Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 965-976.DOI: 10.3969/j.issn.1004-1524.20240119
• Crop Science • Previous Articles Next Articles
HE Guoxin1,2(), LI Sujuan2(
), WANG Jian3, TAO Xiaoyuan4, YE Zihong1, CHEN Guang3,*(
), XU Shengchun1,2,4,*(
)
Received:
2024-02-01
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
HE Guoxin, LI Sujuan, WANG Jian, TAO Xiaoyuan, YE Zihong, CHEN Guang, XU Shengchun. Screening and identification of soybean germplasm for low nitrogen tolerance during seedling stage[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 965-976.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240119
Fig.1 Phenotypes of different soybean germplasm seedlings under low nitrogen stress A, Landscape of hydroponic growth condition for parts of soybean genotypes; B, Physiological performance of soybean seedlings under low nitrogen stress after 14 days. LN, Low nitrogen condition. CK, Normal growth condition.
性状 Trait | 低氮胁迫条件Low-nitrogen stress conditions | 正常氮条件Normal nitrogen conditions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | |
SL/cm | 10.20 | 79.60 | 34.41 | 9.68 | 28.13 | 12.10 | 80.20 | 36.38 | 10.63 | 29.21 |
SW/(g·plant-1) | 0.03 | 2.76 | 0.80 | 0.37 | 46.82 | 0.04 | 3.92 | 1.07 | 0.55 | 51.38 |
RL/cm | 7.10 | 73.20 | 28.00 | 8.49 | 30.32 | 2.40 | 87.10 | 24.77 | 6.97 | 28.15 |
RW/(g·plant-1) | 0.01 | 2.25 | 0.22 | 0.16 | 73.02 | 0.01 | 1.58 | 0.19 | 0.15 | 78.50 |
RW/SW | 0.02 | 5.92 | 0.32 | 0.34 | 106.79 | 0.01 | 8.06 | 0.22 | 0.30 | 136.79 |
RL/SL | 0.21 | 2.78 | 0.87 | 0.33 | 37.52 | 0.09 | 3.10 | 0.73 | 0.27 | 36.43 |
Phi2_1 | 0.01 | 0.81 | 0.63 | 0.09 | 14.66 | 0.02 | 0.82 | 0.62 | 0.10 | 16.22 |
Phi2_2 | 0.05 | 0.82 | 0.64 | 0.09 | 14.82 | 0.02 | 0.83 | 0.64 | 0.10 | 16.25 |
PhiNPQ_1 | 0.06 | 0.97 | 0.20 | 0.09 | 45.12 | 0.04 | 0.97 | 0.19 | 0.11 | 56.05 |
PhiNPQ_2 | 0.05 | 0.93 | 0.18 | 0.09 | 51.41 | 0.02 | 0.96 | 0.17 | 0.12 | 69.18 |
PhiNO_1 | 0.02 | 0.38 | 0.18 | 0.05 | 26.36 | 0.01 | 0.50 | 0.19 | 0.06 | 29.98 |
PhiNO_2 | 0.02 | 0.45 | 0.18 | 0.04 | 25.34 | 0.02 | 0.42 | 0.19 | 0.06 | 30.79 |
SPAD_1 | 6.53 | 50.05 | 24.72 | 7.34 | 29.70 | 6.53 | 77.80 | 35.99 | 6.47 | 17.98 |
SPAD_2 | 6.53 | 73.86 | 29.39 | 7.48 | 25.45 | 6.53 | 78.25 | 38.91 | 5.81 | 14.95 |
Table 1 Seedling performances of different physiological traits of 557 soybean accessions under low-nitrogen stress and normal nitrogen conditions
性状 Trait | 低氮胁迫条件Low-nitrogen stress conditions | 正常氮条件Normal nitrogen conditions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | |
SL/cm | 10.20 | 79.60 | 34.41 | 9.68 | 28.13 | 12.10 | 80.20 | 36.38 | 10.63 | 29.21 |
SW/(g·plant-1) | 0.03 | 2.76 | 0.80 | 0.37 | 46.82 | 0.04 | 3.92 | 1.07 | 0.55 | 51.38 |
RL/cm | 7.10 | 73.20 | 28.00 | 8.49 | 30.32 | 2.40 | 87.10 | 24.77 | 6.97 | 28.15 |
RW/(g·plant-1) | 0.01 | 2.25 | 0.22 | 0.16 | 73.02 | 0.01 | 1.58 | 0.19 | 0.15 | 78.50 |
RW/SW | 0.02 | 5.92 | 0.32 | 0.34 | 106.79 | 0.01 | 8.06 | 0.22 | 0.30 | 136.79 |
RL/SL | 0.21 | 2.78 | 0.87 | 0.33 | 37.52 | 0.09 | 3.10 | 0.73 | 0.27 | 36.43 |
Phi2_1 | 0.01 | 0.81 | 0.63 | 0.09 | 14.66 | 0.02 | 0.82 | 0.62 | 0.10 | 16.22 |
Phi2_2 | 0.05 | 0.82 | 0.64 | 0.09 | 14.82 | 0.02 | 0.83 | 0.64 | 0.10 | 16.25 |
