Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (10): 1889-1896.DOI: 10.3969/j.issn.1004-1524.2021.10.12
• Horticultural Science • Previous Articles Next Articles
LIAN Huashan1(
), LI Xinxin2, LIN Lijin3, LIAO Ming’an4,*(
)
Received:2020-12-15
Online:2021-10-25
Published:2021-11-02
Contact:
LIAO Ming’an
CLC Number:
LIAN Huashan, LI Xinxin, LIN Lijin, LIAO Ming’an. Study on epibrassinolide (EBR) on growth and physiological response of Summer Black grape seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1889-1896.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.10.12
| EBR浓度 EBR concentration/ (mg·L-1) | 生物量Biomass/(g·plant-1) | 根冠比 Root/shoot ratio | ||||
|---|---|---|---|---|---|---|
| 根 Root | 茎 Stem | 叶 Leaf | 地上部 Shoot | 整株 Total plant | ||
| 0 | 0.555±0.003 e | 0.139±0.006 d | 1.158±0.044 b | 1.297±0.038 d | 1.852±0.041 d | 0.428 d |
| 0.5 | 0.773±0.005 d | 0.193±0.008 c | 1.231±0.057 b | 1.423±0.052 c | 2.197±0.050 c | 0.543 a |
| 1.0 | 0.864±0.004 a | 0.289±0.003 a | 1.428±0.025 a | 1.718±0.027 ab | 2.582±0.028 a | 0.503 b |
| 1.5 | 0.844±0.003 b | 0.298±0.007 a | 1.497±0.028 a | 1.796±0.033 a | 2.639±0.036 a | 0.470 c |
| 2.0 | 0.791±0.007 c | 0.223±0.009 b | 1.439±0.047 a | 1.662±0.051 b | 2.453±0.057 b | 0.476 c |
Table 1 Effects of EBR on biomass of Summer Black grape seedlings
| EBR浓度 EBR concentration/ (mg·L-1) | 生物量Biomass/(g·plant-1) | 根冠比 Root/shoot ratio | ||||
|---|---|---|---|---|---|---|
| 根 Root | 茎 Stem | 叶 Leaf | 地上部 Shoot | 整株 Total plant | ||
| 0 | 0.555±0.003 e | 0.139±0.006 d | 1.158±0.044 b | 1.297±0.038 d | 1.852±0.041 d | 0.428 d |
| 0.5 | 0.773±0.005 d | 0.193±0.008 c | 1.231±0.057 b | 1.423±0.052 c | 2.197±0.050 c | 0.543 a |
| 1.0 | 0.864±0.004 a | 0.289±0.003 a | 1.428±0.025 a | 1.718±0.027 ab | 2.582±0.028 a | 0.503 b |
| 1.5 | 0.844±0.003 b | 0.298±0.007 a | 1.497±0.028 a | 1.796±0.033 a | 2.639±0.036 a | 0.470 c |
| 2.0 | 0.791±0.007 c | 0.223±0.009 b | 1.439±0.047 a | 1.662±0.051 b | 2.453±0.057 b | 0.476 c |
| EBR浓度 EBR concentration/ (mg·L-1) | 叶绿素a Chlorophyll a/ (mg·g-1) | 叶绿素b Chlorophyll b/ (mg·g-1) | 类胡萝卜素 Carotinoid/ (mg·g-1) | 总叶绿素 Total chlorophyll/ (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
|---|---|---|---|---|---|
| 0 | 0.729±0.007 d | 0.235±0.004 d | 0.157±0.002 c | 0.964±0.005 e | 3.102 a |
| 0.5 | 0.818±0.006 b | 0.279±0.004 b | 0.159±0.008 c | 1.155±0.002 c | 2.932 b |
| 1.0 | 0.970±0.008 a | 0.332±0.008 a | 0.172±0.005 b | 1.226±0.023 ab | 2.922 b |
| 1.5 | 0.743±0.002 cd | 0.254±0.002 c | 0.183±0.002 a | 1.171±0.025 bc | 2.925 b |
