Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (11): 2426-2440.DOI: 10.3969/j.issn.1004-1524.20250187
• Review • Previous Articles Next Articles
LI Xinxin1,2(
), XU Heng2, SONG Tao2, YUAN Xi1, SUN Meihao1, ZHU Ying2, ZHANG Hua2,*(
)
Received:2025-03-12
Online:2025-11-25
Published:2025-12-08
CLC Number:
LI Xinxin, XU Heng, SONG Tao, YUAN Xi, SUN Meihao, ZHU Ying, ZHANG Hua. Progress of genetic basis and regulatory mechanism of high temperature tolerance in rice[J]. Acta Agriculturae Zhejiangensis, 2025, 37(11): 2426-2440.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20250187
| 亲本 Parents | 遗传材料 Genetic material | QTL | 所在染色体 Chromosome | 所处位置 Marker/location | 农艺性状 Agronomic trait | 参考文献 Reference | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IR64/N22 | BC5F2 | qHTSF4.1 | 4 | M85-M83 | 小穗育性Spikelet fertility | [ | |||||||||
| IR64/Giza178, | F2 | qHTSF1.2 | 1 | 103.5-109.0 cM | 小穗育性 | [ | |||||||||
| Milyang23/Giza178 | qHTSF2.1 | 2 | 4.8-19.8 cM | Spikelet fertility | |||||||||||
| qHTSF2.2 | 2 | 43.0-63.0 cM | |||||||||||||
| qHTSF3.1 | 3 | 1.5-17.5 cM | |||||||||||||
| qHTSF4.1 | 4 | 66.0-73.0 cM | |||||||||||||
| qHTSF6.1 | 6 | 27.5-31.5 cM | |||||||||||||
| qHTSF11.2 | 11 | 25.3-42.3 cM | |||||||||||||
| qHTSF11.3 | 11 | 11.6-14.6 cM | |||||||||||||
| IR64/N22 | RIL | qSTIPSS9.1 | 9 | SNP12393-12417 | 小穗育性Spikelet fertility | [ | |||||||||
| qSTIPSS12.1 | 12 | SNP14876-14892 | |||||||||||||
| qSTIY3.1 | 3 | SNP5308-5336 | 产量Yield | ||||||||||||
| qSTIY5.1 | 5 | SNP8377-8401 | |||||||||||||
| Chikushi52/ | BC4F3:4 | qWB1 | 1 | RM10870-RM7075 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qWB3 | 3 | RM3372-RM2791 | White-back grains ratio | |||||||||||
| qWB8 | 8 | RM3181-RM3689 | |||||||||||||
| qBW2 | 2 | RM5470 | 稻米垩白Basal-white-grains | ||||||||||||
| qBW3 | 3 | RM3372-RM2791 | |||||||||||||
| qBW6 | 6 | RM20429-RM6395 | |||||||||||||
| qBW12 | 12 | RM1986 | |||||||||||||
| qGW2 | 2 | RM5470-SNP2_1 | 粒重Grian weight | ||||||||||||
| qGW3 | 3 | RM3372-RM2326 | |||||||||||||
| qGW8 | 8 | RM5556-RM3689 | |||||||||||||
| qGW10 | 10 | RM3373-RM1374 | |||||||||||||
| qDTH3 | 3 | RM3372-RM2326 | 抽穗期Days to heading | ||||||||||||
| qDTH12 | 12 | SNP12_1-RM1986 | |||||||||||||
| Chikushi 52/ | RIL | qMW2 | 2 | RM5470 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qMW4.1 | 4 | RM16424 | Milky white rice grains | |||||||||||
| qMW4.2 | 4 | RM6906 | |||||||||||||
| qMW9 | 9 | DdeI19 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qSFht2 | 2 | RM1234-RM3850 | 小穗育性Spikelet fertility | [ | |||||||||
| qSFht4.2 | 4 | RM3916-RM2431 | |||||||||||||
| qPS | 1 | RM1196-RM6581 | 花粉发育 | ||||||||||||
| qPSLht4.1 | 4 | RM7585-Bb38P21a | Pollen shedding level | ||||||||||||
| qPSLht5 | 5 | RM1248-RM4915 | |||||||||||||
| qPSLht7 | 7 | RM6394-RM1364 | |||||||||||||
| qPSLht10.2 | 10 | RM7492-RM1859 | |||||||||||||
| qDFT3 | 3 | RM3766-RM3513 | 开花时间Daily flowering time | ||||||||||||
| qDFT8 | 8 | RM5891-RM4997 | |||||||||||||
| qDFT10.1 | 10 | RM6737-RM6673 | |||||||||||||
| qDFT11 | 11 | RM1355-RM2191 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qHTB1 | 1 | RM1387-RM8137 | 小穗育性Spikelet fertility | [ | |||||||||
| qHTB3-1 | 3 | RM4108 | |||||||||||||
| qHTB3-2 | 3 | RM5748-RM5864 | |||||||||||||
| qHTB3-3 | 3 | RM3525-RM6970 | |||||||||||||
| qHTB4-1 | 4 | RM7585-RM5633 | |||||||||||||
| qHTB4-2 | 4 | RM3534-RM2431 | |||||||||||||