PhiNPQ_1 | 0.06 | 0.97 | 0.20 | 0.09 | 45.12 | 0.04 | 0.97 | 0.19 | 0.11 | 56.05 |
PhiNPQ_2 | 0.05 | 0.93 | 0.18 | 0.09 | 51.41 | 0.02 | 0.96 | 0.17 | 0.12 | 69.18 |
PhiNO_1 | 0.02 | 0.38 | 0.18 | 0.05 | 26.36 | 0.01 | 0.50 | 0.19 | 0.06 | 29.98 |
PhiNO_2 | 0.02 | 0.45 | 0.18 | 0.04 | 25.34 | 0.02 | 0.42 | 0.19 | 0.06 | 30.79 |
SPAD_1 | 6.53 | 50.05 | 24.72 | 7.34 | 29.70 | 6.53 | 77.80 | 35.99 | 6.47 | 17.98 |
SPAD_2 | 6.53 | 73.86 | 29.39 | 7.48 | 25.45 | 6.53 | 78.25 | 38.91 | 5.81 | 14.95 |
Fig.2 Physiological responses of 557 soybean germplasms to low nitrogen stress A, Biomass-related parameters; B, Photosynthetic parameters; CK, Normal nitrogen condition; LN, Low nitrogen condition. *, **, and *** indicates P<0.05, P<0.01, and P<0.001, respectively. ns, No significant difference between different conditions.
性状 Trait | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | F值 F value | 显著性 Significance |
---|---|---|---|---|---|---|---|
SPAD_1 | 0.21 | 2.03 | 0.70 | 0.20 | 28.82 | <2.2×10-16 | *** |
SPAD_2 | 0.25 | 1.45 | 0.76 | 0.17 | 22.00 | <2.2×10-16 | *** |
SW/(g·plant-1) | 0.25 | 4.10 | 0.84 | 0.42 | 49.48 | <2.2×10-16 | *** |
RL/SL | 0.51 | 3.27 | 1.24 | 0.40 | 32.37 | <2.2×10-16 | *** |
RL/cm | 0.53 | 2.73 | 1.17 | 0.36 | 30.62 | <2.2×10-16 | *** |
PhiNO_2 | 0.44 | 4.81 | 0.98 | 0.35 | 35.60 | <2.2×10-16 | *** |
PhiNO_1 | 0.47 | 8.54 | 0.99 | 0.40 | 40.01 | <2.2×10-16 | *** |
SL/cm | 0.44 | 2.18 | 0.97 | 0.22 | 22.42 | <2.2×10-16 | *** |
RW/SW | 0.13 | 18.33 | 1.93 | 1.65 | 85.15 | <2.2×10-16 | *** |
RW/(g·plant-1) | 0.18 | 15.16 | 1.47 | 1.21 | 82.17 | <2.2×10-16 | *** |
PhiNPQ_2 | 0.13 | 5.51 | 1.24 | 0.65 | 52.51 | 1.32×10-11 | *** |
Phi2_1 | 0.46 | 7.56 | 1.05 | 0.35 | 33.60 | 1.22×10-4 | *** |
PhiNPQ_1 | 0.19 | 4.25 | 1.11 | 0.48 | 43.44 | 0.22 | |
Phi2_2 | 0.46 | 7.89 | 1.04 | 0.41 | 39.11 | 0.87 |
Table 2 Analysis of variance for statistical analysis of nitrogen tolerance indexes in 557 soybean accessions
性状 Trait | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | F值 F value | 显著性 Significance |
---|---|---|---|---|---|---|---|
SPAD_1 | 0.21 | 2.03 | 0.70 | 0.20 | 28.82 | <2.2×10-16 | *** |
SPAD_2 | 0.25 | 1.45 | 0.76 | 0.17 | 22.00 | <2.2×10-16 | *** |
SW/(g·plant-1) | 0.25 | 4.10 | 0.84 | 0.42 | 49.48 | <2.2×10-16 | *** |
RL/SL | 0.51 | 3.27 | 1.24 | 0.40 | 32.37 | <2.2×10-16 | *** |
RL/cm | 0.53 | 2.73 | 1.17 | 0.36 | 30.62 | <2.2×10-16 | *** |
PhiNO_2 | 0.44 | 4.81 | 0.98 | 0.35 | 35.60 | <2.2×10-16 | *** |
PhiNO_1 | 0.47 | 8.54 | 0.99 | 0.40 | 40.01 | <2.2×10-16 | *** |
SL/cm | 0.44 | 2.18 | 0.97 | 0.22 | 22.42 | <2.2×10-16 | *** |
RW/SW | 0.13 | 18.33 | 1.93 | 1.65 | 85.15 | <2.2×10-16 | *** |
RW/(g·plant-1) | 0.18 | 15.16 | 1.47 | 1.21 | 82.17 | <2.2×10-16 | *** |
PhiNPQ_2 | 0.13 | 5.51 | 1.24 | 0.65 | 52.51 | 1.32×10-11 | *** |
Phi2_1 | 0.46 | 7.56 | 1.05 | 0.35 | 33.60 | 1.22×10-4 | *** |
PhiNPQ_1 | 0.19 | 4.25 | 1.11 | 0.48 | 43.44 | 0.22 | |
Phi2_2 | 0.46 | 7.89 | 1.04 | 0.41 | 39.11 | 0.87 |
Fig.3 Correlation and significance analysis of low nitrogen tolerance indexes at soybean seedling stage The correlation analysis (A) and significance analysis (B) of nitrogen tolerance indexes for low nitrogen tolerance related physiological traits. Different colors represent positive (blue) and negative (red) correlations between two traits. The color depth represents the size of the correlation. *, **, and *** indicates P<0.05, P<0.01, and P<0.001, respectively.