| 2.0 | 0.749±0.005 c | 0.264±0.008 c | 0.178±0.006 ab | 1.252±0.037 a | 2.837 c |
Table 2 Effects of EBR on photosynthetic pigment content of Summer Black grape seedlings
| EBR浓度 EBR concentration/ (mg·L-1) | 叶绿素a Chlorophyll a/ (mg·g-1) | 叶绿素b Chlorophyll b/ (mg·g-1) | 类胡萝卜素 Carotinoid/ (mg·g-1) | 总叶绿素 Total chlorophyll/ (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
|---|---|---|---|---|---|
| 0 | 0.729±0.007 d | 0.235±0.004 d | 0.157±0.002 c | 0.964±0.005 e | 3.102 a |
| 0.5 | 0.818±0.006 b | 0.279±0.004 b | 0.159±0.008 c | 1.155±0.002 c | 2.932 b |
| 1.0 | 0.970±0.008 a | 0.332±0.008 a | 0.172±0.005 b | 1.226±0.023 ab | 2.922 b |
| 1.5 | 0.743±0.002 cd | 0.254±0.002 c | 0.183±0.002 a | 1.171±0.025 bc | 2.925 b |
| 2.0 | 0.749±0.005 c | 0.264±0.008 c | 0.178±0.006 ab | 1.252±0.037 a | 2.837 c |
| EBR浓度 EBR concentration/(mg·L-1) | Tr/(mmol· m-2·s-1) | Pn/(μmol· m-2·s-1) | Ci/(μmol· mol-1) | Gs/(mol· m-2·s-1) | VpdL/kPa |
|---|---|---|---|---|---|
| 0 | 2.614±0.049 d | 3.495±0.118 d | 251.7±1.5 d | 0.128±0.006 c | 2.254±0.039 a |
| 0.5 | 3.343±0.072 a | 7.182±0.086 b | 319.7±6.1 b | 0.184±0.005 a | 1.632±0.015 d |
| 1.0 | 2.980±0.037 c | 7.173±0.191 b | 301.0±5.0 c | 0.150±0.006 b | 1.952±0.040 c |
| 1.5 | 3.294±0.070 a | 9.019±0.062 a | 351.8±2.5 a | 0.192±0.004 a | 2.060±0.016 b |
| 2.0 | 3.107±0.010 b | 6.838±0.045 c | 296.1±2.8 c | 0.143±0.006 b | 1.365±0.047 e |
Table 3 Effects of EBR on photosynthetic parameters of Summer Black grape seedlings
| EBR浓度 EBR concentration/(mg·L-1) | Tr/(mmol· m-2·s-1) | Pn/(μmol· m-2·s-1) | Ci/(μmol· mol-1) | Gs/(mol· m-2·s-1) | VpdL/kPa |
|---|---|---|---|---|---|
| 0 | 2.614±0.049 d | 3.495±0.118 d | 251.7±1.5 d | 0.128±0.006 c | 2.254±0.039 a |
| 0.5 | 3.343±0.072 a | 7.182±0.086 b | 319.7±6.1 b | 0.184±0.005 a | 1.632±0.015 d |
| 1.0 | 2.980±0.037 c | 7.173±0.191 b | 301.0±5.0 c | 0.150±0.006 b | 1.952±0.040 c |
| 1.5 | 3.294±0.070 a | 9.019±0.062 a | 351.8±2.5 a | 0.192±0.004 a | 2.060±0.016 b |
| 2.0 | 3.107±0.010 b | 6.838±0.045 c | 296.1±2.8 c | 0.143±0.006 b | 1.365±0.047 e |
| EBR浓度 EBR concentration/(mg·L-1) | SOD活性 SOD activity/(U·g-1) | POD活性 POD activity/(U·g-1·min-1) | CAT活性 CAT activity/(mg·g-1·min-1) |
|---|---|---|---|
| 0 | 72.80±2.20 c | 14.23±0.54 d | 0.622±0.009 d |
| 0.5 | 114.10±3.3 b | 29.64±0.79 b | 0.800±0.008 c |
| 1.0 | 124.30±4.2 a | 31.77±0.29 a | 0.950±0.004 a |
| 1.5 | 117.10±3.2 b | 31.39±0.92 a | 0.857±0.004 b |
| 2.0 | 75.50±1.60 c | 23.81±0.42 c | 0.846±0.007 b |
Table 4 Effects of EBR on antioxidant enzyme activity of Summer Black grape seedlings