| qHTB5-1 | 5 | RM1248-RM5579 | |||||||||||||
| qHTB5-2 | 5 | RM3236 | |||||||||||||
| qHTB6 | 6 | RM5963-RM3330 | |||||||||||||
| qHTB10-1 | 10 | RM3882-RM4455 | |||||||||||||
| qHTB10-2 | 10 | RM3773-RM6673 | |||||||||||||
| qHTB11 | 11 | RM286-RM7283 | |||||||||||||
| Hanaechizen/Niigatawase | RIL | qWB3 | 3 | RM4383 | 稻米垩白White-back kernels | [ | |||||||||
| qWB4 | 4 | RM3288 | |||||||||||||
| qWB6 | 6 | RM8125 | |||||||||||||
| qWB9 | 9 | RM2482 | |||||||||||||
| qKW3-1 | 3 | RM7365 | 粒重Grian weight | ||||||||||||
| qKW3-1 | 3 | RM3513 | |||||||||||||
| qKW6 | 6 | RM5314 | |||||||||||||
| qKW7 | 7 | RM505 | |||||||||||||
| qKW10 | 10 | RM2371 | |||||||||||||
| qDH1 | 1 | RM151 | 抽穗期Days to heading | ||||||||||||
| qDH3 | 3 | RM5172 | |||||||||||||
| qDH6 | 6 | RM1369 | |||||||||||||
| R53/HHT4 | BC5F3:4 | qHTB1-1 | 1 | RM11629-RM128 | 小穗育性Spikelet fertility | [ | |||||||||
| M9962/Sinlek | F2 | qSF1 | 1 | 34 280 000-34 420 000 | 小穗育性Spikelet fertility | [ | |||||||||
| qSF2 | 2 | 18 730 000-19 100 000 | |||||||||||||
| qSF3.1 | 3 | 26 120 000-26 220 000 | |||||||||||||
| qSF3.2 | 3 | 28 730 000-28 960 000 | |||||||||||||
| Cheongcheong/Nagdong | DH | qSf3 | 3 | RM15749-RM15689 | 结实率Spikelet fertility | [ | |||||||||
| qSf4 | 4 | RM1205-RM3330 | |||||||||||||
| qSf8 | 8 | RM23178-RM23191 | |||||||||||||
| qTgw7 | 7 | RM248-RM1134 | 千粒重1 000 grain weight | ||||||||||||
| qTgw8 | 8 | RM149-RM23191 | |||||||||||||
| 9311/ IRGC102309 | BC6F3:4 | qHTCGR5 | 5 | RM1200-RM5796 | 稻米垩白Chalky grain rate | [ | |||||||||
| 996/4628 | RIL | qHTCGR1.1 | 1 | RM297-RM6648 | 稻米垩白Chalky grain rate | [ | |||||||||
| qHTCGR1.2 | 1 | RM6648-RM6387 | |||||||||||||
| qHTCGR3 | 3 | SFP3_1-RM231 | |||||||||||||
| qHTCGR6.1 | 6 | RM3353-RM1369 | |||||||||||||
| qHTCGR6.2 | 6 | RM1369-RM190 | |||||||||||||
| qHTCGR7.1 | 7 | RM3859 | |||||||||||||
| qHTCGR7.2 | 7 | RM21327-RM21364 | |||||||||||||
| qHTCGR7.3 | 7 | RM21364-RM3859 | |||||||||||||
| Nipponbare/Kasalath | BIL | qHTAC6 | 6 | R2689-R1962 | 直链淀粉含量 | [ | |||||||||
| qHTAC9-1 | 9 | R1164-R1687 | Amylose content | ||||||||||||
| qHTAC9-2 | 9 | C506-G293 | |||||||||||||
| qHTGC4 | 4 | C1100-R1783 | 直链淀粉含量 | ||||||||||||
| qHTGC6 | 6 | L688-G200 | Amylose content | ||||||||||||
| qHTGC7 | 7 | C596-C213 | |||||||||||||
| qHTGC8 | 8 | G1073-R727 | |||||||||||||
| qHTGC10 | 10 | C1369-R1877 | |||||||||||||
| qHTGC11 | 11 | G257-R728 | |||||||||||||
| qht-1 | 1 | R1613-C970 | 粒重Grian weight | [ | |||||||||||
| qht-4 | 4 | C1100-R1783 | |||||||||||||
| qht-7 | 7 | C1266-R1440 | |||||||||||||
| 284 rice germplasms | 水稻种质 | qHTT1 | 1 | Chr1_2646045 | 小穗育性Spikelet fertility | [ | |||||||||
| (189 indica and | Rice germplasms | qHTT3.1 | 3 | Chr3_17441838 | |||||||||||
| 95 japonica) | qHTT3.2 | 3 | Chr3_17758466 | ||||||||||||
| qHTT4.1 | 4 | Chr4_24524161 | |||||||||||||
| qHTT4.2 | 4 | Chr4_31476593 | |||||||||||||
| qHTT5 | 5 | Chr5_6246272 | |||||||||||||
| qHTT7.1 | 7 | Chr7_252305 | |||||||||||||
| 189 indica rice materials | qHTT7.2 | 7 | Chr7_24472878 | ||||||||||||
| qHTT-X3.1 | 3 | Chr3_18061266 | |||||||||||||
| qHTT-X3.2 | 3 | Chr3_20328744 | |||||||||||||
| qHTT-X3.3 | 3 | Chr3_21497502 | |||||||||||||
| qHTT-X4 | 4 | Chr4_31453877 | |||||||||||||
| qHTT-X5 | 5 | Chr5_6820123 | |||||||||||||
| qHTT-X12 | 12 | Chr12_15207279 | |||||||||||||
| 173 rice materials | 水稻种质 | qSF5 | 5 | Chr5_4668375 | 小穗育性Spikelet fertility | [ | |||||||||
