Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 1911-1924.DOI: 10.3969/j.issn.1004-1524.2022.09.10
• Horticultural Science • Previous Articles Next Articles
GU Xianbin(), LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin(
)
Received:
2021-11-24
Online:
2022-09-25
Published:
2022-09-30
Contact:
ZHANG Huiqin
CLC Number:
GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.09.10
基因序列号 Gene ID | 基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Products lenth/bp |
---|---|---|---|---|
Prupe.1G234000 | PpGAPDH | CTGCTTCCTTCAACATCAT | TGCCTTCTTCTCAATCCT | 158 |
Prupe.1G305900 | PpRAV | TTCAGATGGTTCGGCTATT | TCCTTGGCTTCTTGCTAA | 183 |
Prupe.2G258200 | PpERD15 | GAGGAAGAGGAGAAGGATT | CGGACTCACTTTCATCAC | 138 |
Prupe.2G272300 | PpERF1 | CGGATGCTTCAACAACAA | TACTGGTCTTCTGCCTTG | 111 |
Prupe.3G236200 | PpLBD41 | GGATGAGTTGTAATGGATG | CCTCGTATAGCAATGATC | 213 |
Prupe.6G230600 | PpWRKY7 | CAGGTGTCTTCAGTTGGA | AGAGTAATCATCAGGTGGAA | 207 |
Prupe.8G018100 | PpADH1 | GGAGTGATGCTGAGTGAT | CAGACCTGTGGAGATACC | 183 |
Prupe.8G264900 | PpERF071 | CCTCCAATTCCAATTCCAA | GCAATCGCATCCTTATTCA | 226 |
Prupe.6G163400 | PpACTIN | TCTTCCAACCATCACTCAT | GCCACAACCTTAATCTTCAT | 211 |
Table 1 Primers for qRT-PCR
基因序列号 Gene ID | 基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Products lenth/bp |
---|---|---|---|---|
Prupe.1G234000 | PpGAPDH | CTGCTTCCTTCAACATCAT | TGCCTTCTTCTCAATCCT | 158 |
Prupe.1G305900 | PpRAV | TTCAGATGGTTCGGCTATT | TCCTTGGCTTCTTGCTAA | 183 |
Prupe.2G258200 | PpERD15 | GAGGAAGAGGAGAAGGATT | CGGACTCACTTTCATCAC | 138 |
Prupe.2G272300 | PpERF1 | CGGATGCTTCAACAACAA | TACTGGTCTTCTGCCTTG | 111 |
Prupe.3G236200 | PpLBD41 | GGATGAGTTGTAATGGATG | CCTCGTATAGCAATGATC | 213 |
Prupe.6G230600 | PpWRKY7 | CAGGTGTCTTCAGTTGGA | AGAGTAATCATCAGGTGGAA | 207 |
Prupe.8G018100 | PpADH1 | GGAGTGATGCTGAGTGAT | CAGACCTGTGGAGATACC | 183 |
Prupe.8G264900 | PpERF071 | CCTCCAATTCCAATTCCAA | GCAATCGCATCCTTATTCA | 226 |
Prupe.6G163400 | PpACTIN | TCTTCCAACCATCACTCAT | GCCACAACCTTAATCTTCAT | 211 |
Fig.1 Physiological indexes changes of peach after waterlogging treatment SPSS Statistics 17.0 software was used for significant difference analysis, one-way ANOVA was used for significance test, Duncan method was used for multiple comparison. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.
Fig.4 GO enrich and expression analysis of common differentially expressed genes A, Venn diagram between groups; B, GO enrichment analysis; C, Heat map of different expression gene.
