Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (4): 847-857.DOI: 10.3969/j.issn.1004-1524.20240254
• Plant Protection • Previous Articles Next Articles
DU Song1,2(), TANG Tao2, CHENG Xi2, ZHAO Xueping2, ZHANG Chunrong2, LIANG Xiaoyu3, WANG Meng3, ZHANG Zhen4, LI Yongcheng1, ZHANG Chenghui1,*(
)
Received:
2024-03-19
Online:
2025-04-25
Published:
2025-05-09
CLC Number:
DU Song, TANG Tao, CHENG Xi, ZHAO Xueping, ZHANG Chunrong, LIANG Xiaoyu, WANG Meng, ZHANG Zhen, LI Yongcheng, ZHANG Chenghui. Exploring the degradation and soil enzyme impact of pyroxasulfone and its main metabolites in soils[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 847-857.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240254
实验基质 Experimental soil | 来源 Source | pH值 pH value | 有机质含量 Organic matter content/(g·kg-1) | 阳离子交换量 Cation exchange capacity (CEC)/(cmol·kg-1) | 土壤质地 Soil texture |
---|---|---|---|---|---|
褐土Brown soil (S1) | 河北Hebei | 6.58 | 12.0 | 12.8 | 壤土Loam |
红土Red soil (S2) | 湖南Hunan | 4.60 | 5.51 | 13.4 | 黏壤土Clay loam |
黑土Black soil (S3) | 吉林Jilin | 7.90 | 35.7 | 28.9 | 粉黏壤土Powdery clay loam |
Table 1 Soil physical and chemical properties
实验基质 Experimental soil | 来源 Source | pH值 pH value | 有机质含量 Organic matter content/(g·kg-1) | 阳离子交换量 Cation exchange capacity (CEC)/(cmol·kg-1) | 土壤质地 Soil texture |
---|---|---|---|---|---|
褐土Brown soil (S1) | 河北Hebei | 6.58 | 12.0 | 12.8 | 壤土Loam |
红土Red soil (S2) | 湖南Hunan | 4.60 | 5.51 | 13.4 | 黏壤土Clay loam |
黑土Black soil (S3) | 吉林Jilin | 7.90 | 35.7 | 28.9 | 粉黏壤土Powdery clay loam |
时间 Time/min | 甲醇 Methanol/% | 0.1%甲酸水 0.1% formic acid water/% | 流速 Flow velocity/ (mL·min-1) |
---|---|---|---|
0.01 | 40 | 60 | 0.25 |
0.5 | 65 | 35 | 0.25 |
1.5 | 95 | 5 | 0.25 |
3.4 | 95 | 5 | 0.25 |
3.5 | 40 | 60 | 0.25 |
6.0 | 40 | 60 | 0.25 |
Table 2 Liquid chromatography gradient elution parameters
时间 Time/min | 甲醇 Methanol/% | 0.1%甲酸水 0.1% formic acid water/% | 流速 Flow velocity/ (mL·min-1) |
---|---|---|---|
0.01 | 40 | 60 | 0.25 |
0.5 | 65 | 35 | 0.25 |
1.5 | 95 | 5 | 0.25 |
3.4 | 95 | 5 | 0.25 |
3.5 | 40 | 60 | 0.25 |
6.0 | 40 | 60 | 0.25 |
农药 Pesticide | 母离子 Parent ion (m/z) | 定量离子对 Quantitative ion pair(m/z) | 定性离子对 Qualitative ion pair(m/s) | Q1偏转电压 Q1 deflection voltage/V | 碰撞气能量 Collision gas energy/eV | Q3偏转电压 Q3 deflection voltage/V |
---|---|---|---|---|---|---|
砜吡草唑Pyroxasulfone | 392.1 | 229.1 | 179.1 | -11;-11 | -17;-32 | -17;-13 |
代谢物M-1 Metabolite-1 | 309 | 259 | 195 | 23; 12 | 21; 17 | 22; 12 |
代谢物M-3 Metabolite-3 | 258.9 | 165.05 | 214.95 | 13; 10 | 16; 8 | 17; 14 |
Table 3 Mass spectrometry detection parameters
农药 Pesticide | 母离子 Parent ion (m/z) | 定量离子对 Quantitative ion pair(m/z) | 定性离子对 Qualitative ion pair(m/s) | Q1偏转电压 Q1 deflection voltage/V | 碰撞气能量 Collision gas energy/eV | Q3偏转电压 Q3 deflection voltage/V |
