Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (5): 861-872.DOI: 10.3969/j.issn.1004-1524.2021.05.12
• Environmental Science • Previous Articles Next Articles
ZHANG Yuxun1,2(), WANG Lei1,2,*(
), QU Xiangning1,2, CAO Yuan1,2, WU Mengyao1,2, YU Ruixin1,2, SUN Yuan3
Received:
2020-09-25
Online:
2021-05-25
Published:
2021-05-25
Contact:
WANG Lei
CLC Number:
ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.05.12
植被指数 Vegetation index | 函数类型 Function type | 实测光谱数据Measured spectrum data | 高分一号GF-1 | ||
---|---|---|---|---|---|
R2 | 调整R2 Residual sum of squares | R2 | 调整R2 Residual sum of squares | ||
NDVI | 线性Linear function | 0.738 | 0.722 | 0.625 | 0.609 |
对数Logarithmic function | 0.737 | 0.728 | 0.635 | 0.620 | |
二次Quadratic function | 0.737 | 0.708 | 0.685 | 0.657 | |
幂Power function | 0.747 | 0.734 | 0.613 | 0.579 | |
指数Exponential function | 0.757 | 0.740 | 0.602 | 0.585 | |
RVI | 线性Linear function | 0.700 | 0.687 | 0.548 | 0.530 |
对数Logarithmic function | 0.736 | 0.722 | 0.592 | 0.576 | |
二次Quadratic function | 0.731 | 0.712 | 0.669 | 0.642 | |
幂Power function | 0.718 | 0.704 | 0.583 | 0.566 | |
指数Exponential function | 0.693 | 0.677 | 0.534 | 0.515 | |
ARVI | 线性Linear function | 0.687 | 0.653 | 0.680 | 0.667 |
对数Logarithmic function | 0.649 | 0.636 | 0.682 | 0.669 | |
二次Quadratic function | 0.670 | 0.648 | 0.682 | 0.657 | |
幂Power function | 0.688 | 0.680 | 0.674 | 0.661 | |
指数Exponential function | 0.716 | 0.704 | 0.671 | 0.657 | |
SAVI | 线性Linear function | 0.771 | 0.760 | 0.671 | 0.655 |
对数Logarithmic function | 0.765 | 0.754 | 0.682 | 0.667 | |
二次Quadratic function | 0.764 | 0.732 | 0.714 | 0.685 | |
幂Power function | 0.763 | 0.751 | 0.654 | 0.638 | |
指数Exponential function | 0.757 | 0.745 | 0.642 | 0.625 | |
MSAVI | 线性Linear function | 0.808 | 0.798 | 0.676 | 0.650 |
对数Logarithmic function | 0.808 | 0.798 | 0.693 | 0.678 | |
二次Quadratic function | 0.808 | 0.787 | 0.742 | 0.716 | |
幂Power function | 0.812 | 0.802 | 0.665 | 0.639 | |
指数Exponential function | 0.814 | 0.804 | 0.656 | 0.619 |
Table 1 Correlation comparison of different function types of vegetation index
植被指数 Vegetation index | 函数类型 Function type | 实测光谱数据Measured spectrum data | 高分一号GF-1 | ||
---|---|---|---|---|---|
R2 | 调整R2 Residual sum of squares | R2 | 调整R2 Residual sum of squares | ||
NDVI | 线性Linear function | 0.738 | 0.722 | 0.625 | 0.609 |
对数Logarithmic function | 0.737 | 0.728 | 0.635 | 0.620 | |
二次Quadratic function | 0.737 | 0.708 | 0.685 | 0.657 | |
幂Power function | 0.747 | 0.734 | 0.613 | 0.579 | |
指数Exponential function | 0.757 | 0.740 | 0.602 | 0.585 | |
RVI | 线性Linear function | 0.700 | 0.687 | 0.548 | 0.530 |
对数Logarithmic function | 0.736 | 0.722 | 0.592 | 0.576 | |
二次Quadratic function | 0.731 | 0.712 | 0.669 | 0.642 | |
幂Power function | 0.718 | 0.704 | 0.583 | 0.566 | |
指数Exponential function | 0.693 | 0.677 | 0.534 | 0.515 | |