| EBR浓度 EBR concentration/(mg·L-1) | SOD活性 SOD activity/(U·g-1) | POD活性 POD activity/(U·g-1·min-1) | CAT活性 CAT activity/(mg·g-1·min-1) |
|---|---|---|---|
| 0 | 72.80±2.20 c | 14.23±0.54 d | 0.622±0.009 d |
| 0.5 | 114.10±3.3 b | 29.64±0.79 b | 0.800±0.008 c |
| 1.0 | 124.30±4.2 a | 31.77±0.29 a | 0.950±0.004 a |
| 1.5 | 117.10±3.2 b | 31.39±0.92 a | 0.857±0.004 b |
| 2.0 | 75.50±1.60 c | 23.81±0.42 c | 0.846±0.007 b |
| EBR浓度 EBR concentration/ (mg·L-1) | 丙二醛 MDA content/ (μmol·kg-1) | 脯氨酸 Proline content/ (μg·g-1) | 可溶性蛋白质 Soluble protein content/(mg·g-1) | 相对电导率 Relative conductivity/ (μS·cm-1) |
|---|---|---|---|---|
| 0 | 56.34±0.47 a | 52.89±0.64 d | 5.825±0.070 c | 96.66±0.75 c |
| 0.5 | 46.59±0.52 c | 64.76±0.61 c | 8.618±0.662 ab | 102.70±0.40 a |
| 1.0 | 31.69±0.36 e | 79.81±0.49 a | 8.754±0.367 a | 95.20±0.70 d |
| 1.5 | 33.44±0.21 d | 70.29±0.74 b | 6.453±0.903 c | 86.93±0.72 e |
| 2.0 | 48.87±0.75 b | 53.29±0.21 d | 7.593±0.130 b | 99.77±0.91 b |
Table 5 Effects of EBR on permeant regulation of Summer Black grape seedlings
| EBR浓度 EBR concentration/ (mg·L-1) | 丙二醛 MDA content/ (μmol·kg-1) | 脯氨酸 Proline content/ (μg·g-1) | 可溶性蛋白质 Soluble protein content/(mg·g-1) | 相对电导率 Relative conductivity/ (μS·cm-1) |
|---|---|---|---|---|
| 0 | 56.34±0.47 a | 52.89±0.64 d | 5.825±0.070 c | 96.66±0.75 c |
| 0.5 | 46.59±0.52 c | 64.76±0.61 c | 8.618±0.662 ab | 102.70±0.40 a |
| 1.0 | 31.69±0.36 e | 79.81±0.49 a | 8.754±0.367 a | 95.20±0.70 d |
| 1.5 | 33.44±0.21 d | 70.29±0.74 b | 6.453±0.903 c | 86.93±0.72 e |
| 2.0 | 48.87±0.75 b | 53.29±0.21 d | 7.593±0.130 b | 99.77±0.91 b |
| EBR浓度 EBR concentration/(mg·L-1) | 根Root | 茎Stem | 叶Leaf |
|---|---|---|---|
| 0 | 54.74±4.20 d | 83.62±5.20 c | 91.76±1.40 c |
| 0.5 | 51.72±4.20 e | 83.09±8.90 c | 95.63±5.10 b |
| 1.0 | 59.46±3.00 c | 74.83±2.40 d | 126.80±6.7 a |
| 1.5 | 62.24±1.70 b | 90.24±6.00 b | 78.15±3.30 e |
| 2.0 | 87.35±4.80 a | 95.35±8.80 a | 82.91±5.80 d |
Table 6 Effects of EBR on soluble sugarcontent in different parts of Summer Black grape seedlings mg·g-1
| EBR浓度 EBR concentration/(mg·L-1) | 根Root | 茎Stem | 叶Leaf |
|---|---|---|---|
| 0 | 54.74±4.20 d | 83.62±5.20 c | 91.76±1.40 c |
| 0.5 | 51.72±4.20 e | 83.09±8.90 c | 95.63±5.10 b |
| 1.0 | 59.46±3.00 c | 74.83±2.40 d | 126.80±6.7 a |
| 1.5 | 62.24±1.70 b | 90.24±6.00 b | 78.15±3.30 e |
| 2.0 | 87.35±4.80 a | 95.35±8.80 a | 82.91±5.80 d |
| [1] |
MITCHELL J W, MANDAVA N, WORLEY J F, et al. Brassins: a new family of plant hormones from rape pollen[J]. Nature, 1970, 225(5237):1065-1066.
