Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 977-986.DOI: 10.3969/j.issn.1004-1524.20240204
• Crop Science • Previous Articles Next Articles
WANG Wenqi(), WANG Panpan, ZHANG Yanling, LIU Qingqing, HONG Shuangshuang, ZHAO Gaopeng, LIU Hongchang, WANG Cuiling(
)
Received:
2024-03-04
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
WANG Wenqi, WANG Panpan, ZHANG Yanling, LIU Qingqing, HONG Shuangshuang, ZHAO Gaopeng, LIU Hongchang, WANG Cuiling. Screening of proteins interacting with circadian clock gene ZmPRR1-2 in maize[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 977-986.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240204
Fig.1 Construction and enzyme digestion of yeast bait vector Containing ZmPRR1-2 M, 1 kb DNA marker; A, bait vector pGBKT7-ZmPRR1-2; B, Verification of bait vector pGBKT7-ZmPRR1-2 by enzyme digestion.
Fig.2 Analysis of self-activation and toxicity of bait vector A, Analysis of self-activation of bait vector pGBKT7-ZmPRR1-2; B, Analysis of toxicity of bait vector pGBKT7-ZmPRR1-2.
基因名称 Gene name | 编码蛋白质 Coding protein | 染色体号码 Chr.No. | CDS长度 CDS length/bp | 氨基酸个数 Number of amino acid | 生物进程 Biological process | 分子功能 Molecular function | 亚细胞定位 Subcellular location | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZmAASR2 | 脱落酸胁迫 成熟2 Abscisic acid stress ripening2 | 2 | 396 | 132 | 转录调控,DNA 模板化 Regulation of transcription, DNA-templated 抗氧化反应 Response to oxidative stress 水缺乏响应 Response to water deprivation 铝离子响应 Response to aluminum ion | 序列特异性 DNA结合 Sequence-specific DNA binding | 细胞核 Nucleolus 细胞质 Cytoplasm | ||||||
ZmPET7 | 光系统Ⅰ反应 中心亚基Ⅱ Photosystem Ⅰ reaction center subunit Ⅱ | 1 | 600 | 200 | 光合作用 Photosynthesis | 未知 Unknown | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmUCC3 | Uclacyanin-3 | 10 | 510 | 170 | 电子传递链 Electron transport chain | 电子传递活性 Electron transfer activity DNA结合 DNA binding | 膜 Membrane | ||||||
ZmPSPB1 | 光系统Ⅱ出氧系统 的23 ku 亚基 23 ku subunit of oxygen evolving system of photosystem Ⅱ | 2 | 777 | 259 | 光合作用 Photosynthesis | 钙离子结合 Calcium ion binding 2-烯醛还原酶 [NAD(P)+]活性 2-Alkenal reductase [NAD(P)+] activity | 叶绿体 Chloroplast | ||||||
ZmLHCB2 | 叶绿素a-b结合 蛋白 Chlorophyll a-b binding protein | 7 | 789 | 263 | 光合作用,光收集 Photosynthesis, light harvesting | 叶绿素结合 Chlorophyll binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmRUM1 | 生长素响应蛋白 Auxin- responsive protein | 3 | 363 | 121 | 生长素激活信号通路 Auxin-activated signaling pathway DNA 模板转录的调控 Regulation of DNA- templated transcription | 未知 Unknown | 细胞核 Nucleolus | ||||||
ZmTSAH1 | 色氨酸合成酶 Tryptophan synthase | 1 | 1 020 | 340 | 色氨酸生物合成过程 Tryptophan biosynthetic process | 色氨酸合成酶活性 Tryptophan synthase activity 吲哚-3-甘油-磷酸 裂解酶活性 Indole-3-glycerol- phosphate lyase activity | 叶绿体 Chloroplast 胞液 Cytosol | ||||||
ZmNH4 | nudix 水解酶 Nudix hydrolase 4 | 9 | 435 | 145 | 未知 Unknown | 无机焦磷酸酶活性 Pyrophosphatase activity 水解酶活性 Hydrolase activity 金属离子结合 Metal ion binding | 细胞质 Cytoplasm 细胞核 Nucleolus | ||||||
ZmCL187-21A | 60S核糖体 蛋白L13 60S ribosomal protein L13 | 3 | 627 | 209 | 翻译 Translation | RNA结合 RNA binding 核糖体的结构成分 Structural constituent of ribosome | 细胞质大 核糖体 亚基 Cytosolic large ribosomal subunit | ||||||