转录因子家族 TF family | 数量 Number | 转录因子家族 TF family | 数量 Number |
---|---|---|---|
AP2/ERF | 34 | HD-ZIP | 3 |
WRKY | 23 | NF-YA | 3 |
bZIP | 15 | ARR-B | 2 |
HSF | 12 | BES1 | 2 |
C2C2-GATA | 4 | NF-X1 | 1 |
MADS | 4 | SBP | 1 |
AT-hook | 3 | Trihelix | 1 |
Table 2 Different expressed transcription factors in the most enrich GO pathway
转录因子家族 TF family | 数量 Number | 转录因子家族 TF family | 数量 Number |
---|---|---|---|
AP2/ERF | 34 | HD-ZIP | 3 |
WRKY | 23 | NF-YA | 3 |
bZIP | 15 | ARR-B | 2 |
HSF | 12 | BES1 | 2 |
C2C2-GATA | 4 | NF-X1 | 1 |
MADS | 4 | SBP | 1 |
AT-hook | 3 | Trihelix | 1 |
ERF家族 ERF family | 数量 Number | 百分比 Percentage/% | ERF家族 ERF family | 数量 Number | 百分比 Percentage/% |
---|---|---|---|---|---|
Ⅰ | 1/6 | 16.7 | Ⅶ | 3/3 | 100 |
Ⅱ | 1/8 | 12.5 | Ⅷ | 3/10 | 30 |
Ⅲ | 5/22 | 22.7 | Ⅸ | 12/20 | 60 |
Ⅳ | 2/7 | 28.6 | Ⅹ | 2/6 | 33.3 |
Ⅴ | 0/12 | 0 | Ⅺ-L | 0/2 | 0 |
Ⅵ | 0/6 | 0 |
Table 3 Different expressed ERFs in each subfamily group
ERF家族 ERF family | 数量 Number | 百分比 Percentage/% | ERF家族 ERF family | 数量 Number | 百分比 Percentage/% |
---|---|---|---|---|---|
Ⅰ | 1/6 | 16.7 | Ⅶ | 3/3 | 100 |
Ⅱ | 1/8 | 12.5 | Ⅷ | 3/10 | 30 |
Ⅲ | 5/22 | 22.7 | Ⅸ | 12/20 | 60 |
Ⅳ | 2/7 | 28.6 | Ⅹ | 2/6 | 33.3 |
Ⅴ | 0/12 | 0 | Ⅺ-L | 0/2 | 0 |
Ⅵ | 0/6 | 0 |
Fig.7 KEGG pathway enrichment analysis and ERF transcription factor target gene prediction A, KEGG enrichment analysis; B, Expression heat map of glycolysis pathway genes; C, ERF target gene prediction.
[1] |
ANDERSEN P, LOMBARD P, WESTWOOD M N. Leaf conductance, growth, and survival of willow and deciduous fruit tree species under flooded soil conditions[J]. Journal of The American Society for Horticultural Science, 1984, 109(2): 132-138.
DOI URL |
[2] | 郁万文, 蔡金峰, 高长忠. 不同桃砧类型对淹水胁迫的生理响应及耐涝性评价[J]. 中国果树, 2016(3): 1-6. |
YU W W, CAI J F, GAO C Z. Physiological responses of different peach rootstocks to submergence stress and their waterlogging tolerance evaluation[J]. China Fruits, 2016(3): 1-6. (in Chinese) | |
[3] |
WU X L, TANG Y L, LI C S, et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China[J]. Field Crops Research, 2018, 215: 163-172.
DOI URL |
[4] | 聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展[J]. 中国农学通报, 2021, 37(18): 57-64. |
NIE G P, CHEN M M, YANG L Y, et al. Plant response to waterlogging stress: research progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 57-64. (in Chinese with English abstract) | |
[5] | 刘周斌, 周宇健, 杨博智, 等. 植物抗涝性研究进展[J]. 湖北农业科学, 2015, 54(18): 4385-4389, 4393. |
LIU Z B, ZHOU Y J, YANG B Z, et al. Research progress in waterlogging of plant[J]. Hubei Agricultural Sciences, 2015, 54(18): 4385-4389, 4393. (in Chinese with English abstract) | |
[6] |
SALAH A, ZHAN M, CAO C G, et al. γ-aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings[J]. Scientific Reports, 2019, 9(1): 484.
DOI PMID |
[7] | 王蕊, 杨小龙, 须晖, 等. 高等植物褪黑素的合成和代谢研究进展[J]. 植物生理学报, 2016, 52(5): 615-627. |
WANG R, YANG X L, XU H, et al. Research progress of melatonin biosynthesis and metabolism in higher plants[J]. Plant Physiology Journal, 2016, 52(5): 615-627. (in Chinese with English abstract) | |
[8] |
ARNAO M B, HERNÁNDEZ-RUIZ J. Melatonin: a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science, 2019, 24(1): 38-48.
DOI PMID |
[9] |
WANG Y P, REITER R J, CHAN Z L. Phytomelatonin: a universal abiotic stress regulator[J]. Journal of Experimental Botany, 2017, 69(5): 963-974.
DOI URL |
[10] |
吴燕, 乔晓燕, 葛伟强, 等. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429.
DOI |
WU Y, QIAO X Y, GE W Q, et al. Effects of exogenous melatonin on physiological and biochemical characteristics in female flowers of Trichosanthes kirilowii under high temperature and strong light[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3): 421-429. (in Chinese with English abstract) | |
[11] | ZHENG X D, ZHOU J Z, TAN D X, et al. Melatonin improves waterlogging tolerance of Malus baccata(Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration[J]. Frontiers in Plant Science, 2017, 8: 483. |
[12] |
ZHANG R D, YUE Z X, CHEN X F, et al. Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings[J]. Plant Growth Regulation, 2022, 97(2): 429-438.
DOI URL |
[13] |
GU X B, XUE L, LU L H, et al. Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration[J]. Journal of Plant Growth Regulation, 2021, 40(5): 2178-2190.
