Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (1): 79-88.DOI: 10.3969/j.issn.1004-1524.2022.01.10
• Horticultural Science • Previous Articles Next Articles
ZHOU Beining(), MAO Lian, HUA Zhuangzhuang, LU Jianguo*(
)
Received:
2020-09-06
Online:
2022-01-25
Published:
2022-02-05
Contact:
LU Jianguo
CLC Number:
ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 79-88.
Fig.1 Effect of alkaline salt stress on relative height growth and diameter growth of Sinocalycanthus chinensis The bars with different lowercase letters indicated significant differences (P<0.05). The same as below.
NaHCO3浓度 NaHCO3 concentration/% | 根重 Root weight/g | 茎重 Stem weight/g | 叶重 Leaf weight/g | 根冠比 Root shoot ratio | 总干重 Total dry weight/g |
---|---|---|---|---|---|
0 | 6.744 0 a | 9.342 7 a | 7.440 0 a | 0.406 7 a | 23.526 7 a |
0.1 | 4.764 0 b | 9.086 7 a | 5.990 7 ab | 0.317 7 ab | 19.841 3 b |
0.2 | 4.922 3 b | 8.084 0 ab | 5.284 3 abc | 0.376 3 ab | 18.290 7 b |
0.3 | 5.271 7 b | 9.326 0 a | 5.398 7 abc | 0.366 3 ab | 19.996 3 b |
0.4 | 4.182 7 b | 7.178 3 bc | 3.855 7 bcd | 0.383 3 ab | 15.216 7 c |
0.5 | 2.473 7 c | 6.224 3 c | 3.606 3 cd | 0.250 0 b | 12.304 3 d |
0.6 | 2.604 0 c | 5.748 0 c | 3.011 3 d | 0.301 3 ab | 11.363 3 d |
0.7 | 1.945 7 c | 5.588 0 c | 2.376 3 d | 0.243 0 b | 9.910 0 d |
Table 1 Effect of alkaline salt stress on biomass of different organs of Sinocalycanthus chinensis
NaHCO3浓度 NaHCO3 concentration/% | 根重 Root weight/g | 茎重 Stem weight/g | 叶重 Leaf weight/g | 根冠比 Root shoot ratio | 总干重 Total dry weight/g |
---|---|---|---|---|---|
0 | 6.744 0 a | 9.342 7 a | 7.440 0 a | 0.406 7 a | 23.526 7 a |
0.1 | 4.764 0 b | 9.086 7 a | 5.990 7 ab | 0.317 7 ab | 19.841 3 b |
0.2 | 4.922 3 b | 8.084 0 ab | 5.284 3 abc | 0.376 3 ab | 18.290 7 b |
0.3 | 5.271 7 b | 9.326 0 a | 5.398 7 abc | 0.366 3 ab | 19.996 3 b |
0.4 | 4.182 7 b | 7.178 3 bc | 3.855 7 bcd | 0.383 3 ab | 15.216 7 c |
0.5 | 2.473 7 c | 6.224 3 c | 3.606 3 cd | 0.250 0 b | 12.304 3 d |
0.6 | 2.604 0 c | 5.748 0 c | 3.011 3 d | 0.301 3 ab | 11.363 3 d |
0.7 | 1.945 7 c | 5.588 0 c | 2.376 3 d | 0.243 0 b | 9.910 0 d |
NaHCO3浓度 NaHCO3 concentration/% | 主根长 Length of axial root/cm | 一级侧根数(d>2 mm) Number of primary lateralroots(d>2 mm) | 根体积 Root volume/cm3 |
---|---|---|---|
0 | 17.333 3 a | 26.333 3 a | 3.333 3 a |
0.1 | 12.633 3 bc | 20.666 7 ab | 2.666 7 ab |
0.2 | 13.866 7 b | 16.666 7 bc | 2.400 0 abc |
0.3 | 12.166 7 bc | 14.666 7 bc | 3.333 3 a |
0.4 | 9.366 7 cd | 12.666 7 cd | 1.666 7 bc |
0.5 | 8.200 0 d | 13.666 7 cd | 1.733 3 bc |
0.6 | 8.333 3 d | 11.000 0 cd | 1.666 7 bc |