DOI URL |
| [2] |
GROVE M D, SPENCER G F, ROHWEDDER W K, et al. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728):216-217.
DOI URL |
| [3] |
CLOUSE S D, SASSE J M. BRASSINOSTEROIDS: essential regulators of plant growth and development[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:427-451.
DOI URL |
| [4] | 李启程, 余学军. 外源油菜素内酯对毛竹实生苗生理特性的影响[J]. 浙江农林大学学报, 2021, 38(1):120-127. |
| LI Q C, YU X J. Effects of exogenous BR on physiological characteristics of Phyllostachys edulis seedlings[J]. Journal of Zhejiang A & F University, 2021, 38(1):120-127.(in Chinese with English abstract) | |
| [5] | 郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1):52-58. |
| ZHENG J, WANG L. Advance in mechanism of brassinosteroids in plant development[J]. Journal of Agricultural Science and Technology, 2014, 16(1):52-58.(in Chinese with English abstract) | |
| [6] |
ZAHEDIPOUR-SHESHGLANI P, ASGHARI M. Impact of foliar spray with 24-epibrassinolide on yield, quality, ripening physiology and productivity of the strawberry[J]. Scientia Horticulturae, 2020, 268:109376.
DOI URL |
| [7] | SANTOS L R, PAULA L D S, PEREIRA Y C, et al. Brassinosteroids-mediated amelioration of iron deficiency in soybean plants: beneficial effects on the nutritional status, photosynthetic pigments and chlorophyll fluorescence[J]. Journal of Plant Growth Regulation, 2020: 1-21. |
| [8] |
KOHLI S K, HANDA N, SHARMA A, et al. Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings[J]. Protoplasma, 2018, 255(1):11-24.
DOI URL |
| [9] |
ALAM P, ALBALAWI, ALTALAYAN, et al. 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system[J]. Biomolecules, 2019, 9(11):640.
DOI URL |
| [10] |
SHAH A A, AHMED S, YASIN N A. 24-epibrassinolide triggers cadmium stress mitigation in Cucumis sativus through intonation of antioxidant system[J]. South African Journal of Botany, 2019, 127:349-360.
DOI URL |
| [11] |
ZHONG W X, XIE C C, HU D, et al. Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress[J]. Ecotoxicology and Environmental Safety, 2020, 187:109831.
DOI URL |
| [12] |
MOHAMMADI M, TAVAKOLI A, POURYOUSEF M, et al. Study the effect of 24-epibrassinolide application on the Cu/Zn-SOD expression and tolerance to drought stress in common bean[J]. Physiology and Molecular Biology of Plants, 2020, 26(3):459-474.
DOI URL |
| [13] |
RODRIGUES W D S, PEREIRA Y C, SOUZA A L M, et al. Alleviation of oxidative stress induced by 24-epibrassinolide in soybean plants exposed to different manganese supplies: upRegulation of antioxidant enzymes and maintenance of photosynthetic pigments[J]. Journal of Plant Growth Regulation, 2020, 39(4):1425-1440.
DOI URL |
| [14] | 王世平, 李勃. 中国设施葡萄发展概况[J]. 落叶果树, 2019, 51(1):1-5. |
| WANG S P, LI B. Development of protected grape cultivation in China[J]. Deciduous Fruits, 2019, 51(1):1-5.(in Chinese) | |
| [15] | 韦励业, 宋雅琴, 娄兵海, 等. 3种有机肥在膨果期施用对‘夏黑’葡萄产量和果实品质的影响[J]. 南方园艺, 2020, 31(5):4-6. |
| WEI L Y, SONG Y Q, LOU B H, et al. Effects of three kinds of organic fertilizers on the yield and fruit quality of 'Xiahei’ grape[J]. Southern Horticulture, 2020, 31(5):4-6.(in Chinese) | |
| [16] |
BABALıK Z, DEMIRCI T, A&ŞCı Ö A, et al. Brassinosteroids modify yield, quality, and antioxidant components in grapes (Vitis vinifera cv. Alphonse lavallée)[J]. Journal of Plant Growth Regulation, 2020, 39(1):147-156.