ARVI | 线性Linear function | 0.687 | 0.653 | 0.680 | 0.667 |
对数Logarithmic function | 0.649 | 0.636 | 0.682 | 0.669 | |
二次Quadratic function | 0.670 | 0.648 | 0.682 | 0.657 | |
幂Power function | 0.688 | 0.680 | 0.674 | 0.661 | |
指数Exponential function | 0.716 | 0.704 | 0.671 | 0.657 | |
SAVI | 线性Linear function | 0.771 | 0.760 | 0.671 | 0.655 |
对数Logarithmic function | 0.765 | 0.754 | 0.682 | 0.667 | |
二次Quadratic function | 0.764 | 0.732 | 0.714 | 0.685 | |
幂Power function | 0.763 | 0.751 | 0.654 | 0.638 | |
指数Exponential function | 0.757 | 0.745 | 0.642 | 0.625 | |
MSAVI | 线性Linear function | 0.808 | 0.798 | 0.676 | 0.650 |
对数Logarithmic function | 0.808 | 0.798 | 0.693 | 0.678 | |
二次Quadratic function | 0.808 | 0.787 | 0.742 | 0.716 | |
幂Power function | 0.812 | 0.802 | 0.665 | 0.639 | |
指数Exponential function | 0.814 | 0.804 | 0.656 | 0.619 |
数据 Data | 植被指数 Vegetation index | 函数类型 Function type | R2 | 调整R2 Residual sum of squares |
---|---|---|---|---|
实测光谱数据 | NDVI | 指数Exponential function | 0.757 | 0.740 |
Measured spectrum data | RVI | 对数Logarithmic function | 0.736 | 0.722 |
ARVI | 指数Exponential function | 0.716 | 0.704 | |
SAVI | 线性Linear function | 0.771 | 0.760 | |
MSAVI | 指数Exponential function | 0.814 | 0.804 | |
高分一号 | NDVI | 二次Quadratic function | 0.684 | 0.657 |
GF-1/WFV | RVI | 二次Quadratic function | 0.669 | 0.642 |
ARVI | 对数Logarithmic function | 0.682 | 0.669 | |
SAVI | 二次Quadratic function | 0.714 | 0.685 | |
MSAVI | 二次Quadratic function | 0.742 | 0.716 |
Table 2 Optimal function type of vegetation index model based on measurement spectral data and GF-1/WFV sensor data
数据 Data | 植被指数 Vegetation index | 函数类型 Function type | R2 | 调整R2 Residual sum of squares |
---|---|---|---|---|
实测光谱数据 | NDVI | 指数Exponential function | 0.757 | 0.740 |
Measured spectrum data | RVI | 对数Logarithmic function | 0.736 | 0.722 |
ARVI | 指数Exponential function | 0.716 | 0.704 | |
SAVI | 线性Linear function | 0.771 | 0.760 | |
MSAVI | 指数Exponential function | 0.814 | 0.804 | |
高分一号 | NDVI | 二次Quadratic function | 0.684 | 0.657 |
GF-1/WFV | RVI | 二次Quadratic function | 0.669 | 0.642 |
ARVI | 对数Logarithmic function | 0.682 | 0.669 | |
SAVI | 二次Quadratic function | 0.714 | 0.685 | |
MSAVI | 二次Quadratic function | 0.742 | 0.716 |
数据 Data | 植被指数 Vegetation index | 函数类型 Function type | 表达式 Expression |
---|---|---|---|
实测光谱数据 | NDVI | 指数Exponential function | y =0.0493e4.7955x |
Measured spectrum data | RVI | 对数Logarithmic function | y=1.9421ln(x)-1.9457 |
ARVI | 指数Exponential function | y=0.1341e3.8751x | |
SAVI | 线性Linear function | y =12.197x-12.596 | |
MSAVI | 指数Exponential | y =0.0019e8.0142x | |
高分一号 | NDVI | 二次Polynomial function | y =-105.51x2+166.75x - 61.886 |
GF-1/WFV | RVI | 二次Polynomial function | y=-0.1668x2+2.6269x-6.4054 |
ARVI | 对数Logarithmic function | y=8.3808ln(x)+5.9208 | |
SAVI | 二次Polynomial function | y=-116.16x2+123.92x - 28.995 | |
