陈秀玲, 王沛文, 等. 番茄bZIP基因家族的系统进化分析[J]. 东北农业大学学报, 2014, 45(9):47-55. |
ZHANG Z Z, CHEN X L, WANG P W, et al. Phyletic evolution analysis of bZIP family in tomato[J]. Journal of Northeast Agricultural University, 2014, 45(9):47-55. (in Chinese with English abstract) | |
[22] | ZHANG M, LIU Y H, SHI H, et al. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1):159. |
[23] | MIRZAEI K, BAHRAMNEJAD B, FATEMI S. Genome-wide identification and characterization of the bZIP gene family in potato (Solanum tuberosum)[J]. Plant Gene, 2020, 24:100257. |
[24] | PARK J, PARK J, JANG S, et al. FTFD:an informatics pipeline supporting phylogenomic analysis of fungal transcription factors[J]. Bioinformatics, 2008, 24(7):1024-1025. |
[25] | GUO M, GUO W, CHEN Y, et al. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae[J]. Molecular Plant-Microbe Interactions, 2010, 23(8):1053-1068. |
[26] | TANG W, RU Y Y, HONG L, et al. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae[J]. Environmental Microbiology, 2015, 17(4):1377-1396. |
[27] | LIU C Y, SHEN N N, ZHANG Q, et al. Magnaporthe oryzae transcription factor MoBZIP3 regulates appressorium turgor pressure formation during pathogenesis[J]. International Journal of Molecular Sciences, 2022, 23(2):881. |
[28] | 张莉林. 294个稻瘟病菌转录因子基因的敲除和功能分析[D]. 杭州: 浙江大学, 2013. |
ZHANG L L. Knockout and functional analysis of 294 transcription factor genes of Magnaporthe grisea[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[29] | 朱倩. 4个bZIP转录因子在稻瘟病菌生长发育及致病过程中的功能研究[D]. 南京: 南京农业大学, 2014. |
ZHU Q. Functional analysis of 4 bZIP transcription factors during the development and pathogenicity of Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English abstract) | |
[30] | KONG S, PARK S Y, LEE Y H. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae[J]. Environmental Microbiology, 2015, 17(4):1425-1443. |
[31] | 盖云鹏. 链格孢菌比较基因组及bZIP转录因子功能研究[D]. 杭州: 浙江大学, 2019. |
GAI Y P. Two tales of Alternaria alternata:comparative genomics and function of bZIP transcription factor[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[32] | 汤蔚. 非折叠蛋白反应相关基因MoHAC1和MoIRE1在稻瘟病菌生长发育和致病过程中的功能分析[D]. 南京: 南京农业大学, 2015. |
TANG W. Functional analysis of unfolded protein response associated genes MoHAC1 and MoIREI in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[33] | 陆静. 大豆疫霉bZIP转录因子PsBZP1的功能研究[D]. 南京: 南京农业大学, 2012. |
LU J. Functional analysis of bZIP transcription factor PsBZP1 in Phytophthora sojae[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[34] | WEN D S, YU L, XIONG D G, et al. Genome-wide identification of bZIP transcription factor genes and functional analyses of two members in Cytospora chrysosperma[J]. Journal of Fungi, 2021, 8(1):34. |
[35] | PERES N T A, LANG E A S, BITENCOURT T A, et al. The bZIP Ap1 transcription factor is a negative regulator of virulence attributes of the anthropophilic dermatophyte Trichophyton rubrum[J]. Current Research in Microbial Sciences, 2022, 3:100132. |
[36] | JIN B J, CHUN H J, CHOI C W, et al. Host-induced gene silencing is a promising biological tool to characterize the pathogenicity of Magnaporthe oryzae and control fungal disease in rice[J]. Plant, Cell & Environment, 2024, 47(1):319-336. |
[37] | NATHUES E, JOSHI S, TENBERGE K B, et al. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale[J]. Molecular Plant-Microbe Interactions, 2004, 17(4):383-393. |
[38] | HAGIWARA D, TAKAHASHI H, KUSUYA Y, et al. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species:an essential role for AtfA in conidial dormancy[J]. BMC Genomics, 2016, 17:358. |
[39] | SONG M, FANG S Q, LI Z G, et al. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense[J]. Fungal Genetics and Biology, 2022, 158:103649. |
[40] | GUO X Y, LI Y, FAN J, et al. Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae[J]. Frontiers in Plant Science, 2019, 10:433. |
[41] | LI X Y, WU Y T, LIU Z Q, et al. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides[J]. Microbiological Research, 2017, 197:39-48. |
[42] | LAI M J, CHENG Z, XIAO L Y, et al. The bZIP transcription factor VdMRTF1 is a negative regulator of melanin biosynthesis and virulence in Verticillium dahliae[J]. Microbiology Spectrum, 2022, 10(2):e0258121. |