| Rice germplasms | qSF7 | 7 | Chr7_28665880 | ||||||||||||
| qRSF1 | 1 | Chr1_19060745 | |||||||||||||
| qRSF2 | 2 | Chr2_23632215 | |||||||||||||
| qRSF9.1 | 9 | Chr9_9380313 | |||||||||||||
| qRSF9.2 | 9 | Chr9_22159984 | |||||||||||||
| qRSF10 | 10 | Chr10_14952621 | |||||||||||||
Table 1 Quantitative trait locus(QTL) for heat tolerance in rice identified in recent years
| 亲本 Parents | 遗传材料 Genetic material | QTL | 所在染色体 Chromosome | 所处位置 Marker/location | 农艺性状 Agronomic trait | 参考文献 Reference | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IR64/N22 | BC5F2 | qHTSF4.1 | 4 | M85-M83 | 小穗育性Spikelet fertility | [ | |||||||||
| IR64/Giza178, | F2 | qHTSF1.2 | 1 | 103.5-109.0 cM | 小穗育性 | [ | |||||||||
| Milyang23/Giza178 | qHTSF2.1 | 2 | 4.8-19.8 cM | Spikelet fertility | |||||||||||
| qHTSF2.2 | 2 | 43.0-63.0 cM | |||||||||||||
| qHTSF3.1 | 3 | 1.5-17.5 cM | |||||||||||||
| qHTSF4.1 | 4 | 66.0-73.0 cM | |||||||||||||
| qHTSF6.1 | 6 | 27.5-31.5 cM | |||||||||||||
| qHTSF11.2 | 11 | 25.3-42.3 cM | |||||||||||||
| qHTSF11.3 | 11 | 11.6-14.6 cM | |||||||||||||
| IR64/N22 | RIL | qSTIPSS9.1 | 9 | SNP12393-12417 | 小穗育性Spikelet fertility | [ | |||||||||
| qSTIPSS12.1 | 12 | SNP14876-14892 | |||||||||||||
| qSTIY3.1 | 3 | SNP5308-5336 | 产量Yield | ||||||||||||
| qSTIY5.1 | 5 | SNP8377-8401 | |||||||||||||
| Chikushi52/ | BC4F3:4 | qWB1 | 1 | RM10870-RM7075 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qWB3 | 3 | RM3372-RM2791 | White-back grains ratio | |||||||||||
| qWB8 | 8 | RM3181-RM3689 | |||||||||||||
| qBW2 | 2 | RM5470 | 稻米垩白Basal-white-grains | ||||||||||||
| qBW3 | 3 | RM3372-RM2791 | |||||||||||||
| qBW6 | 6 | RM20429-RM6395 | |||||||||||||
| qBW12 | 12 | RM1986 | |||||||||||||
| qGW2 | 2 | RM5470-SNP2_1 | 粒重Grian weight | ||||||||||||
| qGW3 | 3 | RM3372-RM2326 | |||||||||||||
| qGW8 | 8 | RM5556-RM3689 | |||||||||||||
| qGW10 | 10 | RM3373-RM1374 | |||||||||||||
| qDTH3 | 3 | RM3372-RM2326 | 抽穗期Days to heading | ||||||||||||
| qDTH12 | 12 | SNP12_1-RM1986 | |||||||||||||
| Chikushi 52/ | RIL | qMW2 | 2 | RM5470 | 稻米垩白 | [ | |||||||||
| Tsukushiroman | qMW4.1 | 4 | RM16424 | Milky white rice grains | |||||||||||
| qMW4.2 | 4 | RM6906 | |||||||||||||
| qMW9 | 9 | DdeI19 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qSFht2 | 2 | RM1234-RM3850 | 小穗育性Spikelet fertility | [ | |||||||||
| qSFht4.2 | 4 | RM3916-RM2431 | |||||||||||||
| qPS | 1 | RM1196-RM6581 | 花粉发育 | ||||||||||||
| qPSLht4.1 | 4 | RM7585-Bb38P21a | Pollen shedding level | ||||||||||||
| qPSLht5 | 5 | RM1248-RM4915 | |||||||||||||
| qPSLht7 | 7 | RM6394-RM1364 | |||||||||||||
| qPSLht10.2 | 10 | RM7492-RM1859 | |||||||||||||
| qDFT3 | 3 | RM3766-RM3513 | 开花时间Daily flowering time | ||||||||||||
| qDFT8 | 8 | RM5891-RM4997 | |||||||||||||
| qDFT10.1 | 10 | RM6737-RM6673 | |||||||||||||
| qDFT11 | 11 | RM1355-RM2191 | |||||||||||||
| Sasanishiki/Habataki | CSSL | qHTB1 | 1 | RM1387-RM8137 | 小穗育性Spikelet fertility | [ | |||||||||
| qHTB3-1 | 3 | RM4108 | |||||||||||||
| qHTB3-2 | 3 | RM5748-RM5864 | |||||||||||||
| qHTB3-3 | 3 | RM3525-RM6970 | |||||||||||||
| qHTB4-1 | 4 | RM7585-RM5633 | |||||||||||||
| qHTB4-2 | 4 | RM3534-RM2431 | |||||||||||||
| qHTB5-1 | 5 | RM1248-RM5579 | |||||||||||||
| qHTB5-2 | 5 | RM3236 | |||||||||||||
| qHTB6 | 6 | RM5963-RM3330 | |||||||||||||
| qHTB10-1 | 10 | RM3882-RM4455 | |||||||||||||
| qHTB10-2 | 10 | RM3773-RM6673 | |||||||||||||
| qHTB11 | 11 | RM286-RM7283 | |||||||||||||