0.7 | 5.900 0 d | 8.000 0 d | 1.366 7 c |
Table 2 Effect of alkaline salt stress on root morphology of Sinocalycanthus chinensis
NaHCO3浓度 NaHCO3 concentration/% | 主根长 Length of axial root/cm | 一级侧根数(d>2 mm) Number of primary lateralroots(d>2 mm) | 根体积 Root volume/cm3 |
---|---|---|---|
0 | 17.333 3 a | 26.333 3 a | 3.333 3 a |
0.1 | 12.633 3 bc | 20.666 7 ab | 2.666 7 ab |
0.2 | 13.866 7 b | 16.666 7 bc | 2.400 0 abc |
0.3 | 12.166 7 bc | 14.666 7 bc | 3.333 3 a |
0.4 | 9.366 7 cd | 12.666 7 cd | 1.666 7 bc |
0.5 | 8.200 0 d | 13.666 7 cd | 1.733 3 bc |
0.6 | 8.333 3 d | 11.000 0 cd | 1.666 7 bc |
0.7 | 5.900 0 d | 8.000 0 d | 1.366 7 c |
NaHCO3浓度 NaHCO3 concentration/% | 根 Root | 茎 Stem | 叶 Leaf | |||
---|---|---|---|---|---|---|
K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | |
0 | 5.60±0.68 a | 4.76±0.57 a | 27.24±1.90 ab | 28.34±2.59 a | 22.94±5.22 ab | 57.37±15.11 a |
0.1 | 2.97±0.05 b | 3.47±050 b | 30.53±5.20 a | 22.51±6.16 a | 22.98±4.38 ab | 47.22±3.35 ab |
0.2 | 2.01±0.22 c | 1.60±0.08 cd | 19.19±0.93 bc | 9.35±0.52 b | 23.22±4.66 ab | 35.44±4.79 abc |
0.3 | 1.24±0.18 cd | 1.87±0.40 cd | 21.89±2.13 bc | 10.76±0.24 b | 37.84±7.60 a | 52.59±10.57 ab |
0.4 | 1.23±0.25 cd | 2.63±0.42 bc | 17.61±1.62 cd | 10.87±0.19 b | 38.28±9.09 a | 39.11±3.00 ab |
0.5 | 1.04±0.38 cd | 1.49±0.26 cd | 14.13±2.94 cd | 8.17±0.89 b | 7.83±1.85 b | 13.63±3.43 c |
0.6 | 0.59±0.17 d | 1.11±0.13 d | 9.81±1.20 d | 6.34±1.07 b | 9.14±1.46 b | 13.04±0.99 c |
0.7 | 0.53±0.13 d | 0.80±0.10 d | 13.92±2.00 cd | 8.44±1.50 b | 20.14±6.98 ab | 31.77±4.58 bc |
Table 3 The change of K+/Na+, Ca2+/Na+ratio in different organs of Sinocalycanthus chinensis under alkaline salt stress and variance analysis
NaHCO3浓度 NaHCO3 concentration/% | 根 Root | 茎 Stem | 叶 Leaf | |||
---|---|---|---|---|---|---|
K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | K+/Na+ | Ca2+/Na+ | |
0 | 5.60±0.68 a | 4.76±0.57 a | 27.24±1.90 ab | 28.34±2.59 a | 22.94±5.22 ab | 57.37±15.11 a |
0.1 | 2.97±0.05 b | 3.47±050 b | 30.53±5.20 a | 22.51±6.16 a | 22.98±4.38 ab | 47.22±3.35 ab |
0.2 | 2.01±0.22 c | 1.60±0.08 cd | 19.19±0.93 bc | 9.35±0.52 b | 23.22±4.66 ab | 35.44±4.79 abc |
0.3 | 1.24±0.18 cd | 1.87±0.40 cd | 21.89±2.13 bc | 10.76±0.24 b | 37.84±7.60 a | 52.59±10.57 ab |
0.4 | 1.23±0.25 cd | 2.63±0.42 bc | 17.61±1.62 cd | 10.87±0.19 b | 38.28±9.09 a | 39.11±3.00 ab |
0.5 | 1.04±0.38 cd | 1.49±0.26 cd | 14.13±2.94 cd | 8.17±0.89 b | 7.83±1.85 b | 13.63±3.43 c |
0.6 | 0.59±0.17 d | 1.11±0.13 d | 9.81±1.20 d | 6.34±1.07 b | 9.14±1.46 b | 13.04±0.99 c |