MSAVI | 二次Polynomial function | y=-96.689x2+102.23x - 22.956 |
Table 3 Fitting equation of LAI and vegetation index constructed by measured spectral data and GF-1/WFV sensor data
数据 Data | 植被指数 Vegetation index | 函数类型 Function type | 表达式 Expression |
---|---|---|---|
实测光谱数据 | NDVI | 指数Exponential function | y =0.0493e4.7955x |
Measured spectrum data | RVI | 对数Logarithmic function | y=1.9421ln(x)-1.9457 |
ARVI | 指数Exponential function | y=0.1341e3.8751x | |
SAVI | 线性Linear function | y =12.197x-12.596 | |
MSAVI | 指数Exponential | y =0.0019e8.0142x | |
高分一号 | NDVI | 二次Polynomial function | y =-105.51x2+166.75x - 61.886 |
GF-1/WFV | RVI | 二次Polynomial function | y=-0.1668x2+2.6269x-6.4054 |
ARVI | 对数Logarithmic function | y=8.3808ln(x)+5.9208 | |
SAVI | 二次Polynomial function | y=-116.16x2+123.92x - 28.995 | |
MSAVI | 二次Polynomial function | y=-96.689x2+102.23x - 22.956 |
指标 Index | 数据来源 Data sources | NDVI | RVI | ARVI | SAVI | MSAVI |
---|---|---|---|---|---|---|
RE | 高分一号GF-1/WFV | 0.0614 | 0.0665 | 0.0709 | 0.0590 | 0.0581 |
实测光谱Measured spectrum | 0.0563 | 0.0560 | 0.0588 | 0.0548 | 0.0476 | |
RPD | 高分一号GF-1/WFV | 1.6070 | 1.5471 | 1.4936 | 1.7035 | 1.7108 |
实测光谱Measured spectrum | 1.7379 | 1.7100 | 1.6533 | 1.7573 | 2.0986 | |
RMSE | 高分一号GF-1/WFV | 0.2621 | 0.2675 | 0.2937 | 0.2508 | 0.2502 |
实测光谱Measured spectrum | 0.2372 | 0.2340 | 0.2561 | 0.2293 | 0.2082 |
Table 4 Accuracy of estimation models
指标 Index | 数据来源 Data sources | NDVI | RVI | ARVI | SAVI | MSAVI |
---|---|---|---|---|---|---|
RE | 高分一号GF-1/WFV | 0.0614 | 0.0665 | 0.0709 | 0.0590 | 0.0581 |
实测光谱Measured spectrum | 0.0563 | 0.0560 | 0.0588 | 0.0548 | 0.0476 | |
RPD | 高分一号GF-1/WFV | 1.6070 | 1.5471 | 1.4936 | 1.7035 | 1.7108 |
实测光谱Measured spectrum | 1.7379 | 1.7100 | 1.6533 | 1.7573 | 2.0986 | |
RMSE | 高分一号GF-1/WFV | 0.2621 | 0.2675 | 0.2937 | 0.2508 | 0.2502 |
实测光谱Measured spectrum | 0.2372 | 0.2340 | 0.2561 | 0.2293 | 0.2082 |
植被指数 Vegetation index | 高分一号 GF-1 | 实测光谱 Measured spectrum |
---|---|---|
NDVI | 0.833** | 0.854** |
RVI | 0.806** | 0.858** |
ARVI | 0.825** | 0.781** |
SAVI | 0.853** | 0.862** |
MSAVI | 0.857** | 0.894** |
Table 5 Correlation between LAI observed values and predicted values of ground measured spectral data and GF-1/WFV
植被指数 Vegetation index | 高分一号 GF-1 | 实测光谱 Measured spectrum |
---|---|---|
NDVI | 0.833** | 0.854** |
RVI | 0.806** | 0.858** |
ARVI | 0.825** | 0.781** |
SAVI | 0.853** | 0.862** |
MSAVI | 0.857** | 0.894** |
[1] | 王枭轩, 孟庆岩, 张海香, 等. 基于粒子群神经网络模型反演玉米、小麦叶面积指数[J]. 浙江农业学报, 2019,31(7):1170-1176. |
WANG X X, MENG Q Y, ZHANG H X, et al. Inversion of maize and wheat leaf area index based on particle swarm optimization neural network model[J]. Acta Agriculturae Zhejiangensis, 2019,31(7):1170-1176.(in Chinese with English abstract) | |
[2] |
高林, 王晓菲, 顾行发, 等. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017,41(12):1273-1288.