| Hanaechizen/Niigatawase | RIL | qWB3 | 3 | RM4383 | 稻米垩白White-back kernels | [ | |||||||||
| qWB4 | 4 | RM3288 | |||||||||||||
| qWB6 | 6 | RM8125 | |||||||||||||
| qWB9 | 9 | RM2482 | |||||||||||||
| qKW3-1 | 3 | RM7365 | 粒重Grian weight | ||||||||||||
| qKW3-1 | 3 | RM3513 | |||||||||||||
| qKW6 | 6 | RM5314 | |||||||||||||
| qKW7 | 7 | RM505 | |||||||||||||
| qKW10 | 10 | RM2371 | |||||||||||||
| qDH1 | 1 | RM151 | 抽穗期Days to heading | ||||||||||||
| qDH3 | 3 | RM5172 | |||||||||||||
| qDH6 | 6 | RM1369 | |||||||||||||
| R53/HHT4 | BC5F3:4 | qHTB1-1 | 1 | RM11629-RM128 | 小穗育性Spikelet fertility | [ | |||||||||
| M9962/Sinlek | F2 | qSF1 | 1 | 34 280 000-34 420 000 | 小穗育性Spikelet fertility | [ | |||||||||
| qSF2 | 2 | 18 730 000-19 100 000 | |||||||||||||
| qSF3.1 | 3 | 26 120 000-26 220 000 | |||||||||||||
| qSF3.2 | 3 | 28 730 000-28 960 000 | |||||||||||||
| Cheongcheong/Nagdong | DH | qSf3 | 3 | RM15749-RM15689 | 结实率Spikelet fertility | [ | |||||||||
| qSf4 | 4 | RM1205-RM3330 | |||||||||||||
| qSf8 | 8 | RM23178-RM23191 | |||||||||||||
| qTgw7 | 7 | RM248-RM1134 | 千粒重1 000 grain weight | ||||||||||||
| qTgw8 | 8 | RM149-RM23191 | |||||||||||||
| 9311/ IRGC102309 | BC6F3:4 | qHTCGR5 | 5 | RM1200-RM5796 | 稻米垩白Chalky grain rate | [ | |||||||||
| 996/4628 | RIL | qHTCGR1.1 | 1 | RM297-RM6648 | 稻米垩白Chalky grain rate | [ | |||||||||
| qHTCGR1.2 | 1 | RM6648-RM6387 | |||||||||||||
| qHTCGR3 | 3 | SFP3_1-RM231 | |||||||||||||
| qHTCGR6.1 | 6 | RM3353-RM1369 | |||||||||||||
| qHTCGR6.2 | 6 | RM1369-RM190 | |||||||||||||
| qHTCGR7.1 | 7 | RM3859 | |||||||||||||
| qHTCGR7.2 | 7 | RM21327-RM21364 | |||||||||||||
| qHTCGR7.3 | 7 | RM21364-RM3859 | |||||||||||||
| Nipponbare/Kasalath | BIL | qHTAC6 | 6 | R2689-R1962 | 直链淀粉含量 | [ | |||||||||
| qHTAC9-1 | 9 | R1164-R1687 | Amylose content | ||||||||||||
| qHTAC9-2 | 9 | C506-G293 | |||||||||||||
| qHTGC4 | 4 | C1100-R1783 | 直链淀粉含量 | ||||||||||||
| qHTGC6 | 6 | L688-G200 | Amylose content | ||||||||||||
| qHTGC7 | 7 | C596-C213 | |||||||||||||
| qHTGC8 | 8 | G1073-R727 | |||||||||||||
| qHTGC10 | 10 | C1369-R1877 | |||||||||||||
| qHTGC11 | 11 | G257-R728 | |||||||||||||
| qht-1 | 1 | R1613-C970 | 粒重Grian weight | [ | |||||||||||
| qht-4 | 4 | C1100-R1783 | |||||||||||||
| qht-7 | 7 | C1266-R1440 | |||||||||||||
| 284 rice germplasms | 水稻种质 | qHTT1 | 1 | Chr1_2646045 | 小穗育性Spikelet fertility | [ | |||||||||
| (189 indica and | Rice germplasms | qHTT3.1 | 3 | Chr3_17441838 | |||||||||||
| 95 japonica) | qHTT3.2 | 3 | Chr3_17758466 | ||||||||||||
| qHTT4.1 | 4 | Chr4_24524161 | |||||||||||||
| qHTT4.2 | 4 | Chr4_31476593 | |||||||||||||
| qHTT5 | 5 | Chr5_6246272 | |||||||||||||
| qHTT7.1 | 7 | Chr7_252305 | |||||||||||||
| 189 indica rice materials | qHTT7.2 | 7 | Chr7_24472878 | ||||||||||||
| qHTT-X3.1 | 3 | Chr3_18061266 | |||||||||||||
| qHTT-X3.2 | 3 | Chr3_20328744 | |||||||||||||
| qHTT-X3.3 | 3 | Chr3_21497502 | |||||||||||||
| qHTT-X4 | 4 | Chr4_31453877 | |||||||||||||
| qHTT-X5 | 5 | Chr5_6820123 | |||||||||||||
| qHTT-X12 | 12 | Chr12_15207279 | |||||||||||||
| 173 rice materials | 水稻种质 | qSF5 | 5 | Chr5_4668375 | 小穗育性Spikelet fertility | [ | |||||||||
| Rice germplasms | qSF7 | 7 | Chr7_28665880 | ||||||||||||
| qRSF1 | 1 | Chr1_19060745 | |||||||||||||
| qRSF2 | 2 | Chr2_23632215 | |||||||||||||
| qRSF9.1 | 9 | Chr9_9380313 | |||||||||||||
| qRSF9.2 | 9 | Chr9_22159984 | |||||||||||||
| qRSF10 | 10 | Chr10_14952621 | |||||||||||||