性状 Traits | 主成分1 PCA1 | 主成分2 PCA2 | 主成分3 PCA3 | 主成分4 PCA4 | 主成分5 PCA5 |
---|---|---|---|---|---|
SL | -0.21 | 0.31 | 0.74 | -0.04 | 0.34 |
RL | 0.54 | -0.34 | 0.68 | 0.05 | -0.24 |
SW | -0.14 | 0.22 | 0.83 | 0.20 | 0.01 |
RW | 0.08 | 0.20 | 0.12 | 0.91 | 0.07 |
RW/SW | 0.20 | 0.13 | -0.38 | 0.80 | 0.08 |
RL/SL | 0.66 | -0.50 | 0.19 | 0.07 | -0.47 |
Phi2_1 | 0.70 | 0.54 | -0.09 | -0.15 | 0.14 |
PhiNO_1 | 0.71 | 0.51 | -0.02 | -0.23 | 0.17 |
PhiNO_2 | 0.66 | 0.52 | 0.00 | -0.09 | 0.07 |
PhiNPQ_2 | -0.20 | -0.55 | 0.11 | -0.03 | 0.48 |
SPAD_1 | -0.52 | 0.53 | 0.08 | 0.00 | -0.32 |
SPAD_2 | -0.51 | 0.68 | 0.01 | -0.05 | -0.33 |
特征值 Eigenvectors | 2.83 | 2.43 | 1.93 | 1.61 | 0.91 |
贡献率Contribution ratio/% | 23.56 | 20.24 | 16.07 | 13.44 | 7.55 |
累计贡献率Cumulative contribution ratio/% | 23.56 | 43.80 | 59.87 | 73.31 | 80.87 |
Table 3 Principal component analysis of different traits in response to low-nitrogen stress in 557 soybean accessions
性状 Traits | 主成分1 PCA1 | 主成分2 PCA2 | 主成分3 PCA3 | 主成分4 PCA4 | 主成分5 PCA5 |
---|---|---|---|---|---|
SL | -0.21 | 0.31 | 0.74 | -0.04 | 0.34 |
RL | 0.54 | -0.34 | 0.68 | 0.05 | -0.24 |
SW | -0.14 | 0.22 | 0.83 | 0.20 | 0.01 |
RW | 0.08 | 0.20 | 0.12 | 0.91 | 0.07 |
RW/SW | 0.20 | 0.13 | -0.38 | 0.80 | 0.08 |
RL/SL | 0.66 | -0.50 | 0.19 | 0.07 | -0.47 |
Phi2_1 | 0.70 | 0.54 | -0.09 | -0.15 | 0.14 |
PhiNO_1 | 0.71 | 0.51 | -0.02 | -0.23 | 0.17 |
PhiNO_2 | 0.66 | 0.52 | 0.00 | -0.09 | 0.07 |
PhiNPQ_2 | -0.20 | -0.55 | 0.11 | -0.03 | 0.48 |
SPAD_1 | -0.52 | 0.53 | 0.08 | 0.00 | -0.32 |
SPAD_2 | -0.51 | 0.68 | 0.01 | -0.05 | -0.33 |
特征值 Eigenvectors | 2.83 | 2.43 | 1.93 | 1.61 | 0.91 |
贡献率Contribution ratio/% | 23.56 | 20.24 | 16.07 | 13.44 | 7.55 |
累计贡献率Cumulative contribution ratio/% | 23.56 | 43.80 | 59.87 | 73.31 | 80.87 |
Fig.4 Principal component analysis of low nitrogen tolerance related physiological traits at soybean seedling stage The distribution of the low nitrogen tolerance related physiological traits on principal component 1 and principal component 2 (A), and principal component 2 and principal component 3 (B). The blue shadow and dots represent the domestic germplasms. The yellow shadows and dots represent the germplasms that come from foreign. And the grey dots represent the germplasm of unknown origin. The arrows represent the contributions of physiological traits in different principal components. The contribution rate increases from blue to green.
种质 Germplasm | D值 D value | 低氮耐性评价 Low nitrogen tolerance evaluation | 种质类型 Germplasm type |
---|---|---|---|
石豆2号 Shidou 2 | 0.84 | 耐低氮Tolerant to low nitrogen | 国内资源Domestic resources |
YJ002313 | 0.77 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
AMURSKAYA 402 | 0.74 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
RENTA | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
GARAVTT | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀HJ116 Yi HJ116 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
WDD02788 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀豆11 Yidou 11 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