ZmCCP2 | 半胱氨酸蛋白酶 Cysteine proteinase 2 | 7 | 1 083 | 361 | 免疫反应 Immune response 凋亡信号通路的正向调节 Positive regulation of apoptotic signaling pathway 参与蛋白质分解代谢 过程的蛋白质水解 Proteolysis involved in protein catabolic process | 半胱氨酸型内 肽酶活性 Cysteine-type endopeptidase activity 苯丙氨酸转氨 酶活性 Lyase activity | 细胞外 间隙 Extracellular space 溶酶体 Lysosome | ||||||
ZmCSU27 | 紫外线-B-抑制 蛋白 Ultraviolet-B- repressible protein | 7 | 369 | 123 | 光合作用 Photosynthesis | 蛋白质结构域特 异性结合 Protein domain specific binding | 细胞膜 Cytomembrane 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmNDF4 | 电子载体/电子传 递体/铁离子结合 蛋白 Electron carrier/ electron transporter/ iron ion binding protein | 7 | 576 | 192 | 电子传递链 Electron transport chain 含P450的电子传递链 P450-containing electron transport chain 光系统Ⅰ中的光合 电子传递 Photosynthetic electron transport in photosystem Ⅰ | 2个铁原子, 2个硫原子簇结合 2 Iron, 2 sulfur cluster binding 电子传递活性 Electron transfer activity 金属离子结合 Metal ion binding 铁硫团簇结合 Iron-sulfur cluster binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane 胞液 Cytosol |
Table 1 Interacting proteins of ZmPRR1-2 screened by yeast two-hybrid system and their description
基因名称 Gene name | 编码蛋白质 Coding protein | 染色体号码 Chr.No. | CDS长度 CDS length/bp | 氨基酸个数 Number of amino acid | 生物进程 Biological process | 分子功能 Molecular function | 亚细胞定位 Subcellular location | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZmAASR2 | 脱落酸胁迫 成熟2 Abscisic acid stress ripening2 | 2 | 396 | 132 | 转录调控,DNA 模板化 Regulation of transcription, DNA-templated 抗氧化反应 Response to oxidative stress 水缺乏响应 Response to water deprivation 铝离子响应 Response to aluminum ion | 序列特异性 DNA结合 Sequence-specific DNA binding | 细胞核 Nucleolus 细胞质 Cytoplasm | ||||||
ZmPET7 | 光系统Ⅰ反应 中心亚基Ⅱ Photosystem Ⅰ reaction center subunit Ⅱ | 1 | 600 | 200 | 光合作用 Photosynthesis | 未知 Unknown | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmUCC3 | Uclacyanin-3 | 10 | 510 | 170 | 电子传递链 Electron transport chain | 电子传递活性 Electron transfer activity DNA结合 DNA binding | 膜 Membrane | ||||||
ZmPSPB1 | 光系统Ⅱ出氧系统 的23 ku 亚基 23 ku subunit of oxygen evolving system of photosystem Ⅱ | 2 | 777 | 259 | 光合作用 Photosynthesis | 钙离子结合 Calcium ion binding 2-烯醛还原酶 [NAD(P)+]活性 2-Alkenal reductase [NAD(P)+] activity | 叶绿体 Chloroplast | ||||||
ZmLHCB2 | 叶绿素a-b结合 蛋白 Chlorophyll a-b binding protein | 7 | 789 | 263 | 光合作用,光收集 Photosynthesis, light harvesting | 叶绿素结合 Chlorophyll binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmRUM1 | 生长素响应蛋白 Auxin- responsive protein | 3 | 363 | 121 | 生长素激活信号通路 Auxin-activated signaling pathway DNA 模板转录的调控 Regulation of DNA- templated transcription | 未知 Unknown | 细胞核 Nucleolus | ||||||
ZmTSAH1 | 色氨酸合成酶 Tryptophan synthase | 1 | 1 020 | 340 | 色氨酸生物合成过程 Tryptophan biosynthetic process | 色氨酸合成酶活性 Tryptophan synthase activity 吲哚-3-甘油-磷酸 裂解酶活性 Indole-3-glycerol- phosphate lyase activity | 叶绿体 Chloroplast 胞液 Cytosol | ||||||
ZmNH4 | nudix 水解酶 Nudix hydrolase 4 | 9 | 435 | 145 | 未知 Unknown | 无机焦磷酸酶活性 Pyrophosphatase activity 水解酶活性 Hydrolase activity 金属离子结合 Metal ion binding | 细胞质 Cytoplasm 细胞核 Nucleolus | ||||||
ZmCL187-21A | 60S核糖体 蛋白L13 60S ribosomal protein L13 | 3 | 627 | 209 | 翻译 Translation | RNA结合 RNA binding 核糖体的结构成分 Structural constituent of ribosome | 细胞质大 核糖体 亚基 Cytosolic large ribosomal subunit | ||||||