0.7 | 0.53±0.13 d | 0.80±0.10 d | 13.92±2.00 cd | 8.44±1.50 b | 20.14±6.98 ab | 31.77±4.58 bc |
NaHCO3浓度 NaHCO3 concentration/% | 根-茎 Root-stem | 茎-叶 Stem-leaf | 根-叶 Root-leaf | |||
---|---|---|---|---|---|---|
SK,Na | SCa,Na | SK,Na | SCa,Na | SK,Na | SCa,Na | |
0 | 4.95±0.41 c | 6.15±0.93 b | 0.83±0.17 bc | 2.03±0.51 cd | 3.98±0.53 d | 11.62±2.07 c |
0.1 | 10.24±1.58 bc | 6.72±1.73 ab | 0.84±0.29 bc | 2.47±0.74 bcd | 7.78±1.58 cd | 14.09±1.79 bc |
0.2 | 9.96±1.76 bc | 5.85±0.19 b | 1.19±0.18 bc | 3.76±0.30 abc | 12.50±4.17 bcd | 22.01±2.16 bc |
0.3 | 18.83±3.88 ab | 6.37±1.48 b | 1.71±0.27 ab | 4.87±0.95 a | 33.34±9.74 ab | 33.68±13.15 ab |
0.4 | 15.35±3.12 bc | 4.42±0.88 b | 2.26±0.60 a | 3.59±0.21 abc | 31.11±5.26 abc | 16.23±4.23 bc |
0.5 | 15.28±2.22 bc | 5.78±0.96 b | 0.55±0.04 c | 1.62±0.23 d | 8.41±1.37 bcd | 9.72±2.61 c |
0.6 | 20.82±7.52 ab | 6.16±1.91 b | 0.94±0.14 bc | 2.12±0.18 bcd | 19.14±7.69 abcd | 12.37±2.62 Bc |
0.7 | 28.96±6.62 a | 10.63±1.79 a | 1.38±0.30 abc | 3.94±0.78 ab | 43.58±16.15 a | 41.71±9.14 Aa |
Table 4 The change of ion selective transport in different organs of Sinocalycanthus chinensis under alkaline salt stress and the result of variance analysis
NaHCO3浓度 NaHCO3 concentration/% | 根-茎 Root-stem | 茎-叶 Stem-leaf | 根-叶 Root-leaf | |||
---|---|---|---|---|---|---|
SK,Na | SCa,Na | SK,Na | SCa,Na | SK,Na | SCa,Na | |
0 | 4.95±0.41 c | 6.15±0.93 b | 0.83±0.17 bc | 2.03±0.51 cd | 3.98±0.53 d | 11.62±2.07 c |
0.1 | 10.24±1.58 bc | 6.72±1.73 ab | 0.84±0.29 bc | 2.47±0.74 bcd | 7.78±1.58 cd | 14.09±1.79 bc |
0.2 | 9.96±1.76 bc | 5.85±0.19 b | 1.19±0.18 bc | 3.76±0.30 abc | 12.50±4.17 bcd | 22.01±2.16 bc |
0.3 | 18.83±3.88 ab | 6.37±1.48 b | 1.71±0.27 ab | 4.87±0.95 a | 33.34±9.74 ab | 33.68±13.15 ab |
0.4 | 15.35±3.12 bc | 4.42±0.88 b | 2.26±0.60 a | 3.59±0.21 abc | 31.11±5.26 abc | 16.23±4.23 bc |
0.5 | 15.28±2.22 bc | 5.78±0.96 b | 0.55±0.04 c | 1.62±0.23 d | 8.41±1.37 bcd | 9.72±2.61 c |
0.6 | 20.82±7.52 ab | 6.16±1.91 b | 0.94±0.14 bc | 2.12±0.18 bcd | 19.14±7.69 abcd | 12.37±2.62 Bc |
0.7 | 28.96±6.62 a | 10.63±1.79 a | 1.38±0.30 abc | 3.94±0.78 ab | 43.58±16.15 a | 41.71±9.14 Aa |
[1] | WANG J C, YAO L R, LI B C, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress[J]. Frontiers in Plant Science, 2016, 7: 110. |
[2] | 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种, 2020, 18(10): 3441-3448. |
MAO L, LU J G, JIANG H Y. Mechanisms of plant responses to salt-alkali stress[J]. Molecular Plant Breeding, 2020, 18(10): 3441-3448.(in Chinesewith English abstract) | |
[3] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.