| [1] | CAMIGER S, VALLEE D. More crop per drop[J]. Rice Today, 2007(6):10-13. |
| [2] | PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971-9975. |
| [3] | XU Y F, ZHANG L, OU S J, et al. Natural variations of SLG1 confer high-temperature tolerance in indica rice[J]. Nature Communications, 2020, 11: 5441. |
| [4] | LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
| [5] | ZHANG H, ZHOU J F, KAN Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1293-1300. |
| [6] | LIU H Q, ZENG B H, ZHAO J L, et al. Genetic research progress: heat tolerance in rice[J]. International Journal of Molecular Sciences, 2023, 24(8): 7140. |
| [7] | XING Y H, LU H Y, ZHU X F, et al. How rice responds to temperature changes and defeats heat stress[J]. Rice, 2024, 17(1): 73. |
| [8] | PS S, SV A M, PRAKASH C, et al. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array[J]. Rice, 2017, 10(1): 28. |
| [9] | YE C R, TENORIO F A, REDOÑA E D, et al. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice[J]. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517. |
| [10] | YE C R, TENORIO F A, ARGAYOSO M A, et al. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations[J]. BMC Genetics, 2015, 16: 41. |
| [11] | ZHAO L, LEI J G, HUANG Y J, et al. Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines[J]. Breeding Science, 2016, 66(3): 358-366. |
| [12] | ZHU S, HUANG R L, WAI H P, et al. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice[J]. Physiology and Molecular Biology of Plants, 2017, 23(4): 817-825. |
| [13] | CAO Z B, LI Y, TANG H W, et al. Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line[J]. Theoretical and Applied Genetics, 2020, 133(4): 1161-1175. |
| [14] | NUBANKOH P, WANCHANA S, SAENSUK C, et al. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2020, 39(1): 149-162. |
| [15] | PARK J R, KIM E G, JANG Y H, et al. Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice[J]. BMC Plant Biology, 2021, 21(1): 263. |
| [16] | PAN Y H, CHEN L, ZHU X Y, et al. Utilization of natural alleles for heat adaptability QTLs at the flowering stage in rice[J]. BMC Plant Biology, 2023, 23(1): 256. |
| [17] | HU C M, JIANG J H, LI Y L, et al. QTL mapping and identification of candidate genes using a genome-wide association study for heat tolerance at anthesis in rice (Oryza sativa L.)[J]. Frontiers in Genetics, 2022, 13: 983525. |
| [18] | WADA T, MIYAHARA K, SONODA J Y, et al. Detection of QTLs for white-back and basal-white grains caused by high temperature during ripening period in Japonica rice[J]. Breeding Science, 2015, 65(3): 216-225. |
| [19] | MIYAHARA K, WADA T, SONODA J Y, et al. Detection and validation of QTLs for milky-white grains caused by high temperature during the ripening period in Japonica rice[J]. Breeding Science, 2017, 67(4): 333-339. |
| [20] | KOBAYASHI A, SONODA J, SUGIMOTO K, et al. Detection and verification of QTLs associated with heat-induced quality decline of rice (Oryza sativa L.) using recombinant inbred lines and near-isogenic lines[J]. Breeding Science, 2013, 63(3): 339-346. |
| [21] | 朱昌兰, 肖应辉, 王春明, 等. 水稻灌浆期耐热害的数量性状基因位点分析[J]. 中国水稻科学, 2005, 19(2): 117-121. |
| ZHU C L, XIAO Y H, WANG C M, et al. Mapping QTLs for heat tolerance during grain filling in rice[J]. Chinese Journal of Rice Science, 2005, 19(2): 117-121. (in Chinese with English abstract) | |
| [22] | 朱昌兰, 江玲, 张文伟, 等. 稻米直链淀粉含量和胶稠度对高温耐性的QTL分析[J]. 中国水稻科学, 2006, 20(3): 248-252. |