---|---|---|---|---|---|---|
砜吡草唑Pyroxasulfone | 392.1 | 229.1 | 179.1 | -11;-11 | -17;-32 | -17;-13 |
代谢物M-1 Metabolite-1 | 309 | 259 | 195 | 23; 12 | 21; 17 | 22; 12 |
代谢物M-3 Metabolite-3 | 258.9 | 165.05 | 214.95 | 13; 10 | 16; 8 | 17; 14 |
农药 Pesticide | 土壤类型 Soil type | 标准曲线 Standard curve | R2 |
---|---|---|---|
砜吡草唑 | S1 | y=67 112.9x + 7 247.6 | 0.999 8 |
Pyroxasulfone | S2 | y=66 899.9x + 8 900.6 | 0.999 7 |
S3 | y=68 601.5x + 1 637.3 | 0.999 8 | |
代谢物M-1 | S1 | y=20 178.3x + 631.1 | 0.999 9 |
Metabolite-1 | S2 | y=20 030.3x-299.4 | 0.999 8 |
S3 | y=20 866.0x + 770.6 | 0.999 9 | |
代谢物M-3 | S1 | y=84 350.3x + 16 146.0 | 0.999 8 |
Metabolite-3 | S2 | y=82 986.9x + 15 028.5 | 0.999 8 |
S3 | y=84 780.0x + 17 830.3 | 0.999 9 |
Table 4 Standard curves of pyroxasulfone, M-1 and M-3 in three soils
农药 Pesticide | 土壤类型 Soil type | 标准曲线 Standard curve | R2 |
---|---|---|---|
砜吡草唑 | S1 | y=67 112.9x + 7 247.6 | 0.999 8 |
Pyroxasulfone | S2 | y=66 899.9x + 8 900.6 | 0.999 7 |
S3 | y=68 601.5x + 1 637.3 | 0.999 8 | |
代谢物M-1 | S1 | y=20 178.3x + 631.1 | 0.999 9 |
Metabolite-1 | S2 | y=20 030.3x-299.4 | 0.999 8 |
S3 | y=20 866.0x + 770.6 | 0.999 9 | |
代谢物M-3 | S1 | y=84 350.3x + 16 146.0 | 0.999 8 |
Metabolite-3 | S2 | y=82 986.9x + 15 028.5 | 0.999 8 |
S3 | y=84 780.0x + 17 830.3 | 0.999 9 |
农药 Pesticide | 土壤类型 Soil type | 添加浓度 Additive concentration/ (mg·kg-1) | 平均回收率 Average recovery Rate/% | RSD/% |
---|---|---|---|---|
砜吡草唑 | S1 | 0.2 | 96 | 3.5 |
Pyroxasulfone | 2 | 97 | 3.3 | |
S2 | 0.2 | 93 | 2.7 | |
2 | 95 | 1.5 | ||
S3 | 0.2 | 95 | 1.7 | |
2 | 98 | 1.3 | ||
代谢物M-1 | S1 | 0.2 | 95 | 2.0 |
Metabolite-1 | 2 | 90 | 0.5 | |
S2 | 0.2 | 86 | 1.4 | |
2 | 87 | 2.3 | ||
S3 | 0.2 | 91 | 1.8 | |
2 | 92 | 1.0 | ||
代谢物M-3 | S1 | 0.2 | 94 | 1.6 |
Metabolite-3 | 2 | 87 | 1.5 | |
S2 | 0.2 | 92 | 1.0 | |
2 | 89 | 2.3 | ||
S3 | 0.2 | 88 | 1.7 | |
2 | 86 | 2.8 |
Table 5 Recovery rate and RSDs of pyroxasulfone, M-1 and M-3 in three soils
农药 Pesticide | 土壤类型 Soil type | 添加浓度 Additive concentration/ (mg·kg-1) | 平均回收率 Average recovery Rate/% | RSD/% |
---|---|---|---|---|
砜吡草唑 | S1 | 0.2 | 96 | 3.5 |
Pyroxasulfone | 2 | 97 | 3.3 | |
S2 | 0.2 | 93 | 2.7 | |
2 | 95 | 1.5 | ||
S3 | 0.2 | 95 | 1.7 | |
2 | 98 | 1.3 | ||
代谢物M-1 | S1 | 0.2 | 95 | 2.0 |
Metabolite-1 | 2 | 90 | 0.5 | |
S2 | 0.2 | 86 | 1.4 | |
2 | 87 | 2.3 | ||
S3 | 0.2 | 91 | 1.8 | |
2 | 92 | 1.0 | ||
代谢物M-3 | S1 | 0.2 | 94 | 1.6 |
Metabolite-3 | 2 | 87 | 1.5 | |
S2 | 0.2 | 92 | 1.0 | |
2 | 89 | 2.3 | ||
S3 | 0.2 | 88 | 1.7 | |
2 | 86 | 2.8 |
农药 Pesticide | 土壤类型 Soil type | 回归方程 Regression equation | R2 | t1/2/d |