DOI |
GAO L, WANG X F, GU X F, et al. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating[J]. Chinese Journal of Plant Ecology, 2017,41(12):1273-1288.(in Chinese with English abstract) | |
[3] | 叶舒, 范文义, 孟庆岩. 基于高分一号数据的PROSAIL模型叶面积指数反演[J]. 森林工程, 2016,32(4):18-21. |
YE S, FAN W Y, MENG Q Y. Leaf area index retrieval of GF-1 using PROSAIL[J]. Forest Engineering, 2016,32(4):18-21.(in Chinese with English abstract) | |
[4] | 马磊, 闫浩文, 何毅, 等. 2001-2015年喜马拉雅南麓地区植被变化遥感监测[J]. 干旱区地理, 2017,40(2):405-414. |
MA L, YAN H W, HE Y, et al. Vegetation changes in south Himalayas areas based on remote sensing monitoring during 2001-2015[J]. Arid Land Geography, 2017,40(2):405-414.(in Chinese with English abstract) | |
[5] | 刘珺, 庞鑫, 李彦荣, 等. 夏玉米叶面积指数遥感反演研究[J]. 农业机械学报, 2016,47(9):309-317. |
LIU J, PANG X, LI Y R, et al. Inversion study on leaf area index of summer maize using remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(9):309-317.(in Chinese with English abstract) | |
[6] | 蒋丽伟, 张家琦, 赵一臣, 等. 北京山区典型林分生长季叶面积指数动态变化[J]. 林业资源管理, 2019(2):132-136. |
JIANG L W, ZHANG J Q, ZHAO Y C, et al. Dynamic change of leaf area index in the growing season of typical forests in Beijing mountainous area[J]. Forest Resources Management, 2019(2):132-136.(in Chinese with English abstract) | |
[7] | 倪衡, 李效顺, 鹿瑶, 等. 基于光谱特征的煤矿覆煤区遥感识别与监测方法研究: 以云南小龙潭矿区为例[J]. 生态与农村环境学报, 2019,35(1):9-15. |
NI H, LI X S, LU Y, et al. Research on remote sensing recognition and monitoring method of coal-covered area based on spectral characteristics: a case study of Xiaolongtan mining area[J]. Journal of Ecology and Rural Environment, 2019,35(1):9-15.(in Chinese with English abstract) | |
[8] | 刘婷, 陈晨, 范文义, 等. 基于不同空间尺度遥感影像估算森林叶面积指数的差异[J]. 应用生态学报, 2019,30(5):1687-1698. |
LIU T, CHEN C, FAN W Y, et al. Variation of leaf area index estimation in forests based on remote sensing images of different spatial scales[J]. Chinese Journal of Applied Ecology, 2019,30(5):1687-1698.(in Chinese with English abstract) | |
[9] | 李军玲, 彭记永. 不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究[J]. 麦类作物学报, 2018,38(8):979-987. |
LI J L, PENG J Y. Estimation of winter wheat LAI at different growth stages based on canopy hyperspectral remote sensing system[J]. Journal of Triticeae Crops, 2018,38(8):979-987.(in Chinese with English abstract) | |
[10] |
CHEN J M, BLACK T A. Foliage area and architecture of plant canopies from sunfleck size distributions[J]. Agricultural and Forest Meteorology, 1992,60(3/4):249-266.