| ZHU C L, JIANG L, ZHANG W W, et al. Identifying QTLs for thermo-tolerance of amylose content and gel consistency in rice[J]. Chinese Journal of Rice Science, 2006, 20(3): 248-252. (in Chinese with English abstract) | |
| [23] | 曹志斌, 李瑶, 曾博虹, 等. 非洲栽培稻垩白粒率耐热性QTL的定位[J]. 中国水稻科学, 2020, 34(2): 135-142. |
| CAO Z B, LI Y, ZENG B H, et al. QTL mapping for heat tolerance of chalky grain rate of Oryza glaberrima Steud[J]. Chinese Journal of Rice Science, 2020, 34(2): 135-142. (in Chinese with English abstract) | |
| [24] | 张桂莲, 廖斌, 唐文帮, 等. 稻米垩白性状对高温耐性的QTL分析[J]. 中国水稻科学, 2017, 31(3): 257-264. |
| ZHANG G L, LIAO B, TANG W B, et al. Identifying QTLs for thermo-tolerance of grain chalkiness trait in rice[J]. Chinese Journal of Rice Science, 2017, 31(3): 257-264. (in Chinese with English abstract) | |
| [25] | ZHANG H, DUAN L, DAI J S, et al. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA[J]. Theoretical and Applied Genetics, 2014, 127(2): 273-282. |
| [26] | DONG N Q, SUN Y W, GUO T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications, 2020, 11: 2629. |
| [27] | KAN Y, MU X R, ZHANG H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature Plants, 2021, 8(1): 53-67. |
| [28] | LIU J P, ZHANG C C, WEI C C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice[J]. Plant Physiology, 2016, 170(1): 429-443. |
| [29] | TAKEHARA K, MURATA K, YAMAGUCHI T, et al. Thermo-responsive allele of sucrose synthase 3 (Sus 3) provides high-temperature tolerance during the ripening stage in rice (Oryza sativa L.)[J]. Breeding Science, 2018, 68(3): 336-342. |
| [30] | CAO Z B, TANG H W, CAI Y H, et al. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage[J]. Plant Biotechnology Journal, 2022, 20(8): 1591-1605. |
| [31] | WU N, YAO Y L, XIANG D H, et al. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice[J]. New Phytologist, 2022, 234(4): 1315-1331. |
| [32] | CHANDRAN A K N, SANDHU J, IRVIN L, et al. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress[J]. Frontiers in Plant Science, 2022, 13: 1026472. |
| [33] | SANDHU J, IRVIN L, CHANDARAN A K, et al. Natural variation in LONELY GUY-Like 1 regulates rice grain weight under warmer night conditions[J]. Plant Physiology, 2024, 196(1): 164-180. |
| [34] | CHEN K, GUO T, LI X M, et al. Translational regulation of plant response to high temperature by a dual-function tRNAHis guanylyltransferase in rice[J]. Molecular Plant, 2019, 12(8): 1123-1142. |
| [35] | GU X T, SI F Y, FENG Z X, et al. The OsSGS3-tasiRNA-OsARF3 module orchestrates abiotic-biotic stress response trade-off in rice[J]. Nature Communications, 2023, 14: 4441. |
| [36] | CHEN F, DONG G J, WANG F, et al. A β-ketoacyl carrier protein reductase confers heat tolerance via the regulation of fatty acid biosynthesis and stress signaling in rice[J]. New Phytologist, 2021, 232(2): 655-672. |
| [37] | WANG D, QIN B X, LI X, et al. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice[J]. PLoS Genetics, 2016, 12(2): e1005844. |
| [38] | LI X T, TANG H S, XU T, et al. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth[J]. New Phytologist, 2024, 243(5): 1742-1757. |
| [39] | ZHANG P, ZHU W W, HE Y, et al. THERMOSENSITIVE BARREN PANICLE (TAP) is required for rice panicle and spikelet development at high ambient temperature[J]. New Phytologist, 2023, 237(3): 855-869. |
| [40] | LIU K W, WANG M N, WANG L J, et al. RMI1 is essential for maintaining rice genome stability at high temperature[J]. The Plant Journal, 2024, 120(5): 1735-1750. |