---|---|---|---|---|
砜吡草唑 | S1 | Ct=1.783e-0.002 54t | 0.977 8 | 272.8 |
Pyroxasulfone | S2 | Ct=1.768e-0.000 81t | 0.764 4 | 855.7 |
S3 | Ct=1.789e-0.004 75t | 0.925 8 | 145.9 | |
代谢物M-1 | S1 | Ct=1.792e-0.000 31t | 0.848 8 | 2 236.0 |
Metabolite-1 | S2 | Ct=1.747e-0.000 30t | 0.961 8 | 2 310.5 |
S3 | Ct=1.715e-0.000 43t | 0.873 5 | 1 612.0 | |
代谢物M-3 | S1 | Ct=1.844e-0.001 11t | 0.879 3 | 624.5 |
Metabolite-3 | S2 | Ct=1.798e-0.001 87t | 0.981 5 | 370.7 |
S3 | Ct=1.793e-0.000 34t | 0.787 8 | 2 038.7 |
Table 6 Degradation linear regression equation and half-life of pyroxasulfone, M-1 and M-3 in different soils
农药 Pesticide | 土壤类型 Soil type | 回归方程 Regression equation | R2 | t1/2/d |
---|---|---|---|---|
砜吡草唑 | S1 | Ct=1.783e-0.002 54t | 0.977 8 | 272.8 |
Pyroxasulfone | S2 | Ct=1.768e-0.000 81t | 0.764 4 | 855.7 |
S3 | Ct=1.789e-0.004 75t | 0.925 8 | 145.9 | |
代谢物M-1 | S1 | Ct=1.792e-0.000 31t | 0.848 8 | 2 236.0 |
Metabolite-1 | S2 | Ct=1.747e-0.000 30t | 0.961 8 | 2 310.5 |
S3 | Ct=1.715e-0.000 43t | 0.873 5 | 1 612.0 | |
代谢物M-3 | S1 | Ct=1.844e-0.001 11t | 0.879 3 | 624.5 |
Metabolite-3 | S2 | Ct=1.798e-0.001 87t | 0.981 5 | 370.7 |
S3 | Ct=1.793e-0.000 34t | 0.787 8 | 2 038.7 |
农药 Pesticide | 土壤性质 Soil properties | 回归方程 Regression equation | R2 |
---|---|---|---|
砜吡草唑 | pH值pH value | y=0.132 4x+2.165 2 | 0.996 1 |
Pyroxasulfone | 有机质含量 | y=0.012 9x+1.552 5 | 0.869 0 |
Organic matter content | |||
CEC | y=0.1x+1.523 3 | 0.206 0 | |
代谢物M-1 | pH值pH value | y=0.004 4x+1.691 2 | 0.083 8 |
Metabolite-1 | 有机质含量 | y=0.001 1x+1.682 | 0.441 3 |
Organic matter content | |||
CEC | y=0.025x+1.713 3 | 0.986 8 | |
代谢物M-3 | pH值pH value | y=-0.086 1x+1.032 2 | 0.983 8 |
Metabolite-3 | 有机质含量 | y=-0.007 7x+1.443 7 | 0.717 4 |
Organic matter content | |||
CEC | y=-0.04x+1.5 | 0.076 9 |
Table 7 Correlation between soil residue concentrations and soil properties of pyroxasulfone, M-1 and M-3
农药 Pesticide | 土壤性质 Soil properties | 回归方程 Regression equation | R2 |
---|---|---|---|
砜吡草唑 | pH值pH value | y=0.132 4x+2.165 2 | 0.996 1 |
Pyroxasulfone | 有机质含量 | y=0.012 9x+1.552 5 | 0.869 0 |
Organic matter content | |||
CEC | y=0.1x+1.523 3 | 0.206 0 | |
代谢物M-1 | pH值pH value | y=0.004 4x+1.691 2 | 0.083 8 |
Metabolite-1 | 有机质含量 | y=0.001 1x+1.682 | 0.441 3 |
Organic matter content | |||
CEC | y=0.025x+1.713 3 | 0.986 8 | |
代谢物M-3 | pH值pH value | y=-0.086 1x+1.032 2 | 0.983 8 |
Metabolite-3 | 有机质含量 | y=-0.007 7x+1.443 7 | 0.717 4 |
Organic matter content | |||
CEC | y=-0.04x+1.5 | 0.076 9 |
Fig.4 Effects of pyroxasulfone, M-1 and M-3 on soil enzyme activity in black soil The bars with different letters at the same time indicate the significant difference in different treatments(P<0.05).