DOI URL |
[11] | 覃泽林, 谢国雪, 李宇翔, 等. 多时相高分一号影像在丘陵地区大宗农作物提取中的应用[J]. 南方农业学报, 2017,48(1):181-188. |
QIN Z L, XIE G X, LI Y X, et al. Application of multi-temporal GF-1 image in extraction of staple crops in hilly region[J]. Journal of Southern Agriculture, 2017,48(1):181-188.(in Chinese with English abstract) | |
[12] | 郭燕, 武喜红, 程永政, 等. 用高分一号数据提取玉米面积及精度分析[J]. 遥感信息, 2015,30(6):31-36. |
GUO Y, WU X H, CHENG Y Z, et al. Maize recognition and accuracy evaluation based on high resolution remote sensing(GF-1)data[J]. Remote Sensing Information, 2015,30(6):31-36.(in Chinese with English abstract) | |
[13] | 邱鹏勋, 汪小钦, 茶明星, 等. 基于TWDTW的时间序列GF-1 WFV农作物分类[J]. 中国农业科学, 2019,52(17):2951-2961. |
QIU P X, WANG X Q, CHA M X, et al. Crop identification based on TWDTW method and time series GF-1 WFV[J]. Scientia Agricultura Sinica, 2019,52(17):2951-2961.(in Chinese with English abstract) | |
[14] | 王磊, 耿君, 杨冉冉, 等. 高分一号卫星影像特征及其在草地监测中的应用[J]. 草地学报, 2015,23(5):1093-1100. |
WANG L, GENG J, YANG R R, et al. Characteristics and application of GF-1 image in grassland monitoring[J]. Acta Agrestia Sinica, 2015,23(5):1093-1100.(in Chinese with English abstract) | |
[15] | 李晓彤, 覃先林, 刘树超, 等. 基于GF-1 WFV数据森林叶面积指数估算[J]. 国土资源遥感, 2019,31(3):80-86. |
LI X T, QIN X L, LIU S C, et al. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019,31(3):80-86.(in Chinese with English abstract) | |
[16] | CHEN Q C, ZHANG Z L, LIU P F, et al. Monitoring of growth parameters of sweet corn using CGMD302 spectrometer[J]. Agricultural Science & Technology, 2015,16(2):364-368. |
[17] | 刘明, 冯锐, 纪瑞鹏, 等. 基于MODIS-NDVI的春玉米叶面积指数和地上生物量估算[J]. 中国农学通报, 2015,31(6):80-87. |
LIU M, FENG R, JI R P, et al. Estimation of leaf area index and aboveground biomass of spring maize by MODIS-NDVI[J]. Chinese Agricultural Science Bulletin, 2015,31(6):80-87.(in Chinese with English abstract) | |
[18] | 易秋香. 基于Sentinel-2多光谱数据的棉花叶面积指数估算[J]. 农业工程学报, 2019,35(16):189-197. |
YI Q X. Remote estimation of cotton LAI using Sentinel-2 multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(16):189-197.(in Chinese with English abstract) | |
[19] | 孙华林, 耿石英, 王小燕, 等. 晚播条件下基于高光谱的小麦叶面积指数估算方法[J]. 光谱学与光谱分析, 2019,39(4):1199-1206. |
SUN H L, GENG S Y, WANG X Y, et al. Estimation method of wheat leaf area index based on hyperspectral under late sowing conditions[J]. Spectroscopy and Spectral Analysis, 2019,39(4):1199-1206.(in Chinese with English abstract) | |
[20] | 郭建彪, 马新明, 时雷, 等. 冬小麦叶面积指数的品种差异性与高光谱估算研究[J]. 麦类作物学报, 2018,38(3):340-347. |
GUO J B, MA X M, SHI L, et al. Variety variation and hyperspectral estimate model of leaf area index of winter wheat[J]. Journal of Triticeae Crops, 2018,38(3):340-347.(in Chinese with English abstract) | |