DOI URL |
| [17] | ZHOU Y L, YUAN C L, RUAN S C, et al. Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynjournal in cabernet sauvignon (Vitis vinifera L.)[J]. Molecules (Basel, Switzerland), 2018, 23(1):E93. |
| [18] |
WANG Y T, CHEN Z Y, JIANG Y, et al. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.)[J]. Scientia Horticulturae, 2019, 256:108596.
DOI URL |
| [19] | 熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003. |
| [20] | 杨妙贤, 杨瑞香, 赖慧玲. 油菜素甾醇类化合物对蔬菜的影响[J]. 安徽农业科学, 2007, 35(1):150-151. |
| YANG M X, YANG R X, LAI H L. Effet of brassinosteroids on vegetables[J]. Journal of Anhui Agricultural Sciences, 2007, 35(1):150-151.(in Chinese with English abstract) | |
| [21] | 顾庆龙. 新型植物激素油菜素内脂的研究进展[J]. 生物学教学, 2002(12):1-2. |
| GU Q L. Research progress of new plant hormone brassinolide[J]. Biology Teaching, 2002(12):1-2.(in Chinese) | |
| [22] | 刘志华, 时丽冉, 白丽荣, 等. 盐胁迫对獐毛叶绿素和有机溶质含量的影响[J]. 植物生理与分子生物学学报, 2007, 33(2):165-172. |
| LIU Z H, SHI L R, BAI L R, et al. Effects of salt stress on the contents of chlorophyll and organic solutes in Aeluropus littoralis var. sinensis debeaux[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(2):165-172.(in Chinese with English abstract) | |
| [23] |
NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses[J]. The Plant Cell, 2020, 32(2):295-318.
DOI URL |
| [24] | KOLOMEICHUK L V, EFIMOVA M V, ZLOBIN I E, et al. 24-epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants[J]. Photosynjournal Research, 2020, 146(1/2/3):151-163. |
| [25] |
MITTOVA V, VOLOKITA M, GUY M, et al. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii[J]. Physiologia Plantarum, 2000, 110(1):42-51.
DOI URL |
| [26] | 林植芳, 詹姆士·阿勒林格. 光、温度、水蒸汽压亏缺及二氧化碳对番木瓜(Carica papaya)光合作用的影响[J]. 植物生理学报, 1982, 8(4):363-372. |
| LIN Z F, EHLERINGER J R. The effects of light, temperature, water vapor pressure deficit and carbon dioxide on photosynjournal in papaya[J]. Physiology and Molecular Biology of Plants, 1982, 8(4):363-372. (in Chinese with English abstract) | |
| [27] |
JIA T, ITO H, TANAKA A. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana[J]. Planta, 2016, 244(5):1041-1053.
DOI URL |
| [28] | 李晓科, 武玉珍, 张谨华, 等. H2S对Cd胁迫下大麦幼苗逆境生理及光合作用的影响[J]. 福建农业学报, 2020, 35(10):1131-1137. |
| LI X K, WU Y Z, ZHANG J H, et al. Effects of hydrogen sulfide on physiology and photosynjournal of barley seedlings under Cd-stress[J]. Fujian Journal of Agricultural Sciences, 2020, 35(10):1131-1137.(in Chinese with English abstract) | |
| [29] |
TADAIESKY L B A, DA SILVA B R S, BATISTA B L, et al. Brassinosteroids trigger tolerance to iron toxicity in rice[J]. Physiologia Plantarum, 2021, 171(3):371-387.
DOI URL |
| [30] |
KOHLI S K, HANDA N, SHARMA A, et al. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress[J]. Environmental Science and Pollution Research, 2018, 25(15):15159-15173.
DOI URL |
| [31] |
BAJGUZ A. Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide[J]. Plant Physiology and Biochemistry, 2000, 38(10):797-801.