潍豆7号 Weidou 7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
P73-7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
克c14-705 Ke c14-705 | 0.24 | 低氮敏感Sensitive to low nitrogen | 未知Unknown |
中野1号 Zhongye 1 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
97鉴2 397 Jian 23 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
皮黑豆 Piheidou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
永城大籽绿豆 Yongchengdazilvdou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
OKSKAY-1 | 0.23 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
KG-20 | 0.22 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
WDD02945 | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
OAC OXFord | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
99nf40 | 0.15 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
Table 4 The screen of low nitrogen tolerance and sensitive germplasms using principal component comprehensive evaluation method
种质 Germplasm | D值 D value | 低氮耐性评价 Low nitrogen tolerance evaluation | 种质类型 Germplasm type |
---|---|---|---|
石豆2号 Shidou 2 | 0.84 | 耐低氮Tolerant to low nitrogen | 国内资源Domestic resources |
YJ002313 | 0.77 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
AMURSKAYA 402 | 0.74 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
RENTA | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
GARAVTT | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀HJ116 Yi HJ116 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
WDD02788 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀豆11 Yidou 11 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
潍豆7号 Weidou 7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
P73-7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
克c14-705 Ke c14-705 | 0.24 | 低氮敏感Sensitive to low nitrogen | 未知Unknown |
中野1号 Zhongye 1 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
97鉴2 397 Jian 23 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
皮黑豆 Piheidou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
永城大籽绿豆 Yongchengdazilvdou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
OKSKAY-1 | 0.23 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
KG-20 | 0.22 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
WDD02945 | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
OAC OXFord | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
99nf40 | 0.15 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
指标Index | 估计值Estimate | 标准误差Standard error | t值t value | P值 P value | 显著性Significance |
---|---|---|---|---|---|
截距 Intercept | 0.39 | 0.03 | 15.32 | <2×10-16 | *** |
RL | -0.06 | 0.02 | -3.59 | <0.001 | *** |
RW | -0.01 | 0 | -3.62 | <0.001 | *** |
RL/SL | 0.15 | 0.02 | 9.17 | <2×10-16 | *** |
PhiNPQ_2 | -0.02 | 0.01 | -3.76 | <0.001 | *** |
SPAD_1 | 0.04 | 0.02 | 1.79 | 0.07 |
Table 5 Linear regression analysis
指标Index | 估计值Estimate | 标准误差Standard error | t值t value | P值 P value | 显著性Significance |
---|---|---|---|---|---|
截距 Intercept | 0.39 | 0.03 | 15.32 | <2×10-16 | *** |
RL | -0.06 | 0.02 | -3.59 | <0.001 | *** |
RW | -0.01 | 0 | -3.62 | <0.001 | *** |
RL/SL | 0.15 | 0.02 | 9.17 | <2×10-16 | *** |
PhiNPQ_2 | -0.02 | 0.01 | -3.76 | <0.001 | *** |
SPAD_1 | 0.04 | 0.02 | 1.79 | 0.07 |