[21] | 李正国, 杨鹏, 唐华俊, 等. 近20年来东北三省春玉米物候期变化趋势及其对温度的时空响应[J]. 生态学报, 2013,33(18):5818-5827. |
LI Z G, YANG P, TANG H J, et al. Trends of spring maize phenophases and spatio-temporal responses to temperature in three provinces of Northeast China during the past 20 years[J]. Acta Ecologica Sinica, 2013,33(18):5818-5827.(in Chinese with English abstract) | |
[22] | 淮贺举, 李存军, 李奇峰, 等. 东北地区春玉米物候期时空动态变化特征[J]. 玉米科学, 2019,27(1):81-86. |
HUAI H J, LI C J, LI Q F, et al. Changes of spring maize phenology from 1981 to 2012 in the northeast plain of China[J]. Journal of Maize Sciences, 2019,27(1):81-86.(in Chinese with English abstract) | |
[23] | 蔡亮红, 丁建丽. 基于改进植被指数土壤水分遥感反演[J]. 干旱区地理, 2017,40(6):1248-1255. |
CAI L H, DING J L. Remote sensing inversion of soil moisture based on modified vegetation index[J]. Arid Land Geography, 2017,40(6):1248-1255.(in Chinese with English abstract) | |
[24] | 朱绪超, 袁国富, 易小波, 等. 基于Landsat 8 OLI影像的塔里木河下游河岸林叶面积指数反演[J]. 干旱区地理, 2014,37(6):1248-1256. |
ZHU X C, YUAN G F, YI X B, et al. Leaf area index inversion of riparian forest in the lower basin of Tarim River based on Landsat 8 OLI images[J]. Arid Land Geography, 2014,37(6):1248-1256.(in Chinese with English abstract) | |
[25] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988,25(3):295-309.
DOI URL |
[26] |
ALMEIDA A Q, MELLO A A, DÓRIA NETO A L, et al. Empíricas entre características dendrométricas da caatinga brasileira e dados TM Landsat 5.[J]. Pesquisa Agropecuaria Brasileira, 2014,49(4):306-315.
DOI URL |
[27] | 亚森江·喀哈尔, 茹克亚·萨吾提, 尼加提·卡斯木, 等. 优化光谱指数的露天煤矿区土壤重金属含量估算[J]. 光谱学与光谱分析, 2019,39(8):2486-2494. |
YASENJIANG K, RUKEYA S, NIJAT K, et al. Estimation of heavy metal contents in soil around open pit coal mine area based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2019,39(8):2486-2494.(in Chinese with English abstract) | |
[28] | 李喆, 胡蝶, 赵登忠, 等. 宽波段遥感植被指数研究进展综述[J]. 长江科学院院报, 2015,32(1):125-130. |
LI Z, HU D, ZHAO D Z, et al. Research advance of broadband vegetation index using remotely sensed images[J]. Journal of Yangtze River Scientific Research Institute, 2015,32(1):125-130.(in Chinese with English abstract) | |
[29] | 郑踊谦, 董恒, 张城芳, 等. 植被指数与作物叶面积指数的相关关系研究[J]. 农机化研究, 2019,41(10):1-6. |
ZHENG Y Q, DONG H, ZHANG C F, et al. Study on the relationship between vegetation indices and leaf area index of crop[J]. Journal of Agricultural Mechanization Research, 2019,41(10):1-6.(in Chinese) | |
[30] |
WANG L, YANG R R, TIAN Q J, et al. Comparative analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD sensor data for grassland monitoring applications[J]. Remote Sensing, 2015,7(2):2089-2108.
