Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (6): 1193-1202.DOI: 10.3969/j.issn.1004-1524.20240691
• Crop Science • Previous Articles Next Articles
ZHOU Danning1,2(
), XU Jiao1, BAI Jing3, LIU Xiangnan1, ZHU Yunhao1,2,*(
)
Received:2024-07-31
Online:2025-06-25
Published:2025-07-08
CLC Number:
ZHOU Danning, XU Jiao, BAI Jing, LIU Xiangnan, ZHU Yunhao. Endophytic fungal GG22 protein improves growth of Carthamus tinctorius L. seedling under stress conditions[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1193-1202.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240691
| 名称 Name | 正向引物(5'→3') Forward primer(5'→3') | 反向引物(5'→3') Reverse primer(5'→3') | 扩增长度 Amplification length/bp |
|---|---|---|---|
| CtCDKs | ATGGCTGCCTCTCTTTCCTC | ATGTTGAAAGGTTGGGGCAG | 249 |
| CtNPR | TCCCGCCAAAATCTTGAAAT | ATGCACCTATGAATGCCCAC | 137 |
| CtARD1 | ATCTCAGCCTTCGCCCACCT | GGTCGGATTTGTCGGATGTG | 133 |
| CtEDS1 | GAAGGTGCCAGTTCCGAGAC | AGCAAGATTCCGACCTGTGT | 213 |
| CtPAD4 | CGCTATGGCTTCTCTCCTATC | GAGCGAACAACAGCCGTG | 182 |
| Ct60S | GGCAACACTGGTCTTGATCCAT | CTGCGATTGTTGGATAATGGATG | 92 |
Table 1 Primer information
| 名称 Name | 正向引物(5'→3') Forward primer(5'→3') | 反向引物(5'→3') Reverse primer(5'→3') | 扩增长度 Amplification length/bp |
|---|---|---|---|
| CtCDKs | ATGGCTGCCTCTCTTTCCTC | ATGTTGAAAGGTTGGGGCAG | 249 |
| CtNPR | TCCCGCCAAAATCTTGAAAT | ATGCACCTATGAATGCCCAC | 137 |
| CtARD1 | ATCTCAGCCTTCGCCCACCT | GGTCGGATTTGTCGGATGTG | 133 |
| CtEDS1 | GAAGGTGCCAGTTCCGAGAC | AGCAAGATTCCGACCTGTGT | 213 |
| CtPAD4 | CGCTATGGCTTCTCTCCTATC | GAGCGAACAACAGCCGTG | 182 |
| Ct60S | GGCAACACTGGTCTTGATCCAT | CTGCGATTGTTGGATAATGGATG | 92 |
Fig.1 Effects of various fractions of GG22 protein on growth of safflower seedlings under stress conditions CK indicates blank control, G20, G40, G60 and G80 indicate treatments with the corresponding proteins. * represents P<0.05, ** represents P<0.01, *** represents P<0.001, **** represents P<0.000 1.
| 处理 Treatment | 根系活力Root activity | |||
|---|---|---|---|---|
| 正常处理Normal | 高温胁迫Heat-temperature stress | 低温胁迫Low-temperature stress | 盐胁迫Salt stress | |
| CK | 53.83±2.348 c | 41.93±1.24 b | 37.31±7.32 d | 47.39±1.71 b |
| G20 | 59.91±3.061 b | 37.85±1.52 b | 35.77±1.73 d | 49.51±4.37 b |
| G40 | 54.17±2.919 c | 39.94±1.35 b | 48.14±1.48 c | 50.57±0.64 b |
| G60 | 62.45±0.859 ab | 69.87±3.27 a | 59.07±0.53 b | 53.63±0.36 ab |
| G80 | 66.10±0.703 a | 42.42±3.64 b | 82.59±1.04 a | 58.32±0.85 a |
Table 2 Effects of various fractions of GG22 protein on root activity of safflower seedlings under stress conditions μg·g-1·h-1
| 处理 Treatment | 根系活力Root activity | |||
|---|---|---|---|---|
| 正常处理Normal | 高温胁迫Heat-temperature stress | 低温胁迫Low-temperature stress | 盐胁迫Salt stress | |
| CK | 53.83±2.348 c | 41.93±1.24 b | 37.31±7.32 d | 47.39±1.71 b |
| G20 | 59.91±3.061 b | 37.85±1.52 b | 35.77±1.73 d | 49.51±4.37 b |
| G40 | 54.17±2.919 c | 39.94±1.35 b | 48.14±1.48 c | 50.57±0.64 b |
| G60 | 62.45±0.859 ab | 69.87±3.27 a | 59.07±0.53 b | 53.63±0.36 ab |
| G80 | 66.10±0.703 a | 42.42±3.64 b | 82.59±1.04 a | 58.32±0.85 a |
Fig.2 Effects of various fractions of GG22 protein on the expression of immunity-related genes of safflower seedlings under stress conditions A1, A2, A3, and A4 indicate G20, G40, G60 and G80 treatments under high temperature stress, respectively; B1, B2, B3 and B4 indicate G20, G40, G60 and G80 treatments under low-temperature stress, respectively; C1, C2, C3 and C4 indicate the treatment with G20, G40, G60, and G80 under salt stress, respectively.