DOI URL |
[4] | 郑万钧, 章绍尧, 洪涛, 等. 中国经济树木新种及学名订正[J]. 林业科学, 1963(1): 1-14. |
ZHENG W J, ZHANG S Y, HONG T, et al. New species and revision of scientific names of economic trees in China[J]. Scientia Silvae Sinicae, 1963(1): 1-14.(in Chinese) | |
[5] | 张丽萍, 陈香波, 金荷仙. 夏蜡梅研究进展[J]. 浙江林业科技, 2009, 29(1): 65-70. |
ZHANG L P, CHEN X B, JIN H X. Advances of researches on Calycanthus chinensis[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(1): 65-70.(in Chinese with English abstract) | |
[6] | 芦建国, 孙姿, 唐桂兰. 珍稀树种夏蜡梅研究进展[J]. 林业科技开发, 2015, 29(4): 1-6. |
LU J G, SUN Z, TANG G L. Research progress on the rare species of Calycanthus chinensis[J]. China Forestry Science and Technology, 2015, 29(4): 1-6. | |
[7] | 赵宏波, 周莉花, 郝日明, 等. 中国特有濒危植物夏蜡梅的交配系统[J]. 生态学报, 2011, 31(3): 602-610. |
ZHAO H B, ZHOU L H, HAO R M, et al. Mating system of Sinocalycanthus chinensis(Cheng et S.Y.Chang), an endangered, indigenous species in China[J]. ActaEcologicaSinica, 2011, 31(3): 602-610.(in Chinese with English abstract) | |
[8] | 纪凯婷. 夏蜡梅幼苗年生长规律和耐盐性研究[D]. 南京: 南京林业大学, 2014. |
JI K T. Studies on annual growth rhythm and salt-tolerance of Sinocalycanthus chinensis seedlings[D]. Nanjing: Nanjing Forestry University, 2014. (in Chinese with English abstract) | |
[9] | 章华婷. 盐胁迫对夏蜡梅幼苗生长的影响及机理研究[D]. 上海:上海师范大学, 2018. |
ZHANG H T. Effects of salt stress on the growth and its mechanism of the endangered species Sinocalycanthus chinensis seedlings[D]. Shanghai: Shanghai Normal University, 2018. (in Chinese with English abstract) | |
[10] | 陈丽飞. 遮荫及干旱胁迫对大花萱草生理特性的影响[D]. 长春: 吉林农业大学, 2007. |
CHEN L F. The effects of shading and water stress on physiology characteristics of Hemerocallis middendorfii[D]. Changchun: Jilin Agricultural University, 2007. (in Chinese with English abstract) | |
[11] | 郑必昭. 土壤分析技术指南[M]. 北京: 中国农业出版社, 2013. |
[12] | 王志强, 吴翠云, 杨哲, 等. 盐碱胁迫对酸枣幼苗生长及生理生化特性的影响[J]. 干旱地区农业研究, 2018, 36(2): 153-160. |
WANG Z Q, WU C Y, YANG Z, et al. Effect of saline-alkali stress on growth, physiological and biochemical characteristics of wild jujube seedlings[J]. Agricultural Research in the Arid Areas, 2018, 36(2): 153-160.(in Chinese with English abstract) | |
[13] | 李峰, 谢永宏, 覃盈盈. 盐胁迫条件下湿地植物的适应策略[J]. 生态学杂志, 2009, 28(2): 314-321. |
LI F, XIE Y H, QIN Y Y. Adaptive strategies of wetland plants in salt stress environment[J]. Chinese Journal of Ecology, 2009, 28(2): 314-321.(in Chinese with English abstract) | |
[14] | 毛桂莲, 梁文裕, 王盛, 等. 碱性盐胁迫对宁夏枸杞生长、结构及光合参数的影响[J]. 干旱地区农业研究, 2017, 35(4): 236-242. |
MAO G L, LIANG W Y, WANG S, et al. Effects of alkali stress on growth, structure and photosynthetic parameters of Lycium barbarum L.[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 236-242.(in Chinese with English abstract) | |
[15] | YEO A. Molecular biology of salt tolerance in the context of whole-plant physiology[J]. Journal of Experimental Botany, 1998, 49(323): 915-929. |
[16] | 杜远鹏, 晋学娟, 郭淑华, 等. 不同盐碱类型胁迫对红地球/贝达葡萄植株离子分布的影响[J]. 应用生态学报, 2015, 26(6): 1801-1806. |
DU Y P, JIN X J, GUO S H, et al. Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1801-1806.(in Chinese with English abstract) | |
[17] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
SHI J, LIU D Y, ZHANG F H. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1141-1148.(in Chinese with English abstract) | |
[18] |
YANG C W, WANG P, LI C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynjournal of wheat[J]. Photosynthetica, 2008, 46(1): 107-114.