| [41] | SHE K C, KUSANO H, KOIZUMI K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294. |
| [42] | TABASSUM R, DOSAKA T, ICHIDA H, et al. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains[J]. The Plant Journal, 2020, 103(2): 604-616. |
| [43] | AMBAVARAM M M R, BASU S, KRISHNAN A, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications, 2014, 5: 5302. |
| [44] | LIU X H, LYU Y S, YANG W P, et al. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317-1329. |
| [45] | CUI Y M, LU S, LI Z, et al. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice[J]. Plant Physiology, 2020, 183(4): 1794-1808. |
| [46] | LO S F, CHENG M L, HSING Y C, et al. Rice Big Grain 1 promotes cell division to enhance organ development, stress tolerance and grain yield[J]. Plant Biotechnology Journal, 2020, 18(9): 1969-1983. |
| [47] | CHEN S Q, CAO H R, HUANG B L, et al. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance[J]. Plant, Cell & Environment, 2022, 45(7): 2126-2144. |
| [48] | QIAO B, ZHANG Q, LIU D L, et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2[J]. Journal of Experimental Botany, 2015, 66(19): 5853-5866. |
| [49] | CAINE R S, YIN X J, SLOAN J, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions[J]. New Phytologist, 2019, 221(1): 371-384. |
| [50] | GANDASS N, KAJAL , SALVI P. Intrinsically disordered protein, DNA binding with one finger transcription factor (OsDOF27) implicates thermotolerance in yeast and rice[J]. Frontiers in Plant Science, 2022, 13: 956299. |
| [51] | HE Y, ZHANG X B, SHI Y F, et al. PREMATURE SENESCENCE LEAF 50 promotes heat stress tolerance in rice (Oryza sativa L.)[J]. Rice, 2021, 14(1): 53. |
| [52] | RANA R M, DONG S N, TANG H J, et al. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2012, 63(16): 6003-6016. |
| [53] | TANG Y Y, GAO C C, GAO Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental Cell, 2020, 53(3): 272-286.e7. |
| [54] | GAO C, LU S, ZHOU R, et al. The OsCBL8-OsCIPK17 module regulates seedling growth and confers resistance to heat and drought in rice[J]. International Journal of Molecular Sciences, 2022, 23(20): 12451. |
| [55] | GUO M X, ZHANG X T, LIU J J, et al. OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging[J]. Rice, 2020, 13(1): 61. |
| [56] | LIU J P, SUN X J, XU F Y, et al. Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants[J]. Rice, 2018, 11(1): 38. |
| [57] | LI J J, YANG J, ZHU B H, et al. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice[J]. Plant Science, 2019, 285: 230-238. |
| [58] | YAN Y, LI C, LIU Z, et al. A new demethylase gene, OsDML4, is involved in high temperature-increased grain chalkiness in rice[J]. Journal of Experimental Botany, 2022, 73(22): 7273-7284. |
| [59] | XU H, LI X F, ZHANG H, et al. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice[J]. Plant, Cell & Environment, 2020, 43(8): 1879-1896. |
| [60] | HAKATA M, KURODA M, MIYASHITA T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117. |
| [61] | KUSANO H, ARISU Y, NAKAJIMA J, et al. Implications of the gene for F1-ATPase β subunit (AtpB) for the grain quality of rice matured in a high-temperature environment[J]. Plant Biotechnology, 2016, 33(3): 169-175. |
| [62] | ZHANG H, XU H, FENG M J, et al. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress[J]. Plant Biotechnology Journal, 2018, 16(1): 18-26. |