Fig.4 Qualitative identification of proteomes A, Distribution of apparent relative molecular weight; B, Venn diagram for identification of different fractions of proteins.
| [1] | RICCI M, TILBURY L, DARIDON B, et al. General principles to justify plant biostimulant claims[J]. Frontiers in Plant Science, 2019, 10: 494. |
| [2] | 何思瑶, 万涛, 吴道军. 植物免疫诱抗剂研究进展及在草莓栽培中的应用前景[J]. 现代园艺, 2019(11): 40-42. |
| HE S Y, WAN T, WU D J. Research progress of plant immune elicitor and its application prospect in strawberry cultivation[J]. Xiandai Horticulture, 2019(11): 40-42. (in Chinese with English abstract) | |
| [3] | 刘艾英, 同彦成, 王春利, 等. 植物免疫诱抗剂在葡萄上的使用效果初报[J]. 西北园艺(综合), 2017(3): 53-55. |
| LIU A Y, TONG Y C, WANG C L, et al. Preliminary report on the application effect of plant immune inducer on grapes[J]. Northwest Horticulture, 2017(3): 53-55. (in Chinese) | |
| [4] | 马金慧, 杨克泽, 徐志鹏, 等. 不同植物免疫诱抗剂对玉米茎基腐病菌的抑制效果和田间防效[J]. 农药, 2022, 61(11): 840-844. |
| MA J H, YANG K Z, XU Z P, et al. Antifungal effect and field efficacy of different plant immunoinducagents on corn stalk rot[J]. Agrochemicals, 2022, 61(11): 840-844. (in Chinese with English abstract) | |
| [5] | FERNANDEZ J. The Phantom Menace: latest findings on effector biology in the rice blast fungus[J]. aBIOTECH, 2023, 4(2): 140-154. |
| [6] | HYDE K, SOYTONG K. The fungal endophyte dilemma[J]. Fungal Diversity, 2008, 33: 163-173. |
| [7] | XU D, LI N, GU Y Q, et al. Endophytic fungus Colletotrichum sp. AP12 promotes growth physiology and andrographolide biosynthesis in Andrographis paniculata(Burm. f.) Nees[J]. Frontiers in Plant Science, 2023, 14: 1166803. |
| [8] | MONTESANO M, BRADER G, PALVA E T. Pathogen derived elicitors: searching for receptors in plants[J]. Molecular Plant Pathology, 2003, 4(1): 73-79. |
| [9] | 董礼宾, 余伟杰, 杨亚江, 等. 新型植物免疫激活蛋白维大力(VDAL)在青梗菜上的应用效果[J]. 河北农业科学, 2021, 25(2): 77-82. |
| DONG L B, YU W J, YANG Y J, et al. Application effect of novel plant immune activating protein VDAL on green cabbage[J]. Journal of Hebei Agricultural Sciences, 2021, 25(2): 77-82. (in Chinese with English abstract) | |
| [10] | 张动军, 王香芝, 张付强, 等. 新型植物免疫激活蛋白维大力(VDAL)对小麦抗逆及产量的影响[J]. 农业科技通讯, 2020(10): 86-89. |
| ZHANG D J, WANG X Z, ZHANG F Q, et al. Effects of VDAL, a new plant immunoactivator protein, on stress resistance and yield of wheat[J]. Bulletin of Agricultural Science and Technology, 2020(10): 86-89. (in Chinese) | |
| [11] | 陈勇辉, 叶若松, 龚金荣, 等. 稻瘟菌激活蛋白对荷叶生长及活性成分的影响[J]. 南方农业, 2020, 14(32): 162-164. |
| CHEN Y H, YE R S, GONG J R, et al. Effects of activation protein of Magnaporthe grisea on the growth and active components of Lotus leaves[J]. South China Agriculture, 2020, 14(32): 162-164. (in Chinese) | |
| [12] | 王晓梅, 于金萍, 藏东初, 等. 真菌蛋白的提取及其对玉米病害的抗性诱导[J]. 玉米科学, 2006, 14(6): 138-140. |
| WANG X M, YU J P, ZANG D C, et al. The extraction methods and induced resistance on maize disease of fungi proteins[J]. Journal of Maize Sciences, 2006, 14(6): 138-140. (in Chinese with English abstract) | |
| [13] | 王思文, 杜艳丽, 刘权, 等. 蛋白激发子AMEP提高大豆抗旱性的高通量表型分析[J]. 江苏农业科学, 2022, 50(17): 95-100. |
| WANG S W, DU Y L, LIU Q, et al. High-throughput phenotypic analysis of protein elicitor AMEP enhancing drought tolerance in soybean[J]. Jiangsu Agricultural Sciences, 2022, 50(17): 95-100. (in Chinese with English abstract) | |