[1] | TANETANI Y, KAKU K, KAWAI K, et al. Action mechanism of a novel herbicide, pyroxasulfone[J]. Pesticide Biochemistry and Physiology, 2009, 95(1): 47-55. |
[2] | KHALIL Y, FLOWER K, SIDDIQUE K H M, et al. Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin[J]. PLoS One, 2018, 13(12): e0208274. |
[3] | JHALA A J, SINGH M, SHERGILL L, et al. Very long chain fatty acid-inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future[J]. Weed Technology, 2024, 38: e1. |
[4] | 曲明静, 曲春娟, 高兴祥, 等. 40%砜吡草唑悬浮剂的除草活性及对花生的安全性评价[J]. 植物保护, 2024, 50(1): 295-303. |
QU M J, QU C J, GAO X X, et al. Herbicidal activity of pyroxasulfone 40% SC on weeds and its safety evaluation on peanuts[J]. Plant Protection, 2024, 50(1): 295-303. (in Chinese with English abstract) | |
[5] | ZHANG J J, NIU Y J, MA C, et al. Accumulation and metabolism of pyroxasulfone in tomato seedlings[J]. Ecotoxicology and Environmental Safety, 2023, 254: 114765. |
[6] | WANG Y H, MEN J N, ZHENG T, et al. Impact of pyroxasulfone on sugarcane rhizosphere microbiome and functioning during field degradation[J]. Journal of Hazardous Materials, 2023, 455: 131608. |
[7] | 顾闻. 砜吡草唑在土壤和水环境中的环境行为特性研究[D]. 南京: 南京农业大学, 2017. |
GU W. Study on environmental behavior characteristics of fenpyrad in soil and water environment[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract) | |
[8] | Minnesota Department of Agriculture. Pyroxasulfone[R/OL]. Minnesota: Minnesota Department, 2012. (2013-03-26). https://www.mda.state.mn.us/sites/default/files/inline-files/nair-pyroxasulfone.pdf |
[9] | Australian Pesticides and Veterinary Medicines Authority. Public Release Summary on the Evaluation of the New Active PYROXASULFONE in the Product SAKURA® 850 WG HERBICIDE[R]. Canberra: Australian Government. 2011. https://www.apvma.gov.au/node/13976. |
[10] | CHAI T T, ZHAO H L, YANG S M, et al. Different transformation of carbosulfan to its higher toxic metabolites in pakchoi (Brassica campestris ssp.) and cucumber (Cucumissativus L.) after field application[J]. International Journal of Environmental Analytical Chemistry, 2015, 95(12): 1124-1133. |
[11] | WU M, LI G L, LI P F, et al. Assessing the ecological risk of pesticides should not ignore the impact of their transformation byproducts-The case of chlorantraniliprole[J]. Journal of Hazardous Materials, 2021, 418: 126270. |
[12] | SINCLAIR C J, BOXALL A B A. Assessing the ecotoxicity of pesticide transformation products[J]. Environmental Science & Technology, 2003, 37(20): 4617-4625. |
[13] | LI Z J. Improving screening model of pesticide risk assessment in surface soils: Considering degradation metabolites[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112490. |
[14] | FERNANDES G, APARICIO V C, DE GERÓNIMO E, et al. Epilithic biofilms as a discriminating matrix for long-term and growing season pesticide contamination in the aquatic environment: Emphasis on glyphosate and metabolite AMPA[J]. Science of the Total Environment, 2023, 900: 166315. |
[15] | TAN X P, NIE Y X, MA X M, et al. Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics[J]. Science of the Total Environment, 2021, 770: 144500. |
[16] | 闫雷, 李晓亮, 秦智伟, 等. 农药对土壤酶活性影响的研究进展[J]. 农机化研究, 2009, 31(11): 223-226. |
YAN L, LI X L, QIN Z W, et al. Research advance of influence of pesticides on enzyme activities in soil[J]. Journal of Agricultural Mechanization Research, 2009, 31(11): 223-226. (in Chinese with English abstract) | |