| [63] | SHEN C Q, ZHANG Y Y, LI G, et al. MADS8 is indispensable for female reproductive development at high ambient temperatures in cereal crops[J]. The Plant Cell, 2023, 36(1): 65-84. |
| [64] | CHEN C, BEGCY K, LIU K, et al. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity[J]. Plant Physiology, 2016, 171(1): 606-622. |
| [65] | LIAO M, MA Z M, KANG Y R, et al. ENHANCED DISEASE SUSCEPTIBILITY 1 promotes hydrogen peroxide scavenging to enhance rice thermotolerance[J]. Plant Physiology, 2023, 192(4): 3106-3119. |
| [66] | KIM S R, AN G. Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions[J]. Journal of Plant Physiology, 2013, 170(9): 854-863. |
| [67] | YANG X J, LI G, TIAN Y S, et al. A rice glutamyl-tRNA synthetase modulates early anther cell division and patterning[J]. Plant Physiology, 2018, 177(2): 728-744. |
| [68] | FAN Y R, ZHANG Q F. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice[J]. Plant Reproduction, 2018, 31(1): 3-14. |
| [69] | YU H X, CAO Y J, YANG Y B, et al. A TT1-SCE1 module integrates ubiquitination and sumoylation to regulate heat tolerance in rice[J]. Molecular Plant, 2024, 17(12): 1899-1918. |
| [70] | ZHOU H F, WANG X L, HUO C M, et al. A quantitative proteomics study of early heat-regulated proteins by two-dimensional difference gel electrophoresis identified OsUBP21 as a negative regulator of heat stress responses in rice[J]. Proteomics, 2019, 19(20): e1900153. |
| [1] | PEI Huimin, WU Mingming, ZHAI Rongrong, YE Jing, JIN Yue, ZHU Yi, HOU Jianjun, ZHU Guofu, YE Shenghai. Research progress on gene function and breeding of low-cadmium rice cultivars [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2012-2020. |
| [2] | TAN Shiyi, YU Guohong, XUE Xianglei, ZHAO Yinglei, XU Baoyu, ZHANG Chenghao. Design and experiment of tray handling device for industrialized rice seedling raising [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1545-1555. |
| [3] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [4] | LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318. |
| [5] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [6] | ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158. |
| [7] | LIU Qihua, SUN Zhaowen, ZHENG Chongke. Effects of nitrogen management on absorption and allocation of microelements in above-ground parts of dry direct-sowing rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 987-997. |
| [8] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
| [9] | SONG Xinlu, FAN Shuhong, WU Guangqi, ZHAN Mengqi, HOU Qian, LI Mingyue, XU Yan. Effects of combined copper-phenanthrene pollution on physiological characteristics and pollutant accumulation of rice roots at tillering stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 521-529. |
| [10] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [11] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [12] | LI Guiping, XU Xiaomei, LU Lizhi. Rice-duck farming and its environmental effects [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 643-653. |
| [13] | WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744. |
| [14] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| [15] | LAN Xuecheng, ZHAO Fengliang, ZHANG Guangxu, LI Yang, GUO Xiaohong. Effects of nano zinc oxide and nano silicon dioxide on rice seed germination [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 269-277. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||