DOI URL |
[31] | 胡古月, 李少达, 杨容浩. 叶面积指数遥感估算的三种回归模型分析[J]. 测绘科学, 2018,43(10):46-50. |
HU G Y, LI S D, YANG R H. Comparison of three regression models for remote sensing estimation of leaf area index[J]. Science of Surveying and Mapping, 2018,43(10):46-50.(in Chinese with English abstract) |
[1] | YANG Mei, HU Xiaolan, SHEN Tao, TAN Kang, LIU Dailing, QIU Hongbo. Construction of single fragment substitution lines of maize 8th chromosome and sreening of resistant maize germplasm to gray leaf spot [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 383-389. |
[2] | QU Zhan, YANG Litao. Development of plasmid DNA reference material of genetically modified maize TC1507 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 390-395. |
[3] | WANG Tangang, SUN Ting, WANG Jichuan, LI Huiqin, GAO Zhen, SHI Yuanqiang. Effects of sowing date and density on population structure and lodging resistance of winter wheat under drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 193-202. |
[4] | LIU Genhong, XUE Yinxin, ZHANG Qian, ZHOU Jiarui, MAI Xiaofeng. Effects of different tillage depth and amount of straw returned to the field on maize growth under drip-irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 8-17. |
[5] | CHANG Huiqing, XU Fujin, PAN Yajie. Passivation effects of calcium carbonate with/without chitosan on chromium pollution in calcareous soil [J]. , 2020, 32(9): 1665-1671. |
[6] | GUO Yanjing, XIAO Haifeng. Support level and structural characteristics of maize subsidy policy in world's major maize producing countries and region [J]. , 2020, 32(9): 1722-1731. |
[7] | BAI Junyan, LU Junhao, FU Xueyan, WU Xiaohong, YANG Youbing, LEI Ying, PANG Youzhi, LU Xiaoning, GONG Huirong, HU Luxing, LIU Hongtao, FAN Hongdeng, CAO Heng, SHI Kunpeng, CHEN Mengke, MA Yongkang. Analysis of correlation between polymorphism of IGF-1R gene and body size traits in egg quail [J]. , 2020, 32(3): 398-405. |
[8] | ZHAO Xingkai, SHI Haichun, YU Xuejie, YANG Shu, ZHAO Changyun, XIA Wei, KE Yongpei. Breeding potential analyses of 13 new inbred lines in maize [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2119-2127. |
[9] | JIANG Yuanyuan, JI Yi, LAI Yongmin, CHEN Xiaoyun, XU Junfeng, XU Xiaoli, MA Lianju. Safety evaluation of Cry-transgenic insect-resistant maize on silkworm, Bombyx mori [J]. , 2020, 32(11): 2042-2049. |
[10] | ZHONG Jing, TAN Fen, ZHANG Hongquan, XIONG Xiaoqin, HUANG Lixia. Expression pattern and protein structure analysis of maize XYLPs gene family [J]. , 2020, 32(10): 1741-1747. |
[11] | YUE Gaohong, PAN Binrong, LIU Yongan, MEI Xixue, XU Likui, ZHANG Zongchen, ZHOU Zhihui. Genetic diversity analysis of sweet maize inbred lines in Southern Zhejiang by SSR markers [J]. , 2019, 31(7): 1029-1036. |
[12] | FANG Fang, HE Xuchen, ZHANG Zhihao, ZHANG Qin, GUAN Yajing, HU Jin, HU Weimin. Response mechanism and stress resistance of maize inbred lines to high temperature stress at seedling stage [J]. , 2019, 31(7): 1045-1056. |
[13] | WANG Xiaoxuan, MENG Qingyan, ZHANG Haixiang, WEI Xiangqin, YANG Zenan. Inversion of maize and wheat leaf area index based on particle swarm optimization neural network model [J]. , 2019, 31(7): 1170-1176. |
[14] | LIU Zhi, HE Zheng, MIAO Fangfang, JIA Biao. Method and experiment for estimating emergence rate of water and fertilizer integrated maize based on drone technology [J]. , 2019, 31(6): 977-985. |
[15] | ZHENG Xiaoxue, QIN Lijie. Water footprint of maize production in middle Jilin under different rainfall years [J]. , 2019, 31(5): 695-703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||