DOI URL |
[19] |
SUN M Z, JIA B W, CUI N, et al. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses[J]. Plant Molecular Biology, 2016, 90(4/5): 419-434.
DOI URL |
[20] | 颜路明, 郭祥泉. 盐碱胁迫对香樟幼苗离子吸收与分配的影响[J]. 土壤, 2015, 47(6): 1176-1180. |
YAN L M, GUO X Q. Effects of saline-alkali stress on Ion absorption and distribution of camphor seedling[J]. Soils, 2015, 47(6): 1176-1180.(in Chinese with English abstract) | |
[21] |
ABBAS Z K, MOBIN M. Comparative growth and physiological responses of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance to salinity and cyclic drought stress[J]. Archives of Agronomy and Soil Science, 2016, 62(6): 745-758.
DOI URL |
[22] |
郭瑞, 李峰, 周际, 等. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79.
DOI |
GUO R, LI F, ZHOU J, et al. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 69-79. (in Chinese with English abstract)
DOI URL |
|
[23] |
WAKEEL A, FAROOQ M, QADIR M, et al. Potassium substitution by sodium in plants[J]. Critical Reviews in Plant Sciences, 2011, 30(4): 401-413.
DOI URL |
[24] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
QI Q, MA S R, XU W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746.(in Chinese with English abstract) | |
[25] | 陈展宇, 常雨婷, 邓川, 等. 盐碱生境对甜高粱幼苗抗氧化酶活性和生物量的影响[J]. 吉林农业大学学报, 2017, 39(1): 15-19. |
CHEN Z Y, CHANG Y T, DENG C, et al. Effect of saline-alkali habitat on antioxidant enzyme activity and biomass of sweet sorghum seedlings[J]. Journal of Jilin Agricultural University, 2017, 39(1): 15-19.(in Chinese with English abstract) | |
[26] |
TIAN X Y, HE M R, WANG Z L, et al. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress[J]. Plant Growth Regulation, 2015, 77(3): 343-356.
DOI URL |
[27] |
WANG X P, GENG S J, MA Y Q, et al. Growth, photosynjournal, solute accumulation, and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress[J]. Agronomy Journal, 2015, 107(2): 651-661.
DOI URL |
[28] | 石德成, 盛艳敏, 赵可夫. 不同盐浓度的混合盐对羊草苗的胁迫效应[J]. 植物学报, 1998, 40(12): 3-5. |
SHI D C, SHENG Y M, ZHAO K F. Stress effects of mixed salts with various salinities on the seedlings of aneuro Lepidium chinense[J]. Acta Botanica Sinica, 1998, 40(12): 3-5.(in Chinese with English abstract) | |
[29] | 赵昕, 杨小菊, 石勇, 等. 盐胁迫下荒漠共生植物红砂与珍珠的根茎叶中离子吸收与分配特征[J]. 生态学报, 2014, 34(4): 963-972. |
ZHAO X, YANG X J, SHI Y, et al. Ion absorption and distribution of symbiotic Reaumuria soongorica and Salsol apasserina seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2014, 34(4): 963-972.(in Chinese with English abstract) | |
[30] |
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434.
DOI URL |
[31] | 周琦, 祝遵凌. NaCl胁迫对2种鹅耳枥幼苗生长及离子吸收、分配与运输的影响[J]. 北京林业大学学报, 2015, 37(12): 7-16. |
ZHOU Q, ZHU Z L. Effects of NaCl stress on seedling growth and mineral ions uptake, distribution and transportation of two varieties of Carpinus L.[J]. Journal of Beijing Forestry University, 2015, 37(12): 7-16.(in Chinese with English abstract) | |
[32] |
张科, 田长彦, 李春俭. 一年生盐生植物耐盐机制研究进展[J]. 植物生态学报, 2009, 33(6): 1220-1231.
