Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (2): 394-404.DOI: 10.3969/j.issn.1004-1524.20240093
• Plant Protection • Previous Articles Next Articles
HU Rui1,2(), MA Liya2, WAN Qun2, WANG Ya2, CAO Yaoyao2, SHAO Sicheng1, GE Jing2, WU Xiangwei1,*(
), YU Xiangyang2,*(
)
Received:
2024-01-28
Online:
2025-02-25
Published:
2025-03-20
Contact:
WU Xiangwei,YU Xiangyang
CLC Number:
HU Rui, MA Liya, WAN Qun, WANG Ya, CAO Yaoyao, SHAO Sicheng, GE Jing, WU Xiangwei, YU Xiangyang. Effect of growth-promoting bacteria on the degradation of thiamethoxam in Brassica rapa subsp. chinensis[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 394-404.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240093
基因 Gene | 正向引物序列 Forward primer sequence(5'→3') | 反向引物序列 Reverse primer sequence(5'→3') |
---|---|---|
BraA05g023030.3C | GGCTGGACCTACGCTATA | CGCAACACCTTCTTACGA |
BraA03g024150.3C | ACCAATCCGCCATCTACT | TCACCGTCCACCATTCT |
BraA03g042180.3C | TCGGAGGAACAAGTAGAGG | CCATCAGGCAACAGAACTC |
BraA03g021140.3C | ACTTCCGCCTCGTCTTACTC | AGCCGCCTTGTCTGAGATAG |
BraA09g044270.3C | CGCTATGGCTTCGTATTGC | GTTCTTCACCGTCTGTCTC |
BraA05g036420.3C | CCTAAGCAGCCTCACTAAC | CACTCGGTCCACACTCTT |
BraA07g016780.3C | GAGAGGAAGAGACTCATTGC | GCTCACCAACCGTAACTC |
BraA07g028130.3C | GTTCTTCCGTGACCTTGAC | GAGTAGCAGCCAACATTGAG |
BraA08g009510.3C | GGCTCTGGAATCATTGGAC | CCGACACAACCGCATTAG |
BraA10g033710.3C | AGCGGAGGAGGCAATAGT | CGAATACGGCAGTGTCAAC |
BraA05g007500.3C | ATGGAGAAGAGGCGATAGTC | CTGAACGAGTAAGGCAACG |
BraA07g025310.3C | GGATGGTGGTGAGTGATG | CAAGTGGAGGCGATAGCA |
BraA07g029730.3C | GCTCTGTAAGGTGGTGGA | GGCGTATGGATTGTTGGT |
BraA04g019480.3C | CGTAGCCTCTTCTCTTCAG | CCTTAACCATCTCACCTCTC |
BraA05g032610.3C | TCGGAGATTGGTCGGTGGT | ATGGAGAGCAGGATGAGTG |
Table 1 Primer sequences used for polymerase chain reaction
基因 Gene | 正向引物序列 Forward primer sequence(5'→3') | 反向引物序列 Reverse primer sequence(5'→3') |
---|---|---|
BraA05g023030.3C | GGCTGGACCTACGCTATA | CGCAACACCTTCTTACGA |
BraA03g024150.3C | ACCAATCCGCCATCTACT | TCACCGTCCACCATTCT |
BraA03g042180.3C | TCGGAGGAACAAGTAGAGG | CCATCAGGCAACAGAACTC |
BraA03g021140.3C | ACTTCCGCCTCGTCTTACTC | AGCCGCCTTGTCTGAGATAG |
BraA09g044270.3C | CGCTATGGCTTCGTATTGC | GTTCTTCACCGTCTGTCTC |
BraA05g036420.3C | CCTAAGCAGCCTCACTAAC | CACTCGGTCCACACTCTT |
BraA07g016780.3C | GAGAGGAAGAGACTCATTGC | GCTCACCAACCGTAACTC |
BraA07g028130.3C | GTTCTTCCGTGACCTTGAC | GAGTAGCAGCCAACATTGAG |
BraA08g009510.3C | GGCTCTGGAATCATTGGAC | CCGACACAACCGCATTAG |
BraA10g033710.3C | AGCGGAGGAGGCAATAGT | CGAATACGGCAGTGTCAAC |
BraA05g007500.3C | ATGGAGAAGAGGCGATAGTC | CTGAACGAGTAAGGCAACG |
BraA07g025310.3C | GGATGGTGGTGAGTGATG | CAAGTGGAGGCGATAGCA |
BraA07g029730.3C | GCTCTGTAAGGTGGTGGA | GGCGTATGGATTGTTGGT |