[17] | DU Z K, ZHU Y Y, ZHU L S, et al. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities[J]. Ecotoxicology and Environmental Safety, 2018, 164: 571-578. |
[18] | 马爱军, 何任红, 蒋新宇, 等. 毒死蜱与乙草胺单一污染和复合污染对土壤酶活性及微生物生物量碳的影响[J]. 生态与农村环境学报, 2008, 24(2): 57-60. |
MA A J, HE R H, JIANG X Y, et al. Effects of single and combined pollution of chlorpyrifos and acetochlor on soil enzyme activity and microbial biomass carbon[J]. Journal of Ecology and Rural Environment, 2008, 24(2): 57-60. (in Chinese with English abstract) | |
[19] | ZHANG Y, HU Y, AN N, et al. Short-term response of soil enzyme activities and bacterial communities in black soil to a herbicide mixture: Atrazine and Acetochlor[J]. Applied Soil Ecology, 2023, 181: 104652. |
[20] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会.化学农药环境安全评价试验准则第1部分:土壤降解试验: GB/T 31270.1—2014[S]. 北京: 中国标准出版社, 2015. |
[21] | 李娜, 黄金, 耿玉清, 等. 青海湖湖滨不同土地类型土壤酶活性的研究[J]. 北京林业大学学报, 2019, 41(10): 49-56. |
LI N, HUANG J, GENG Y Q, et al. Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 49-56. (in Chinese with English abstract) | |
[22] | 李旭, 焉莉, 王继岩, 等. 吉林省水稻种植区不同土壤类型的微生物多样性差异及影响因子研究[J/OL]. 四川农业大学学报.(2022-11-24). https://kns.cnki.net/kcms2/article/abstract?v=uQzRnDzoTXEZX3o8QxbCyUcAUShnN-tVsZEKwIJhDAxzuUzr4dYNVv3dCgKQo7Ea9AC-cugUlZ-lFhwrePgAl71CASF_vEmRZHnCmCDQXl5CB8XTYX2-rHGGXwiW1eFBmryEid5l4cP86i2egQVQk6Lf-1r35DaYoPFwD4_nJPeEVGLV8btTp87c-wpU1mKbs&uniplatform=NZKPT&language=CHS |
LI X, YIAN L, WANG J Y, et al. Study on microbial diversity differences and influencing factors of different soil types in rice growing areas of Jilin Province[J/OL]. Journal of Sichuan Agricultural College. (2022-11-24). https://kns.cnki.net/kcms2/article/abstract?v=uQzRnDzoTXEZX3o8-QxbCyUcAUShnNtVsZEKwIJhDAxzuUzr4dYNVv3dCgKQo7-Ea9AC-cugUlZ-lFhwrePgAl71CASF_vEmRZHnCmCDQXl5-CB8XTYX2-rHGGXwiW1eFBmryEid5l4cP86i2egQVQk6Lf-1r35DaYoPFwD4_nJPeEVGLV8btTp87c-wpU1mKbs&uniplatform=NZKPT&language=CHS (in Chinese with English abstract) | |
[23] | 中华人民共和国农业农村部. 农作物中农药残留试验准则:NY·T788—2018[S].北京: 中国农业出版社, 2018. |
[24] | SANCHEZ W, BURGEOT T, PORCHER J M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept[J]. Environmental Science and Pollution Research, 2013, 20(5): 2721-2725. |
[25] | 程超. 两种农药单独及与纳米TiO2复合暴露对土壤微生物的毒性效应[D]. 泰安: 山东农业大学, 2022. |
CHENG C. Toxic effects of two pesticides alone and combined with nano-TiO2 on soil microorganisms[D]. Taian: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[26] | 王宇轩. 添加生物质炭对苯磺隆胁迫下土壤养分和酶活性的影响[D]. 太谷: 山西农业大学, 2020. |
WANG Y X. Effects of adding biomass charcoal on soil nutrients and enzyme activities under tribenuron-methyl stress[D]. Taigu: Shanxi Agricultural University, 2020. (in Chinese with English abstract) | |
[27] | LIU Y F, FAN X X, ZHANG T, et al. Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China[J]. Environmental Pollution, 2020, 262: 114264. |
[28] | ZHANG Y Q, ZHANG J W, SHI B H, et al. Effects of cloransulam-methyl and diclosulam on soil nitrogen and carbon cycle-related microorganisms[J]. Journal of Hazardous Materials, 2021, 418: 126395. |
[29] | GODIN A M, LIDHER K K, WHITESIDE M D, et al. Control of soil phosphatase activities at millimeter scales in a mixed paper birch-Douglas-fir forest: The importance of carbon and nitrogen[J]. Soil Biology and Biochemistry, 2015, 80: 62-69. |