DOI |
ZHANG K, TIAN C Y, LI C J. Review of progress of studies on salt-tolerance mechanisms of annual halophytes[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1220-1231.(in Chinese with English abstract)
DOI |
|
[33] | 顾大形, 陈双林, 顾李俭, 等. 盐胁迫对四季竹细胞膜透性和矿质离子吸收、运输和分配的影响[J]. 生态学杂志, 2011, 30(7): 1417-1422. |
GU D X, CHEN S L, GU L J, et al. Impacts of NaCl stress on Oligostachyum lubricum cell membrane permeability and mineral ion uptake, transportation, and allocation[J]. Chinese Journal of Ecology, 2011, 30(7): 1417-1422.(in Chinese with English abstract) |
[1] | JIANG Xiaofan, WU Tao, WEI Yuming, YANG Farong, CHEN Guoshun, JIAO Ting, CAI Yuan, ZHAO Shengguo. Effects of dietary oregano essential oil on growth performance, slaughter performance, organ indexes and intestinal morphology of Luhua chickens [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 41-49. |
[2] | FENG Xiaofang, JIANG Qiufei, FENG Yuan, WANG Yu, CHEN Yafei, MU Tong, LI Ming, ZHOU Zihang, CAI Zhengyun, ZHANG Juan, GU Yaling. Growth curve fitting and correlation analysis of body weight and body measurements in Angus cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 50-59. |
[3] | YANG Chao, LIU Minzhu, LI Qiang, HAN Tao, PENG Liangzhi, LING Lili, FU Xingzheng, CHUN Changpin, CAO Li, HE Yizhong. Effects of different light-emitting diode (LED) light quality on growth, development and photosynthetic characteristics of Jinqiu Shatangju seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 89-97. |
[4] | DONG Zhihao, CHEN Yu, HUANG Gaoxiang, BAI Junyan, LI Jingyun, ZHAO Shujuan, LEI Ying, WANG Xinle, HU Qihang, FAN Zhengyu. Association analysis of VIPR-1 gene polymorphism and early growth traits in egg quail [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1393-1401. |
[5] | ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects on photochemical fluorescence properties under salt-alkaline stresses about Sinocalycanthus chinensis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1416-1425. |
[6] | HUANG Shuchao, HOU Dong, YUE Hongzhong, KONG Weiping, ZHANG Dongqin, LI Yali, HAN Dongrong, XIE Bojie. Effects of three growth promoting bacteria and their mixed microbial agents on growth and quality of lettuce [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1212-1221. |
[7] | HOU Lijuan, LI Zhengpeng, LIN Jinsheng, MA Lin, LI Huiping, QU Shaoxuan, JIANG Jianxin, ZOU Xiulong, YANG Huaping, LI Changtian, JIANG Ning. Effects of different light quality of LED light source on growth rate, mycelium branch and biomass of straw mushroom mycelium [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1110-1116. |
[8] | LI Fuyan, LIU Xiaoyu, YAN jingting, CAI Yanfei. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 873-884. |
[9] | WANG Tie, HUANG Shengjia, YANG Youting, TAN Liping, QIU Xia, DONG Tiantian, LI Sichen, SUN Guochao, XIONG Bo, WANG Jun, WANG Zhihui. Effects of different interstocks on growth and photosynthetic characteristics of Yuanxiaochun citrus [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 413-421. |
[10] | MENG Youqing, WANG Enguo, CHEN Wujian, LI Yanmin, CHENG Fan, MENG Minxia. Distribution and growth dynamics of Candidatus Liberibacter asiaticus positive Asian citrus psyllid in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 464-469. |
[11] | LIU Ru, DONG Changru, ZHANG Yiwen, QU Minghui, ZHANG Wei, SA Haiyang, CHEN Haiyan, YE Wenling, FAN Ting. Growth-promoting characteristics of Aspergillus niger TL-F2 and its effect on seed germination and cadmium content in seedlings of ryegrass under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 326-334. |
[12] | CHENG Andong, WANG Benqin. Identification and growth characteristics of Sanghuang in Jinzhai County [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2234-2244. |
[13] | CHEN Tian, BAO Ningying, DU Chongxuan, LIU Yungen. Growth and arsenic enrichment characteristics of Typha angustifolia L. under different arsenic pollution levels [J]. , 2020, 32(9): 1672-1682. |
[14] | XU Na, WANG Dahai, DU Chuanyin, DU Shasha, WANG Xiaomeng, ZHANG Yan, ZHANG Yuqin, WU Yuanhua, GUAN Ensen, SHI Yi. Effects of planting space on growth and development of tobacco seedlings [J]. , 2020, 32(8): 1342-1350. |
[15] | LAN Zhiqian, ZHANG Kaige, ZHANG Xueyan. Effects of plough layer thickness on photosynthetic, fluorescence parameters of leaf and physiological characteristics of root for Cucumis sativus L. [J]. , 2020, 32(7): 1196-1205. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1050
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1470
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||