BraA04g019480.3C | CGTAGCCTCTTCTCTTCAG | CCTTAACCATCTCACCTCTC |
BraA05g032610.3C | TCGGAGATTGGTCGGTGGT | ATGGAGAGCAGGATGAGTG |
组合编号 Combination number | 产IAA量 IAA production/(mg·L-1) | 有效磷含量 Vailable phosphorus/(mg·L-1) | 铁载体活性 Iron carrier activity/% | 固氮 Nitrogen fixation |
---|---|---|---|---|
NS6 | 83.16±0.01 a | 133.9±0.1 j | 5.16±0.14 k | - |
NS54 | 71.09±0.10 bcd | 167.3±2.1 e | 22.73±0.79 h | - |
NS62 | 70.96±0.08 bcd | 170.1±1.0 d | 25.69±0.73 f | - |
NS69 | 59.37±0.05 e | 53.3±0.1 m | 41.40±0.31 a | + |
C1:NS6+NS54 | 74.32±0.02 abc | 155.7±0.3 h | 18.42±0.45 j | - |
C2:NS6+NS62 | 72.18±0.02 bcd | 162.1±0.1 f | 20.44±0.10 i | + |
C3:NS6+NS69 | 69.41±0.03 bcd | 94.3±0.1 l | 19.64±0.28 ij | - |
C4:NS54+NS62 | 79.10±0.05 a | 183.9±0.2 a | 31.35±0.49 c | - |
C5:NS54+NS69 | 68.06±0.06 cde | 151.0±0.6 h | 26.42±0.32 e | + |
C6:NS62+NS69 | 65.06±0.04 de | 143.5±0.3 i | 23.49±0.45 fg | + |
C7:NS6+NS54+NS62 | 78.27±0.06 ab | 174.5±0.5 c | 28.52±0.29 d | - |
C8:NS6+NS54+NS69 | 66.37±0.04 de | 125.3±0.2 k | 26.46±0.35 e | + |
C9:NS54+NS62+NS69 | 76.43±0.05 abc | 180.9±0.1 b | 33.47±0.42 b | + |
C10:NS6+NS54+NS62+NS69 | 75.29±0.01 abc | 156.3±0.3 g | 22.48±0.42 gh | + |
Table 2 The growth-promoting ability of strains and microbial consortium
组合编号 Combination number | 产IAA量 IAA production/(mg·L-1) | 有效磷含量 Vailable phosphorus/(mg·L-1) | 铁载体活性 Iron carrier activity/% | 固氮 Nitrogen fixation |
---|---|---|---|---|
NS6 | 83.16±0.01 a | 133.9±0.1 j | 5.16±0.14 k | - |
NS54 | 71.09±0.10 bcd | 167.3±2.1 e | 22.73±0.79 h | - |
NS62 | 70.96±0.08 bcd | 170.1±1.0 d | 25.69±0.73 f | - |
NS69 | 59.37±0.05 e | 53.3±0.1 m | 41.40±0.31 a | + |
C1:NS6+NS54 | 74.32±0.02 abc | 155.7±0.3 h | 18.42±0.45 j | - |
C2:NS6+NS62 | 72.18±0.02 bcd | 162.1±0.1 f | 20.44±0.10 i | + |
C3:NS6+NS69 | 69.41±0.03 bcd | 94.3±0.1 l | 19.64±0.28 ij | - |
C4:NS54+NS62 | 79.10±0.05 a | 183.9±0.2 a | 31.35±0.49 c | - |
C5:NS54+NS69 | 68.06±0.06 cde | 151.0±0.6 h | 26.42±0.32 e | + |
C6:NS62+NS69 | 65.06±0.04 de | 143.5±0.3 i | 23.49±0.45 fg | + |
C7:NS6+NS54+NS62 | 78.27±0.06 ab | 174.5±0.5 c | 28.52±0.29 d | - |
C8:NS6+NS54+NS69 | 66.37±0.04 de | 125.3±0.2 k | 26.46±0.35 e | + |
C9:NS54+NS62+NS69 | 76.43±0.05 abc | 180.9±0.1 b | 33.47±0.42 b | + |
C10:NS6+NS54+NS62+NS69 | 75.29±0.01 abc | 156.3±0.3 g | 22.48±0.42 gh | + |
Fig.4 Effects of growth-promoting strains and microbial consortium on the growth of Brassica rapa subsp. chinensis CK, Control group; NS54, Inoculated strain NS54; NS62, Inoculated strain NS62; NS69, Inoculated strain NS69; C9, Inoculated with microbial consortium NS54+NS62+NS69. Bars marked without the same lowercase letter indicate significant differences between different treatments for the same index (P<0.05). The same as below.