[1] | DA SILVA M A G, MUNIZ A S, MANNIGEL A R, et al. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield[J]. Brazilian Archives of Biology and Technology, 2011, 54(4): 665-674. |
[2] | ZHOU H L, YAO X D, ZHAO Q, et al. Rapid effect of nitrogen supply for soybean at the beginning flowering stage on biomass and sucrose metabolism[J]. Scientific Reports, 2019, 9(1): 15530. |
[3] | YAN X Y, XIA L L, TI C P. Temporal and spatial variations in nitrogen use efficiency of crop production in China[J]. Environmental Pollution, 2022, 293: 118496. |
[4] | 仇宏伟, 栾江, 孔祥永, 等. 我国农业生产中的氮肥利用效率分析[J]. 青岛农业大学学报(自然科学版), 2014, 31(4): 277-283. |
QIU H W, LUAN J, KONG X Y, et al. Estimation of nitrogen utilization efficiency in China' agricultural production[J]. Journal of Qingdao Agricultural University(Natural Science), 2014, 31(4): 277-283. (in Chinese with English abstract) | |
[5] | QUAN Z, LI S L, ZHANG X, et al. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies[J]. Soil and Tillage Research, 2020, 197: 104498. |
[6] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046. |
[7] | XIA L L, TI C P, LI B L, et al. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential[J]. Science of the Total Environment, 2016, 556: 116-125. |
[8] | 张庆乐, 王浩, 张丽青, 等. 饮水中硝态氮污染对人体健康的影响[J]. 地下水, 2008, 30(1): 57-59. |
ZHANG Q L, WANG H, ZHANG L Q, et al. Influence on nitrate nitrogen pollution to health in the drinkable water[J]. Ground Water, 2008, 30(1): 57-59. (in Chinese with English abstract) | |
[9] | 李明霞, 周际, 胡勇军, 等. 低氮胁迫下栽培大豆和野大豆幼苗适应性转录组学比较研究[J]. 东北师大学报(自然科学版), 2023, 55(2): 116-125. |
LI M X, ZHOU J, HU Y J, et al. Comparative study on the adaptable transcriptomics of cultivated and wild soybean seedling under low nitrogen stress[J]. Journal of Northeast Normal University(Natural Science Edition), 2023, 55(2): 116-125. (in Chinese with English abstract) | |
[10] | 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析[J]. 中国农业科学, 2016, 49(12): 2267-2279. |
XIONG S P, WU K Y, WANG X C, et al. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency[J]. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279. (in Chinese with English abstract) | |
[11] | HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1): 1-18. |
[12] | CÓRDOVA S C, CASTELLANO M J, DIETZEL R, et al. Soybean nitrogen fixation dynamics in Iowa, USA[J]. Field Crops Research, 2019, 236: 165-176. |
[13] | 孙浩楠, 曹霞, 朱贵爽, 等. 耐低氮大豆资源的苗期筛选与评价[J]. 大豆科学, 2023, 42(5): 545-553. |
SUN H N, CAO X, ZHU G S, et al. Screening and evaluation of low nitrogen tolerant soybean resources at seedling stage[J]. Soybean Science, 2023, 42(5): 545-553. (in Chinese with English abstract) | |
[14] | QIU L J, XING L L, GUO Y, et al. A platform for soybean molecular breeding: the utilization of core collections for food security[J]. Plant Molecular Biology, 2013, 83(1/2): 41-50. |
[15] | 翟荣荣, 余鹏, 叶胜海, 等. 浙江省晚粳稻耐低氮品种的筛选和评价[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 565-572. |
ZHAI R R, YU P, YE S H, et al. Screening and comprehensive evaluation of low nitrogen tolerance of Zhejiang photosensitive japonicarice cultivars[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2016, 42(5): 565-572. (in Chinese with English abstract) | |