ZmCCP2 | 半胱氨酸蛋白酶 Cysteine proteinase 2 | 7 | 1 083 | 361 | 免疫反应 Immune response 凋亡信号通路的正向调节 Positive regulation of apoptotic signaling pathway 参与蛋白质分解代谢 过程的蛋白质水解 Proteolysis involved in protein catabolic process | 半胱氨酸型内 肽酶活性 Cysteine-type endopeptidase activity 苯丙氨酸转氨 酶活性 Lyase activity | 细胞外 间隙 Extracellular space 溶酶体 Lysosome | ||||||
ZmCSU27 | 紫外线-B-抑制 蛋白 Ultraviolet-B- repressible protein | 7 | 369 | 123 | 光合作用 Photosynthesis | 蛋白质结构域特 异性结合 Protein domain specific binding | 细胞膜 Cytomembrane 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmNDF4 | 电子载体/电子传 递体/铁离子结合 蛋白 Electron carrier/ electron transporter/ iron ion binding protein | 7 | 576 | 192 | 电子传递链 Electron transport chain 含P450的电子传递链 P450-containing electron transport chain 光系统Ⅰ中的光合 电子传递 Photosynthetic electron transport in photosystem Ⅰ | 2个铁原子, 2个硫原子簇结合 2 Iron, 2 sulfur cluster binding 电子传递活性 Electron transfer activity 金属离子结合 Metal ion binding 铁硫团簇结合 Iron-sulfur cluster binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane 胞液 Cytosol |
[1] | 关淑艳, 张洪琳, 蒋振忠, 等. 光受体和赤霉素对植物开花协同作用的研究进展[J]. 吉林农业大学学报, 2023, 45(2): 127-136. |
GUAN S Y, ZHANG H L, JIANG Z Z, et al. Research progress of synergistic effect of photoreceptor and gibberellin on plant flowering[J]. Journal of Jilin Agricultural University, 2023, 45(2): 127-136. (in Chinese with English abstract) | |
[2] | POSTMA F M, LUNDEMO S, ÅGREN J. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana[J]. Annals of Botany, 2016, 117(2): 249-256. |
[3] | IMAIZUMI T. Arabidopsis circadian clock and photoperiodism: time to think about location[J]. Current Opinion in Plant Biology, 2010, 13(1): 83-89. |
[4] | 史勇, 金维环, 任真真, 等. 玉米光周期敏感调节机制的研究进展[J]. 玉米科学, 2021, 29(1): 92-96. |
SHI Y, JIN W H, REN Z Z, et al. Research advances in regulation mechanism of photoperiod sensitivity in maize[J]. Journal of Maize Sciences, 2021, 29(1): 92-96. (in Chinese with English abstract) | |
[5] | 史勇, 郭莎, 董世凤, 等. 拟南芥生物节律调节基因CCA1/LHY的研究进展[J]. 分子植物育种, 2020, 18(21): 7080-7087. |
SHI Y, GUO S, DONG S F, et al. Research advances in circadian rhythm regulation genes CCA1/LHY in Arabidopsis[J]. Molecular Plant Breeding, 2020, 18(21): 7080-7087. (in Chinese with English abstract) | |
[6] | MILLAR A J. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution[J]. Annual Review of Plant Biology, 2016, 67: 595-618. |
[7] | BAUDRY A, ITO S, SONG Y H, et al. F-box proteins FKF1 and LKP2 act in concert with zeitlupe to control Arabidopsis clock progression[J]. The Plant Cell, 2010, 22(3): 606-622. |
[8] | KAMIOKA M, TAKAO S, SUZUKI T, et al. Direct repression of evening genes by circadian clock-associated1 in the Arabidopsis circadian clock[J]. The Plant Cell, 2016, 28(3): 696-711. |
[9] | GAO H, JIN M N, ZHENG X M, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16337-16342. |
[10] | WANG L, KIM J, SOMERS D E. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 761-766. |
[11] | SOY J, LEIVAR P, GONZÁLEZ-SCHAIN N, et al. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(17): 4870-4875. |
[12] | WU L J, TIAN L, WANG S X, et al. Comparative proteomic analysis of the response of maize (Zea mays L.) leaves to long photoperiod condition[J]. Frontiers in Plant Science, 2016, 7: 752. |