处理 Treatment | 丙二醛含量 MDA content/ (μmol·L-1) | 可溶性糖含量 Soluble sugar content/(g·kg-1) | 可溶性蛋白含量 Soluble protein content/(g·kg-1) | 维生素C含量 Vitamin C content/(mg·kg-1) |
---|---|---|---|---|
TMX | 3.86±0.25 a | 9.35±0.51 c | 11.17±0.73 c | 79.3±6.3 c |
NS54+TMX | 2.78±0.15 bc | 12.63±0.88 ab | 13.57±0.30 a | 106.6±9.3 ab |
NS62+TMX | 3.18±0.22 b | 11.39±0.93 b | 12.42±0.45 b | 90.8±5.9 bc |
NS69+TMX | 2.65±0.42 cd | 12.70±0.40 ab | 13.03±0.37 ab | 105.4±5.1 ab |
C9+TMX | 2.25±0.11 d | 13.30±0.50 a | 13.01±0.46 ab | 113.7±6.1 a |
Table 3 Effects of growth-promoting strains and microbial consortium on the quality of Brassica rapa subsp. chinensis under thiamethoxam stress
处理 Treatment | 丙二醛含量 MDA content/ (μmol·L-1) | 可溶性糖含量 Soluble sugar content/(g·kg-1) | 可溶性蛋白含量 Soluble protein content/(g·kg-1) | 维生素C含量 Vitamin C content/(mg·kg-1) |
---|---|---|---|---|
TMX | 3.86±0.25 a | 9.35±0.51 c | 11.17±0.73 c | 79.3±6.3 c |
NS54+TMX | 2.78±0.15 bc | 12.63±0.88 ab | 13.57±0.30 a | 106.6±9.3 ab |
NS62+TMX | 3.18±0.22 b | 11.39±0.93 b | 12.42±0.45 b | 90.8±5.9 bc |
NS69+TMX | 2.65±0.42 cd | 12.70±0.40 ab | 13.03±0.37 ab | 105.4±5.1 ab |
C9+TMX | 2.25±0.11 d | 13.30±0.50 a | 13.01±0.46 ab | 113.7±6.1 a |
[1] | HLADIK M L, MAIN A R, GOULSON D. Environmental risks and challenges associated with neonicotinoid insecticides[J]. Environmental Science & Technology, 2018, 52(6): 3329-3335. |
[2] | ZHAN H L, WAN Q, WANG Y, et al. An endophytic bacterial strain, Enterobacter cloacae TMX-6, enhances the degradation of thiamethoxam in rice plants[J]. Chemosphere, 2021, 269: 128751. |
[3] | JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the status and global strategy for neonicotinoids[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2897-2908. |
[4] | WU R L, HE W, LI Y L, et al. Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China[J]. Science of the Total Environment, 2020, 738: 140248. |
[5] | MONTIEL-LEÓN J M, DUY S V, MUNOZ G, et al. Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry[J]. Food Control, 2019, 104: 74-82. |
[6] | 谭颖, 张琪, 赵成, 等. 蔬菜水果中的新烟碱类农药残留量与人群摄食暴露健康风险评价[J]. 生态毒理学报, 2016, 11(6): 67-81. |
TAN Y, ZHANG Q, ZHAO C, et al. Residues of neonicotinoid pesticides in vegetables and fruit and health risk assessment of human exposure via food intake[J]. Asian Journal of Ecotoxicology, 2016, 11(6): 67-81. (in Chinese with English abstract) | |
[7] | MITCHELL E A D, MULHAUSER B, MULOT M, et al. A worldwide survey of neonicotinoids in honey[J]. Science, 2017, 358(6359): 109-111. |
[8] | GREEN T, TOGHILL A, LEE R, et al. Thiamethoxam induced mouse liver tumors and their relevance to humans. part 1: mode of action studies in the mouse[J]. Toxicological Sciences, 2005, 86(1): 36-47. |
[9] | HAN W C, TIAN Y, SHEN X M. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview[J]. Chemosphere, 2018, 192: 59-65. |
[10] | 代金霞, 田平雅, 沈聪, 等. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报, 2021, 30(5): 968-975. |
DAI J X, TIAN P Y, SHEN C, et al. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects[J]. Ecology and Environmental Sciences, 2021, 30(5): 968-975. (in Chinese with English abstract) | |
[11] | ZHOU X G, ZHANG X H, MA C L, et al. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere[J]. Chemosphere, 2022, 307: 136138. |
[12] | 郑培峰, 姜小蕾, 翟彦霖, 等. PGPR对莠去津污染土壤中结缕草生长及生理的影响[J]. 中国农学通报, 2022, 38(5): 124-131. |
ZHENG P F, JIANG X L, ZHAI Y L, et al. PGPR in atrazine contaminated soil: effect on the growth and physiology of Zoysia japonica Steud[J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 124-131. (in Chinese with English abstract) | |
[13] | HE W, MEGHARAJ M, WU C Y, et al. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants[J]. Critical Reviews in Biotechnology, 2020, 40(1): 31-45. |