[16] | 李俊杰, 杜蒲芳, 石婷瑞, 等. 不同基因型小麦苗期耐低氮性评价及筛选[J]. 中国农业科技导报, 2021, 23(7): 21-32. |
LI J J, DU P F, SHI T R, et al. Screening and evaluation of low nitrogen tolerance from different genotypes wheat at seedling stage[J]. Journal of Agricultural Science and Technology, 2021, 23(7): 21-32. (in Chinese with English abstract) | |
[17] | 姜琪, 陈志伟, 刘成洪, 等. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究[J]. 华北农学报, 2019, 34(1): 148-155. |
JIANG Q, CHEN Z W, LIU C H, et al. Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155. (in Chinese with English abstract) | |
[18] | LIU C J, GONG X W, WANG H L, et al. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling[J]. Plant Physiology and Biochemistry, 2020, 151: 233-242. |
[19] | 远月丽, 易媛媛, 战勇, 等. 大豆氮高效种质苗期筛选与鉴定[J]. 中国油料作物学报, 2022, 44(3): 539-547. |
YUAN Y L, YI Y Y, ZHAN Y, et al. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 539-547. (in Chinese with English abstract) | |
[20] | 刘芯欣, 侯云龙, 杜楠琳, 等. 大豆耐低氮资源的苗期鉴定与筛选[J]. 植物遗传资源学报, 2023, 24(2): 408-418. |
LIU X X, HOU Y L, DU N L, et al. Identification and screening of soybean resources tolerant to low nitrogen by seedling assay[J]. Journal of Plant Genetic Resources, 2023, 24(2): 408-418. (in Chinese with English abstract) | |
[21] | 贵会平, 董强, 张恒恒, 等. 棉花苗期耐低氮基因型初步筛选[J]. 棉花学报, 2018, 30(4): 326-337. |
GUI H P, DONG Q, ZHANG H H, et al. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage[J]. Cotton Science, 2018, 30(4): 326-337. (in Chinese with English abstract) | |
[22] | 陈家辉. 水稻氮高效及耐低氮种质资源筛选与评价[D]. 哈尔滨: 东北农业大学, 2022. |
CHEN J H. Screening and evaluation of rice germplasm resources with high nitrogen efficiency and low nitrogen tolerance[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese with English abstract) | |
[23] | SZIRA F, BÁLINT A F, BÖRNER A, et al. Evaluation of drought-related traits and screening methods at different developmental stages in spring barley[J]. Journal of Agronomy and Crop Science, 2008, 194(5): 334-342. |
[24] | 杨丽娜. 西藏野生大麦与栽培大麦氮利用效率的基因型差异研究[D]. 杭州: 浙江大学, 2014. |
YANG L N. Genotypic differences of nitrogen use efficiency between wild barley and cultivated barley in Tibet[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract) | |
[25] | 黄小辉, 吴焦焦, 王玉书, 等. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 119-126. |
HUANG X H, WU J J, WANG Y S, et al. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(2): 119-126. (in Chinese with English abstract) | |
[26] | PARK S, FISCHER A L, STEEN C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(38): 11965-11973. |
[27] | WANG Y, JIN W W, CHE Y H, et al. Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy[J]. Forests, 2019, 10(4): 312. |
[28] | GRUBER B D, GIEHL R F H, FRIEDEL S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiology, 2013, 163(1): 161-179. |
[29] | ZHANG L, YU Z P, XU Y, et al. Regulation of the stability and ABA import activity of NRT1.2/NPF4.6 by CEPR2-mediated phosphorylation in Arabidopsis[J]. Molecular Plant, 2021, 14(4): 633-646. |
[30] | XUAN W, BEECKMAN T, XU G H. Plant nitrogen nutrition: sensing and signaling[J]. Current Opinion in Plant Biology, 2017, 39: 57-65. |
[31] | LIU W W, SUN Q, WANG K, et al. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis[J]. New Phytologist, 2017, 214(2): 734-744. |