[13] | GENDRON J M, PRUNEDA-PAZ J L, DOHERTY C J, et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 3167-3172. |
[14] | KEILY J, MACGREGOR D R, SMITH R W, et al. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock[J]. The Plant Journal, 2013, 76(2): 247-257. |
[15] | ZHU J Y, OH E, WANG T N, et al. TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis[J]. Nature Communications, 2016, 7: 13692. |
[16] | SYED N H, PRINCE S J, MUTAVA R N, et al. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean[J]. Journal of Experimental Botany, 2015, 66(22): 7129-7149. |
[17] | YAN J P, LI S B, KIM Y J, et al. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth[J]. The EMBO Journal, 2021, 40(24): 1-23. |
[18] | LIU Y, MA M D, LI G, et al. Transcription factors FHY3 and FAR1 regulate light-induced circadian clock associated1 gene expression in Arabidopsis[J]. The Plant Cell, 2020, 32(5): 1464-1478. |
[19] | 董柯清, 王雷立, 刘青青, 等. 玉米生物钟基因ZmPRR1-2的克隆及表达分析[J]. 西北植物学报, 2023, 43(1): 21-28. |
DONG K Q, WANG L L, LIU Q Q, et al. Cloning and expression analysis of circadian gene ZmPRR1-2 in maize[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(1): 21-28. (in Chinese with English abstract) | |
[20] | 盛慧, 陈姗姗, 艾聪聪, 等. 利用酵母双杂交技术筛选卵菌效应因子互作蛋白概述[J]. 山东农业大学学报(自然科学版), 2019, 50(3): 357-360. |
SHENG H, CHEN S S, AI C C, et al. A review of interaction proteins of oomycete effectors screened by yeast two hybrid system[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2019, 50(3): 357-360. (in Chinese with English abstract) | |
[21] | 胡晓, 侯旭, 袁雪, 等. ARF和Aux/IAA调控果实发育成熟机制研究进展[J]. 生物技术通报, 2017, 33(12): 37-44. |
HU X, HOU X, YUAN X, et al. Research progress on mechanism of ARF and aux/IAA regulating fruit development and ripening[J]. Biotechnology Bulletin, 2017, 33(12): 37-44. (in Chinese with English abstract) | |
[22] | WANG Y J, DENG D X, BIAN Y L, et al. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.)[J]. Molecular Biology Reports, 2010, 37(8): 3991-4001. |
[23] | ZHANG Y X, PASCHOLD A, MARCON C, et al. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots[J]. Journal of Experimental Botany, 2014, 65(17): 4919-4930. |
[24] | RAMOS BÁEZ R, BUCKLEY Y, YU H, et al. A synthetic approach allows rapid characterization of the maize nuclear auxin response circuit[J]. Plant Physiology, 2020, 182(4): 1713-1722. |
[25] | MASHIGUCHI K, TANAKA K, SAKAI T, et al. The main auxin biosynthesis pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18512-18517. |
[26] | PIÑERO-FERNANDEZ S, CHIMEREL C, KEYSER U F, et al. Indole transport across Escherichia coli membranes[J]. Journal of Bacteriology, 2011, 193(8): 1793-1798. |
[27] | GROSZYK J, KOWALCZYK M, YANUSHEVSKA Y, et al. Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.)[J]. PLoS One, 2017, 12(2): 1-21. |
[28] | ERB M, VEYRAT N, ROBERT C A M, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J]. Nature Communications, 2015, 6: 6273. |
[29] | TZIN V, HOJO Y, STRICKLER S R, et al. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding[J]. Journal of Experimental Botany, 2017, 68(16): 4709-4723. |