[14] | ISLAM F, YASMEEN T, ALI Q, et al. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress[J]. Ecotoxicology and Environmental Safety, 2014, 104: 285-293. |
[15] | ZHANG C L, YU Z P, ZHANG M Y, et al. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis[J]. Journal of Experimental Botany, 2022, 73(11): 3711-3725. |
[16] | 刘悦, 徐伟慧, 王志刚. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 2023, 35(12): 2775-2784. |
LIU Y, XU W H, WANG Z G. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2775-2784. (in Chinese with English abstract) | |
[17] | 翟凯辉, 张影影, 高夕全. 种子内生菌促生机制和抗病机理研究进展[J]. 农业生物技术学报, 2023, 31(9): 1965-1979. |
ZHAI K H, ZHANG Y Y, GAO X Q. Research progress on mechanisms of growth promotion and disease resistance of seed endophytes[J]. Journal of Agricultural Biotechnology, 2023, 31(9): 1965-1979. (in Chinese with English abstract) | |
[18] | 宋歌, 才满, 杜克久. 具多氯联苯降解特性绦柳内生菌的分离筛选及其移除性能[J]. 生态学杂志, 2016, 35(4): 1038-1046. |
SONG G, CAI M, DU K J. Isolation and characterization of polychlorinated biphenyl-degrading endophytic bacterium from Salix matsudana f. pendula[J]. Chinese Journal of Ecology, 2016, 35(4): 1038-1046. (in Chinese with English abstract) | |
[19] | FENG F Y, CHEN X L, WANG Q, et al. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables[J]. Journal of Environmental Management, 2020, 253: 109636. |
[20] | CHEN S, MA Z, LI S Y, et al. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables[J]. Environment International, 2019, 132: 105081. |
[21] | 张帆, 马丽雅, 冯发运, 等. 接种嗜水气单胞菌对水稻降解毒死蜱的影响及作用机制[J]. 农药学学报, 2023, 25(2): 422-434. |
ZHANG F, MA L Y, FENG F Y, et al. Effect and mechanism of inoculation with Aeromonas hydrophila on the degradation of chlorpyrifos in rice[J]. Chinese Journal of Pesticide Science, 2023, 25(2): 422-434. (in Chinese with English abstract) | |
[22] | 张秀雨, 马秀花, 李玮, 等. 芽孢杆菌复合菌群的构建及其对野燕麦除草活性研究[J]. 南方农业学报, 2022, 53(12): 3444-3452. |
ZHANG X Y, MA X H, LI W, et al. Construction of Bacillus compound flora and its herbicidal activity against Avena fatua L[J]. Journal of Southern Agriculture, 2022, 53(12): 3444-3452. (in Chinese) | |
[23] | WANG W F, WAN Q, LI Y X, et al. Application of an endophyte Enterobacter sp. TMX13 to reduce thiamethoxam residues and stress in Chinese cabbage (Brassica chinensis L)[J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9180-9187. |
[24] | 马莹, 王玥, 石孝均, 等. 植物促生菌在重金属生物修复中的作用机制及应用[J]. 环境科学, 2022, 43(9): 4911-4922. |
MA Y, WANG Y, SHI X J, et al. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation[J]. Environmental Science, 2022, 43(9): 4911-4922. (in Chinese with English abstract) | |
[25] | HA-TRAN D M, NGUYEN T T M, HUNG S H, et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review[J]. International Journal of Molecular Sciences, 2021, 22(6): 3154. |
[26] | TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. |
[27] | GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401. |
[28] | EKE P, KUMAR A, SAHU K P, et al. Endophytic bacteria of desert Cactus(Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.)[J]. Microbiological Research, 2019, 228: 126302. |
[29] | GIAUQUE H, CONNOR E W, HAWKES C V. Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants[J]. New Phytologist, 2019, 221(4): 2239-2249. |
[30] | WITTEBOLLE L, MARZORATI M, CLEMENT L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009, 458(7238): 623-626. |
[31] | 车永梅, 刘广超, 郭艳苹, 等. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
CHE Y M, LIU G C, GUO Y P, et al. Preparation of compound halotolerant bioinoculant and study on its growth-promoting effect[J]. Biotechnology Bulletin, 2023, 39(11): 217-225. (in Chinese with English abstract) | |