DOI URL |
| [32] |
DENG X G, ZHU T, PENG X J, et al. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana[J]. Scientific Reports, 2016, 6:20579-20592.
DOI URL |
| [33] |
PENG R N, SUN W Y, JIN X X, et al. Analysis of 2, 4-epibrassinolide created an enhancement tolerance on Cd toxicity in Solanum nigrum L[J]. Environmental Science and Pollution Research, 2020, 27(14):16784-16797.
DOI URL |
| [1] | ZHAO Liming, WANG Yaxin, JIANG Wenxin, DUAN Shaobiao, SHEN Xuefeng, ZHENG Dianfeng, FENG Naijie. Effects of plant growth regulators on yield, quality and photosynthetic characteristics of high-quality japonica rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1003-1014. |
| [2] | YANG Mingfeng, JI Chunrong, LIU Yong, BAI Shujun, CHEN Xue, LIU Ailin. Effects of continuous drought stress on cotton growth and soil drought threshold at flowering and boll stage [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 738-747. |
| [3] | GONG Na, LIU Guoli, CHEN Xun, MA Xiaoying, ZHAO Ying, XIAO Jun. Identification of a wild strain of Pleurotus pulmonarius and optimization of its liquid fermentation culture medium [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2535-2545. |
| [4] | ZUO Xiaojie, WU Mingjiang, LUO Lin, MA Zengling, PANG Guanfeng, CHEN Binbin. Comparison of tolerance to high temperature of excellent strains of Sargassum fusiforme [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 148-155. |
| [5] | SUN Lijuan, LI Shimin, GUO Huanxian, JIN Youfan, LI Shuping, DONG Qiong. Growth and N, P, K stoichiometric characteristics of Cyphomandra betacea seedlings in response to light and fertilizer [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1793-1804. |
| [6] | XIAO Jiachang, LEI Fengyun, GE Sang, MA Junying, HE Maolin, LI Yanwen, ZHENG Yangxia. Effects of exogenous spraying of amino acid fertilizer on growth and selenium uptake of watercress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1638-1647. |
| [7] | ZHU Yongji, TAO Xinyu, CHEN Xiaofang, SU Xiangxiang, LIU Jikai, LI Xinwei. Estimation of above-ground biomass of winter wheat based on vegetation indexes and texture features of multispectral images captured by unmanned aerial vehicle [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2966-2976. |
| [8] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
| [9] | WU Hao, ZHANG Xuesong, WANG Dan. Effects of different CO2 concentration and nitrogen rates on photosynthesis and growth of winter wheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2594-2602. |
| [10] | HOU Lijuan, LI Zhengpeng, LIN Jinsheng, MA Lin, LI Huiping, QU Shaoxuan, JIANG Jianxin, ZOU Xiulong, YANG Huaping, LI Changtian, JIANG Ning. Effects of different light quality of LED light source on growth rate, mycelium branch and biomass of straw mushroom mycelium [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1110-1116. |
| [11] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
| [12] | LI Le, TIAN Minjiao, GAO Yanming, LI Jianshe. Effect of selenium fertilizer on growth and mineral element accumulation of tomato in substrate culture [J]. , 2020, 32(2): 253-261. |
| [13] | JIN Ning, LYU Jian, YU Jihua, JIN Li, ZHANG Guobin, XIAO Xuemei, HU Linli. Response of leaf water status, photosynthetic and fluorescence parameters to different irrigation lower limits in substrate culture of cucumber [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2162-2172. |
| [14] | JIN Ning, LYU Jian, YU Jihua, JIN Li, ZHANG Guobin, XIAO Xuemei, HU Linli. Response of leaf water status, photosynthetic and fluorescence parameters to different irrigation lower limits in substrate culture of cucumber [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2162-2172. |
| [15] | ZHANG Zheng, WANG Xiaorong, QIAN Hong, ZHANG Lan, YAN Peng, ZHANG Liping, ZHANG Xinfu, LI Xin, HAN Wenyan. Effects of anthracnose disease on photosynthetic characteristics in tea leaves (Camellia sinensis L.) [J]. , 2020, 32(11): 2020-2026. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||