[1] |
李燕妮, 袁帅, 付和平, 等. 典型草原啮齿动物密度与牧草损失量的关系[J]. 兽类学报, 2018, 38(4): 369-376.
|
|
LI Y N, YUAN S, FU H P, et al. Relationship of rodent densities with forage loss in typical steppe[J]. Acta Theriologica Sinica, 2018, 38(4): 369-376. (in Chinese with English abstract)
DOI
|
[2] |
沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析[J]. 科学通报, 2016, 61(2): 139-154.
|
|
SHEN H H, ZHU Y K, ZHAO X, et al. Analysis of current grassland resources in China[J]. Chinese Science Bulletin, 2016, 61(2): 139-154. (in Chinese with English abstract)
|
[3] |
张涛, 杜健民, 张海军, 等. 基于无人机高光谱荒漠草原鼠洞识别方法研究[J]. 光电子·激光, 2022, 33(2): 120-126.
|
|
ZHANG T, DU J M, ZHANG H J, et al. Research on recognition method of desert steppe rat hole based on unmanned aerial vehicle hyperspectral[J]. Journal of Optoelectronics·Laser, 2022, 33(2): 120-126. (in Chinese with English abstract)
|
[4] |
温阿敏, 郑江华, 陈梦, 等. 荒漠生态林区大沙鼠鼠洞密度的无人机遥感监测技术初探[J]. 林业科学, 2018, 54(4): 186-192.
|
|
WEN A M, ZHENG J H, CHEN M, et al. Monitoring mouse-hole density by Rhombomys opimus in desert forests with UAV remote sensing technology[J]. Scientia Silvae Sinicae, 2018, 54(4): 186-192. (in Chinese with English abstract)
|
[5] |
周晓琳, 安如, 陈跃红, 等. 三江源典型区鼠洞无人机遥感识别研究[J]. 亚热带资源与环境学院, 2018, 13(4): 85-92.
|
|
ZHOU X L, AN R, CHEN Y H, et al. Identification of rat holes in the typical area of “Three-River Headwaters” region by UAV remote sensing[J]. Journal of Subtropical Resources and Environment, 2018, 13(4): 85-92. (in Chinese with English abstract)
|
[6] |
孙迪, 倪亦非, 陈吉军, 等. 应用无人机(UAV)低空影像监测黄兔尾鼠鼠洞初探[J]. 中国植保导刊, 2019, 39(4): 35-43.
|
|
SUN D, NI Y F, CHEN J J, et al. Application of UAV low-altitude image on rat hole monitoring of Eolagurus luteus[J]. China Plant Protection. 2019, 39 (4): 35-43. (in Chinese with English abstract)
|
[7] |
崔博超, 郑江华, 刘忠军, 等. 无人机遥感影像的YOLOv3鼠洞识别技术[J]. 林业科学, 2020, 56(10): 199-208.
|
|
CUI B C, ZHENG J H, LIU Z J, et al. YOLOv3 mouse hole recognition based on remote sensing images from technology for unmanned aerial vehicle[J]. Scientia Silvae Sinicae, 2020, 56(10): 199-208. (in Chinese with English abstract)
|
[8] |
周俗, 韩立亮, 杨思维, 等. 基于卷积神经网络的若尔盖草原鼠害监测应用研究[J]. 草学, 2021(2): 15-25.
|
|
ZHOU S, HAN L L, YANG S W, et al. A study of rodent monitoring in Ruoergai grassland based on convolutional neural network[J]. Journal of Grassland and Forage Science, 2021(2): 15-25. (in Chinese with English abstract)
|
[9] |
EZZY H, CHARTER M, BONFANTE A, et al. How the small object detection via machine learning and UAS-based remote-sensing imagery can support the achievement of SDG2: a case study of vole burrows[J]. Remote Sensing, 2021, 13(16): 3191.
|
[10] |
DU M Z, WANG D W, LIU S P, et al. Rodent hole detection in a typical steppe ecosystem using UAS and deep learning[J]. Frontiers in Plant Science, 2022, 13: 992789.
|
[11] |
李鹤. 基于无人机高光谱遥感的典型荒漠草原的鼠洞识别研究[D]. 呼和浩特: 内蒙古农业大学, 2021.
|
|
LI H. Research on rat hole recognition of typical desertification grassland based on UAV hyperspectral remote sensing[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese with English abstract)
|
[12] |
ZHANG X, HAN L X, HAN L H, et al. How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery?[J]. Remote Sensing, 2020, 12(3): 417.
|
[13] |
WAN J X, JIAN D F, YU D Z. Research on the method of grass mouse hole target detection based on deep learning[J]. Journal of Physics: Conference Series, 2021, 1952(2): 022061.
|
[14] |
郭秀明, 诸叶平, 李世娟, 等. 农业复杂环境下尺度自适应小目标识别算法: 以蜜蜂为研究对象[J]. 智慧农业(中英文), 2022, 4(1): 140-149.
|
|
GUO X M, ZHU Y P, LI S J, et al. Scale adaptive small objects detection method in complex agricultural environment: taking bees as research object[J]. Smart Agriculture, 2022, 4(1): 140-149. (in Chinese with English abstract)
DOI
|
[15] |
HEYDARI M, MOHAMADZAMANI D, PARASHKOUHI M G, et al. An algorithm for detecting the location of rodent-made holes through aerial filming by drones[J]. Archives of Pharmacy Practice, 2020, 11(1): 55-60.
|
[16] |
REDMON J and FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2023-07-10]. https://arxiv.org/pdf/1804.02767.
|
[17] |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2023-07-10]. https://arxiv.org/pdf/2004.10934.
|
[18] |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA: IEEE, 2020: 1571-1580.
|
[19] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI
PMID
|
[20] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768.
|