DOI URL |
[14] | 赵婷, 李琴, 潘学军, 等. 陆生植物对淹水胁迫的适应机制[J]. 植物生理学报, 2021, 57(11): 2091-2103. |
ZHAO T, LI Q, PAN X J, et al. Adaptive mechanism of terrestrial plants to waterlogging stress[J]. Plant Physiology Journal, 2021, 57(11): 2091-2103. (in Chinese with English abstract) | |
[15] |
ALTAF M A, SHAHID R, REN M X, et al. Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses[J]. Physiologia Plantarum, 2021, 172(2): 820-846.
DOI URL |
[16] |
韩国民, 刘茜, 唐美玲, 等. 外源褪黑素对NaCl胁迫下5BB葡萄叶片生理特性的影响[J]. 浙江农业学报, 2019, 31(4): 556-564.
DOI |
HAN G M, LIU X, TANG M L, et al. Effects of exogenous melatonin on physiological characteristics of 5BB grape leaves under NaCl stress[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 556-564. (in Chinese with English abstract)
DOI |
|
[17] |
陈东, 李强, 彭彦, 等. 淹水胁迫下褪黑素浸种对水稻幼苗生长的影响[J]. 华北农学报, 2019, 34(3): 129-136.
DOI |
CHEN D, LI Q, PENG Y, et al. Effect of melatonin on rice seedling growth under submergence stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3): 129-136. (in Chinese with English abstract)
DOI |
|
[18] |
张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
DOI |
ZHANG M C, HE S Y, QIN B, et al. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress[J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. (in Chinese with English abstract) | |
[19] |
WANG X, LI F, CHEN Z Y, et al. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress[J]. Journal of Proteomics, 2021, 232: 104064.
DOI URL |
[20] |
李小兰, 张瑞, 郝兰兰, 等. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780.
DOI |
LI X L, ZHANG R, HAO L L, et al. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. (in Chinese with English abstract)
DOI |
|
[21] |
MOHANTY B. Promoter architecture and transcriptional regulation of genes upregulated in germination and coleoptile elongation of diverse rice genotypes tolerant to submergence[J]. Frontiers in Genetics, 2021, 12: 639654.
DOI URL |
[22] |
YU F, TAN Z D, FANG T, et al. A comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize[J]. Genes, 2020, 11(3): 267.
DOI URL |
[23] |
NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432.
DOI URL |
[24] | WEI X N, XU H J, RONG W, et al. Constitutive expression of a stabilized transcription factor group Ⅶ ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield[J]. Plant, Cell & Environment, 2019, 42(5): 1471-1485. |
[25] |
PAN D L, WANG G, WANG T, et al. AdRAP2.3, a novel ethylene response factor Ⅶ from Actinidia deliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH genes[J]. International Journal of Molecular Sciences, 2019, 20(5): 1189.
DOI URL |
[26] |
UMEDA M, UCHIMIYA H. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress[J]. Plant Physiology, 1994, 106(3): 1015-1022.
DOI URL |
[27] |
KOMATSU S, YAMAGUCHI H, HITACHI K, et al. Proteomic and biochemical analyses of the mechanism of tolerance in mutant soybean responding to flooding stress[J]. International Journal of Molecular Sciences, 2021, 22(16): 9046.
DOI URL |
[28] |
WEI W L, LI D H, WANG L H, et al. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.)[J]. Plant Science, 2013, 208: 102-111.
DOI URL |
[1] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
[2] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[3] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[4] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
[5] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[6] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[7] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[8] | MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649. |
[9] | HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460. |
[10] | SHI Wenbo, GAO Tianxiang, HU Yunyu, XU Cong, TAO Jun, ZHAO Daqiu. Analysis of correlation between inflorescence stem strength and melatonin content of herbaceous peony [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 632-639. |
[11] | JIANG Zhifang, HAN Yidie, LOU Panpan, GUO Hong, FENG Shangguo, SHEN Chenjia, WANG Huizhong1. Identification and expression analysis of cytochrome P450 family genes from Physalis angulata L. [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2009-2016. |
[12] | FENG Shangle, LI Xuenan, CHEN Yige, LIU Ruiqi, BAI Zhiyi, LI Wenjuan. Screening and expression of cyclins gene in Hyriopsis cumingii [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2041-2050. |
[13] | YIN Minghua, CAO Qing, CHEN Hong, DENG Siyu, DENG Yanmei. Transcriptome analysis of red bud taro and green stem taro in Yanshan, Jiangxi Province [J]. , 2020, 32(9): 1533-1543. |
[14] | LIU Xinyu, TIAN Jie. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers [J]. , 2020, 32(9): 1615-1625. |
[15] | GE Jintao, WANG Jiangying, ZHAO Wenjing, SHAO Xiaobin, ZHU Pengbo, TANG Xueyan, SUN Mingwei, LIU Xingman. Transcriptome analysis on development of aerial root in grape of Weike [J]. , 2020, 32(9): 1645-1655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||