[30] | LIU K H, LI C M, TANG S Q, et al. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China[J]. Chemosphere, 2020, 251: 126415. |
[31] | BELIAEFF B, BURGEOT T. Integrated biomarker response: a useful tool for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2002, 21(6): 1316-1322. |
[32] | ZHANG C, ZHANG J W, ZHU L S, et al. Fluoxastrobin-induced effects on acute toxicity, development toxicity, oxidative stress, and DNA damage in Danio rerio embryos[J]. Science of the Total Environment, 2020, 715: 137069. |
[33] | YANG R, XIA X M, WANG J H, et al. Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities[J]. Chemosphere, 2020, 250: 126161. |
[34] | CHENG Y L, SONG W H, TIAN H M, et al. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota[J]. Chemosphere, 2021, 267: 129219. |
[1] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
[2] | JIN Xiaojie, ZHANG Jingzhen, YANG Xinsun. Comparative metabolite profiling of rhizome and bulbil of wild Chinese yam (Dioscorea polystachya Turcz.) from Wuxue by widely targeted metabolomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 727-735. |
[3] | GAO Zhiyuan, YANG Shuna, WANG Zhaoli, WANG Zhihao, XI Xinyan, HE Juan, JIA Huijuan. Effects of different fumigation on continuous cropping soil in peach orchard [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2251-2258. |
[4] | QIAN Xiaohui, CHEN Longqing, LI Shuangqin, SHI Rui. Analysis on alkaloids metabolites of two edible roses [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 454-463. |
[5] | WANG Xian, LIU Fang, WEI Xiaohong, ZHU Xiaolin, WANG Baoqiang. Study on resistance of different tomato germplasm materials to yellow leaf curl virus disease [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2085-2097. |
[6] | DONG Yufei, LYU Xiangzhang, ZHANG Zikun, HE Hongjun, YU Jingquan, ZHOU Yanhong. Effects of different cultivation patterns on soil microbial community and enzyme activity in continuous cropped pepper field [J]. , 2019, 31(9): 1485-1492. |
[7] | GUAN Qinzhuang, CHENG Yongxu, LI Cong, WANG Haifeng, CHEN Huangen, LI Jiayao. Changes of soil organic carbon and relationships with soil properties in rice-crayfish coculture system [J]. , 2019, 31(1): 113-120. |
[8] | SA Rula, YANG Hengshan, GAO Julin, FAN Fu, ZHANG Ruifu, LIU Jing, WU Shuai. Effects of maize straw returning modes on soil fertility and maize yield [J]. , 2018, 30(2): 268-274. |
[9] | LIU Bing, SONG Shui\|lin, LIU Xiao\|li, YANG Ming\|xia, GONG Ling\|ling. Screening, identification of bio\|control endophytic bacterium against citrus canker and stability of its bioactive metabolites [J]. , 2015, 27(12): 2152-. |
[10] | LIU Shuxin;DING Fenghua;*;CHEN Weixiang;XU Guifen;CHENG Jie. Effects of organic fertilizers on soil nutrients and enzyme activities of continuous cropping soil of asparagus bean [J]. , 2014, 26(3): 0-770774. |
[11] | GONG Na;YANG Zhen;WANG Na;LI Xue-long;XIAO Jun;CHEN Xun;YANG Tao*. Grey correlation analysis of the soybeans main properties impacted by secondary metabolites of endophyte [J]. , 2013, 25(5): 0-937. |
[12] | LI Xiao-long;WANG Chao;GUO Jian-hua*. Identification of strain 518 and biocontrol properties and separation of its secondary metabolites [J]. , 2013, 25(3): 0-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||