| [14] | 陆红霞, 张善学, 郑服丛, 等. 壳寡糖对辣椒炭疽病和寒害的防治效果评价[J]. 中国植保导刊, 2016, 36(11): 28-31. |
| LU H X, ZHANG S X, ZHENG F C, et al. Evaluation on controlling effect of oligo-chitosan on pepper anthracnose and chilling injury[J]. China Plant Protection, 2016, 36(11): 28-31. (in Chinese with English abstract) | |
| [15] | 邓旭, 李清彪, 孙道华, 等. 从大蒜细胞中分离纯化出超氧化物歧化酶[J]. 食品科学, 2001, 22(9): 47-49. |
| DENG X, LI Q B, SUN D H, et al. Study on extraction and purification of SOD from garlic cells[J]. Food Science, 2001, 22(9): 47-49. (in Chinese with English abstract) | |
| [16] | JIANG S F, ZHENG W W, LI Z W, et al. Enhanced resistance to Sclerotinia sclerotiorum in Brassica rapa by activating host immunity through exogenous Verticillium dahliae Aspf2-like protein (vdal) treatment[J]. International Journal of Molecular Sciences, 2022, 23(22): 13958. |
| [17] | PENG D H, QIU D W, RUAN L F, et al. Protein elicitor PemG1 from Magnaporthe grisea induces systemic acquired resistance (SAR) in plants[J]. Molecular Plant-Microbe Interactions, 2011, 24(10): 1239-1246. |
| [18] | BASIT A, FARHAN M, ABBAS M, et al. Do microbial protein elicitors PeaT1 obtained from Alternaria tenuissima and PeBL1 from Brevibacillus laterosporus enhance defense response against tomato aphid (Myzus persicae)[J]. Saudi Journal of Biological Sciences, 2021, 28(6): 3242-3248. |
| [19] | 刘艳潇, 祝一鸣, 周而勋. 植物免疫诱抗剂的作用机理和应用研究进展[J]. 分子植物育种, 2020, 18(3): 1020-1026. |
| LIU Y X, ZHU Y M, ZHOU E X. Research progress on the action mechanism and application of plant immune inducers[J]. Molecular Plant Breeding, 2020, 18(3): 1020-1026. (in Chinese with English abstract) | |
| [20] | KELLERMEIER F, ARMENGAUD P, SEDITAS T J, et al. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals[J]. The Plant Cell, 2014, 26(4): 1480-1496. |
| [21] | CHANG M, CHEN H, LIU F Q, et al. PTI and ETI: convergent pathways with diverse elicitors[J]. Trends in Plant Science, 2022, 27(2): 113-115. |
| [22] | BOLLER T, FELIX G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009, 60: 379-406. |
| [23] | ZHU Y F, SCHLUTTENHOFFER C M, WANG P C, et al. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in Arabidopsis[J]. The Plant Cell, 2014, 26(10): 4149-4170. |
| [24] | VLOT A C, KLESSIG D F, PARK S W. Systemic acquired resistance: the elusive signal(s)[J]. Current Opinion in Plant Biology, 2008, 11(4): 436-442. |
| [25] | AZEVEDO J L D, ARAÚJO W L D. Diversity and applications of endophytic fungi isolated from tropical plants[M]. [S.l.]: [s.n.], 2007. |
| [26] | 刘延锋, 邱德文, 曾洪梅, 等. 极细链格孢菌蛋白激发子Peat1在酵母双杂交系统中转录激活活性检测[J]. 安徽农业科学, 2008, 36(20): 8500-8501. |
| LIU Y F, QIU D W, ZENG H M, et al. Detection for transcriptional activity of Alternaria tenuissim protein elicitor in yeast two-hybrid system[J]. Journal of Anhui Agricultural Sciences, 2008, 36(20): 8500-8501. (in Chinese with English abstract) | |
| [27] | 赵明治, 杨秀芬, 张明, 等. 一种促进植物根系生长的极细链格孢菌蛋白质分离、纯化和生物功能[J]. 中国生物防治, 2007, 23(2): 170-173. |
| ZHAO M Z, YANG X F, ZHANG M, et al. Purification and bioactivities of a protein growth-activator from Alternaria tenuissima[J]. Chinese Journal of Biological Control, 2007, 23(2): 170-173. (in Chinese with English abstract) | |