[32] | REMANS T, NACRY P, PERVENT M, et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19206-19211. |
[33] | LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2): 230-241. |
[34] | XIN W, ZHANG L N, GAO J P, et al. Adaptation mechanism of roots to low and high nitrogen revealed by proteomic analysis[J]. Rice, 2021, 14(1): 5. |
[35] | PENG W T, QI W L, NIE M M, et al. Magnesium supports nitrogen uptake through regulating NRT2.1/2.2 in soybean[J]. Plant and Soil, 2020, 457(1): 97-111. |
[36] | MA R, YANG S, LIU Y H, et al. An R2R3-MYB transcription factor CmMYB42 improves low-nitrogen stress tolerance in Chrysanthemum[J]. Journal of Plant Growth Regulation, 2023, 42(9): 5600-5614. |
[1] | XU Zhuwei, LEI Jun, SHAO Xiaowei, CHEN Runxing, JIANG Huan, WANG Shougen, YU Wenhui. Evaluation of Quzhou fresh soybean oligosaccharide germplasm resources based on analytic hierarchy process and fuzzy comprehensive evaluation method [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 754-766. |
[2] | TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479. |
[3] | OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041. |
[4] | SUN Xiujuan, XU Weihui, WANG Zhigang. Isolation and identification of endophytic bacteria from soybean nodule and their effects on soybean plant [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1532-1541. |
[5] | BU Yuanpeng, LIU Na, ZHANG Guwen, FENG Zhijuan, WANG Bin, GONG Yaming, XU Linying. Diversity evaluation of agronomic traits and construction of core collection and taste quality evaluation system in vegetable soybean germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1307-1314. |
[6] | YANG Songhua, SHI Guiyang, WANG Jingqin, CHEN Zhu. Effects of soybean root exudates on insoluble phosphorus in soil under low phosphorus stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1396-1406. |
[7] | TAN Shuxia, ZHAO Taodi, YANG Hao, NING Kejun, LIU Li, HE Qingyuan, HUANG Shoucheng, SHU Yingjie. Effects of shading on agronomic characters, yield and nitrogen metabolism of 10 vegetable soybean varieties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 729-735. |
[8] | ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961. |
[9] | LIU Yue, XU Weihui, WANG Zhigang. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2775-2784. |
[10] | TAN Yunfeng, CHEN Lin, HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong. Design and experiment of longitudinal-axial flow flexible bent-tooth soybean thresher [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2954-2965. |
[11] | LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132. |
[12] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[13] | LIU Na, FAN Qiaochu, ZHOU Jia, SONG Yajing, ZHANG Guwen, FENG Zhijuan, BO Yuanpeng, WANG Bin, GONG Yaming. Identification and control of anthracnose in vegetable soybean [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2682-2688. |
[14] | HE Xiu, XU Meiyu, XIN Weigang, ZHANG Qilin, WANG Feng, LIN Lianbing. Effects of soybean meal addition and fermentation time on nutritional quality and bacterial diversity of Pennisetum purpureum silage [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2160-2171. |
[15] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||