[43] | YU D M, FANG Y L, TANG C, et al. Genomewide transcriptome profiles reveal how Bacillus subtilis lipopeptides inhibit microsclerotia formation in Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2019, 32(5):622-634. |
[44] | 李司政, 姚权, 李河. 果生炭疽菌转录因子CfHac1的BRLZ结构域生物学功能研究[J]. 北京林业大学学报, 2021, 43(9):70-76. |
LI S Z, YAO Q, LI H. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9):70-76. (in Chinese with English abstract) | |
[45] | 姚权, 郭源, 魏丰园, 等. bZIP转录因子CfHac1参与调控果生刺盘孢菌的生长发育和致病力[J]. 菌物学报, 2019, 38(10):1643-1652. |
YAO Q, GUO Y, WEI F Y, et al. A bZIP-type transcription factor CfHac1 is involved in regulating development and pathogenesis in Colletotrichum fructicola[J]. Mycosystema, 2019, 38(10):1643-1652. (in Chinese with English abstract) | |
[46] | LI S Z, CHEN J J, LI H. Protein disulfide isomerase CfPdi1 is required for response to ER stress, autophagy, and pathogenicity in Colletotrichum fructicola[J]. Forests, 2023, 14(8):1597. |
[47] | LI S Z, ZHANG S P, LI B, et al. The SNARE protein CfVam7 is required for growth, endoplasmic reticulum stress response, and pathogenicity of Colletotrichum fructicola[J]. Frontiers in Microbiology, 2021, 12:736066. |
[48] | LIU R F, LI H. The transcription factor CsBzip10 controls vegetative growth, asexual development, appressorium formation and pathogenicity in the Rosa chinensis anthracnose fungus Colletotrichum siamense[J]. Australasian Plant Pathology, 2019, 48(6):595-601. |
[49] | KIM M S, KO Y J, MAENG S, et al. Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans[J]. Genetics, 2010, 185(4):1207-1219. |
[50] | SZABÓ Z, PÁKOZDI K, MURVAI K, et al. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides[J]. Applied Microbiology and Biotechnology, 2020, 104(18):7879-7899. |
[51] | FANG Y L, XIONG D G, TIAN L Y, et al. Functional characterization of two bZIP transcription factors in Verticillium dahliae[J]. Gene, 2017, 626:386-394. |
[52] | SAKAMOTO K, IWASHITA K, YAMADA O, et al. Aspergillus oryzae atfA controls conidial germination and stress tolerance[J]. Fungal Genetics and Biology, 2009, 46(12):887-897. |
[53] | GUAN X L, SONG M, LU J W, et al. The transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in Colletotrichum siamense[J]. Journal of Fungi, 2022, 8(10):1032. |
[54] | LI B, SHEN Y H, ZHU Y P, et al. The b-ZIP transcription factor, FgBzip16, is essential for fungal development, ascospore discharge, and pathogenicity by modulating fatty acid metabolism in Fusarium graminearum[J]. Phytopathology Research, 2023, 5(1):36. |
[55] | ZHAO K H, LIU L M, HUANG S W. Genome-wide identification and functional analysis of the bZIP transcription factor family in rice bakanae disease pathogen, Fusarium fujikuroi[J]. International Journal of Molecular Sciences, 2022, 23(12):6658. |
[56] | ZHAO J Y, PENG M Y, CHEN W B, et al. Transcriptome analysis and functional validation identify a putative bZIP transcription factor, Fpkapc, that regulates development, stress responses, and virulence in Fusarium pseudograminearum[J]. Phytopathology, 2022, 112(6):1299-1309. |
[57] | ROZE L V, CHANDA A, WEE J, et al. Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in Aspergilli[J]. Journal of Biological Chemistry, 2011, 286(40):35137-35148. |
[58] | YIN W B, AMAIKE S, WOHLBACH D J, et al. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR[J]. Molecular Microbiology, 2012, 83(5):1024-1034. |
[59] | VAN NGUYEN T, KRÖGER C, BÖNNIGHAUSEN J, et al. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2013, 26(12):1378-1394. |
[60] | CHEN Y, ZHANG Z Q, LI B Q, et al. PeMetR-mediated sulfur assimilation is essential for virulence and patulin biosynthesis in Penicillium expansum[J]. Environmental Microbiology, 2021, 23(9):5555-5568. |
[61] | GAI Y P, LI L, LIU B, et al. Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata[J]. Microbiological Research, 2022, 256:126915. |
[62] | DAUCH A L, JABAJI-HARE S H. Metallothionein and bZIP transcription factor genes from velvetleaf and their differential expression following Colletotrichum coccodes infection[J]. Phytopathology, 2006, 96(10):1116-1123. |