[30] | SHIRAKU M L, MAGWANGA R O, CAI X Y, et al. Knockdown of 60S ribosomal protein L14-2 reveals their potential regulatory roles to enhance drought and salt tolerance in cotton[J]. Journal of Cotton Research, 2021, 4(1): 27. |
[1] | LI Qingchao, YANG Shan, ZHANG Dengfeng, LIU Jianxin, SUN Kaili, WU Xun. Phenotypic diversity of ear traits in 487 maize landraces [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1481-1491. |
[2] | YU Huan, LI Hui, CHEN Youbo, SHI Yushi, ZHAO Depeng, LONG Xia, TAN Qisong. Screening and functional analysis of proteins interacting with chicken adenylosuccinate lyase [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 515-526. |
[3] | ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31. |
[4] | LENG Yifeng, LUO Fan, CHEN Congshun, DING Xin, CAI Guangze. Phylogenetic relationship and genetic differentiation of maize landraces revealed by genome-wide SNP developed by genotyping-by-sequencing in Daliangshan Mountain area, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 32-47. |
[5] | LEI Lian. Effects of regulated deficit drip irrigation under film on plant growth, yield and water use of seed-producing maize [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1542-1549. |
[6] | WANG Ningke, ZHANG Rui, ZHANG Shengyong. Effects of mechanization service degree and farmland operation scale on maize production efficiency [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 698-707. |
[7] | ZHENG Ran, LYU Dan, WU Qinggui, DI Xiaohong, ZHU Tongtong, QIU Guanjie, LUO Hongbing. Analysis of biological, physiological and biochemical mechanism of abortion of C-type cytoplasmic male sterile line S37-2 in maize [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 259-265. |
[8] | YU Bo, WANG Yuyan, REN Qin, DANG Yulei, ZHANG Zhipeng, WANG Yu. Effects of straw returning on soil structure and spring maize growth [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2446-2455. |
[9] | MENG Fanhao, YANG Hengshan, ZHANG Ruifu, ZHANG Yuqin, LI Weimin, ZHANG Yushan, ZHANG Mingwei. Effects of irrigation methods on yield and water and nitrogen utilization efficiency of spring maize in Xiliaohe Plain, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1826-1836. |
[10] | HU Kaibo, YANG Qingxia, LI Yang, WU Kaixian, ZHAO Ping, LONG Guangqiang. Effect of application of amino acid fertilizer on spring maize cultivation under nitrogen reduction [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 661-670. |
[11] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[12] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
[13] | YUAN Chongyuan, ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao. Identification of the interaction between ZmNLP5 and promoters of ZmSTP1, ZmAAP2 gene in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2340-2347. |
[14] | GAO Xin, YANG Hengshan, ZHANG Ruifu, ZHANG Yuqin, LI Rui, ZHANG Mingwei. Difference analysis on seed yield and root cap characteristics for spring maize under water fertilizer and high yield optimization of shallow burying drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 1-9. |
[15] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||