| [28] | WEI Z M, LABY R J, ZUMOFF C H, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora[J]. Science, 1992, 257(5066): 85-88. |
| [29] | YANG B, WANG Y Y, TIAN M J, et al. Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death[J]. Journal of Integrative Plant Biology, 2021, 63(2): 365-377. |
| [1] | HU Yingjie, DU Chenqi, WANG Liufan, SHOU Jianxin, WANG Chao, XU Mei, YAN Xu. Research progress of vesicle trafficking in plant response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2003-2011. |
| [2] | GUAN Xiusheng, LIU Tieshan, WANG Juan, ZHANG Maolin, LIU Chunxiao, DONG Rui, GUAN Haiying, LIU Qiang, XU Yang, HE Chunmei. Bioinformatics analysis and cloning of NF-YA family genes in maize(Zea mays) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1605-1614. |
| [3] | LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679. |
| [4] | LIU Yan, LIN Tianbao, LYU Zhiqiang. Research progress on the function of galactinol synthase gene family in plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1817-1824. |
| [5] | ZHANG Yueyu, HUANG Meiqi, ZHANG Lin, QI Ying, LI Qiuling. Effects of bta-miR-146b on the signaling pathway of milk protein synthesis in heat-stressed bovine mammary epithelial cells [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1212-1220. |
| [6] | HU Xinrou, WANG Mei, ZHANG Yafen, CAI Weiming, JIN Qunli. Effect of abiotic stress on growth development and response mechanism of Ganoderma [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1182-1190. |
| [7] | HE Guoxin, LI Sujuan, WANG Jian, TAO Xiaoyuan, YE Zihong, CHEN Guang, XU Shengchun. Screening and identification of soybean germplasm for low nitrogen tolerance during seedling stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 965-976. |
| [8] | DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819. |
| [9] | REN Yuanlong, MA Rong, WANG Xiaozhuo, ZHANG Xueyan. Mitigative effect of foliar spraying melatonin on drought stress of cabbage seedlings [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 338-348. |
| [10] | CUI Bowen, ZHANG Siyi, WANG Jialing, WANG Jinghong, LIN Jixiang, YANG Qingjie. Bioinformatics analysis and drought-tolerant gene mining of WRKY family members in Carex siderosticta [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2087-2103. |
| [11] | LIAO Xiaolong, WANG Xingsheng, CHEN Yong, LI Bin, HONG Sidan, MEI Lina, GUO Ying. Identification of the HKT gene family members in Populus species and analysis of their expression patterns under salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2104-2115. |
| [12] | CHEN Yutiao, YAN Chuan, HONG Xiaofu, SONG Jiayu. Effects of submergence at tillering stage on growth characters, yield formation and potassium uptake of japonica inbred rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1990-1999. |
| [13] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
| [14] | OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041. |
| [15] | XU Wenwu, WANG Zhenzhen, LU Lizhi. Analysis on egg-laying performance and stress resistance of four egg duck breeds [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1773-1778. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||