[63] | BAILLO E H, KIMOTHO R N, ZHANG Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10(10):771. |
[64] | ALVES M S, DADALTO S P, GONÇALVES A B, et al. Transcription factor functional protein-protein interactions in plant defense responses[J]. Proteomes, 2014, 2(1):85-106. |
[65] | DUBEY A K, BARAD S, LURIA N, et al. Cation-stress-responsive transcription factors SltA and CrzA regulate morphogenetic processes and pathogenicity of Colletotrichum gloeosporioides[J]. PLoS One, 2016, 11(12):e0168561. |
[66] | XU X, WANG Y L, TIAN C M, et al. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis[J]. Fungal Genetics and Biology, 2016, 96:12-24. |
[67] | ZHANG S P, GUO Y, LI S Z, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree[J]. BMC Genetics, 2019, 20(1):94. |
[68] | LAMB P, MCKNIGHT S L. Diversity and specificity in transcriptional regulation:the benefits of heterotypic dimerization[J]. Trends in Biochemical Sciences, 1991, 16(11):417-422. |
[69] | AMOUTZIAS G D, ROBERTSON D L, VAN DE PEER Y, et al. Choose your partners:dimerization in eukaryotic transcription factors[J]. Trends in Biochemical Sciences, 2008, 33(5):220-229. |
[1] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
[2] | GAO Guoji, LONG Ling, SONG Xiaoyun, LI Yantong, LIU Gaoqiang, DING Gongtao. Effects of Hermetia illucens larvae instead of soybean meal on growth, development and serum biochemical indexes of Pekin ducks [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1764-1772. |
[3] | YANG Lei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng. The antifungal responses of insects against an entomopathogenic fungi, Beauveria bassiana and their application potential in pest control [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 825-836. |
[4] | YU Ruixian, HU Xiuqing, LIU Xinju, TANG Tao, WU Min, WU Shenggan, ZHAO Xueping. Effect of sublethal dosage of fenvalerate to growth and development of the silkworm, Bombyx mori [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 264-271. |
[5] | LIAO Xuehuan, ZHANG Keyuan, AER Lise, ZHOU Lin, YANG Erluo, DENG Jun, ZHANG Rongping. Effects of branch fertilizer and functional fertilizer on growth and yield of hybrid rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2447-2455. |
[6] | NIE Hongli, CHENG Qilu, SUN Wanchun, MA Jinchuan, LIN Hui, MA Junwei. Stress response and tolerance of Chlorella vulgaris to tylosin [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2316-2327. |
[7] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
[8] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[9] | YANG Chao, LIU Minzhu, LI Qiang, HAN Tao, PENG Liangzhi, LING Lili, FU Xingzheng, CHUN Changpin, CAO Li, HE Yizhong. Effects of different light-emitting diode (LED) light quality on growth, development and photosynthetic characteristics of Jinqiu Shatangju seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 89-97. |
[10] | XU Na, WANG Dahai, DU Chuanyin, DU Shasha, WANG Xiaomeng, ZHANG Yan, ZHANG Yuqin, WU Yuanhua, GUAN Ensen, SHI Yi. Effects of planting space on growth and development of tobacco seedlings [J]. , 2020, 32(8): 1342-1350. |
[11] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[12] | GENG Yanfei, LYU Mingfang. Progress on cysteine-rich receptor-like kinase family in plants [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2303-2312. |
[13] | LIU Huijie, XU Heng, QIU Wenyi, LI Xiaofang, ZHANG Hua, ZHU Ying, LI Chunshou, WANG Liangchao. Roles of bZIP transcription factors in plant growth and development and abiotic stress response [J]. , 2019, 31(7): 1205-1214. |
[14] | WU Wei, FENG Zhijuan, XU Shengchun, LIU Na, ZHANG Guwen, HU Qizan, GONG Yaming. Genome-wide identification and expression analysis of soybean NIPs [J]. , 2018, 30(7): 1101-1109. |
[15] | XIE Yukai, ZHENG Xusong, TIAN Junce, ZHANG Dayu, LYU Zhongxian. Effects of different survival substrates on growth, development and reproduction of Tytthus chinensis [J]. , 2018, 30(3): 432-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||