[32] | 潘宇, 张昊, 李湘, 等. 耐盐促生菌与其复合菌剂对盐胁迫狼尾草生长及生理生化的影响[J]. 贵州农业科学, 2023, 51(7): 39-49. |
PAN Y, ZHANG H, LI X, et al. Effect of salt-tolerant and growth-promoting bacteria and composite microbial agent on growth and physicoch-emical of Pennisetum alopecuroides under salt stress[J]. Guizhou Agricultural Sciences, 2023, 51(7): 39-49. (in Chinese with English abstract) | |
[33] | 张希平, 田菊, 木其尔, 等. 基于代谢组学研究噻虫嗪和戊唑醇农药对蔬菜生理代谢的影响[J]. 沈阳农业大学学报, 2022, 53(6): 693-700. |
ZHANG X P, TIAN J, MU Q E, et al. Metabolomics reveals the effects of pesticide thiamethoxam and pentazolol on the physiological metabolism of vegetable[J]. Journal of Shenyang Agricultural University, 2022, 53(6): 693-700. (in Chinese with English abstract) | |
[34] | 张亚, 师杨杰, 姚均伟, 等. 村镇有机生活垃圾处理产物对青菜品质及土壤性质的影响[J]. 江苏农业学报, 2023, 39(1): 88-96. |
ZHANG Y, SHI Y J, YAO J W, et al. Effects of the products from treatment of organic domestic waste in villages and towns on the quality of Brassica chinensis and soil properties[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 88-96. (in Chinese with English abstract) | |
[35] | 余冬冬, 李永军. 不同微生物菌剂对草莓灰霉病的防治效果、植株生长及果实品质的影响[J]. 浙江农业科学, 2023, 64(10): 2482-2486. |
YU D D, LI Y J. Effects of different microbial agents on the control of gray mold, plant growth, and fruit quality of strawberry[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(10): 2482-2486. (in Chinese with English abstract) | |
[36] | 李婷, 张静, 曲明山, 等. 浇灌不同促生菌剂对网纹甜瓜生长发育及果实品质的影响[J]. 北方园艺, 2023(21): 36-42. |
LI T, ZHANG J, QU M S, et al. Effects of different growth-promoting agents on growth and fruit quality of netted melon[J]. Northern Horticulture, 2023(21): 36-42. (in Chinese with English abstract) | |
[37] | 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2): 495-506. |
GOU Y C, WANG Z K, ZHANG Z P, et al. Advance in role mechanisms of plant growth-promoting rhizobacteria[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 495-506. (in Chinese with English abstract) | |
[38] | ALIZADEH H, BEHBOUDI K, AHMADZADEH M, et al. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14[J]. Biological Control, 2013, 65(1): 14-23. |
[1] | LUZI Zhenggang, ZHU Lixin, JI Hongbing, WANG Kang. Research progress in remediation of soil heavy metal pollution by Sphingosinomonas [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1208-1216. |
[2] | XIE Xiaojie, XU Shuangyan, WANG Wenfan, YANG Jian, ZHAO Zhuoqun, WANG Min, ZHENG Huabao. Research progress on microbial degradation of antibiotics in livestock and poultry breeding wastes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1975-1992. |
[3] | HUANG Donghui, ZHONG Peng, WANG Jianli, HU Yunlong, WANG Zhigang. Effects of environmental conditions on biofilm formation of Bacillus altitudinis LZP02 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1466-1473. |
[4] | FENG Juan, ZHU Tingheng, LUO Chunping, YANG Jiayue, ZHU Siyu, LI Tong. Isolation and identification of polylactic acid degrading microorganisms from mealworm(Tenebrio molitor)gut [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1277-1287. |
[5] | WANG Yiran, KANG Zhichao, ZHU Guopeng, WANG Yang, QI Geqi, YU Hongwen. Optimization of low temperature resistant corn stalk degrading bacterial community and its effect [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2720-2727. |
[6] | FENG Xinxin, LI Fenglan, XU Yongqing, LI Lei, HE Fumeng, FENG Yanzhong, YUAN Qiang, LIU Di. Screening of cellulase producing strains from rotten wood in Xinjiang cold area and analysis of their characteristics of enzyme production at low temperature [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1468-1476. |
[7] | LIU Dandan, SUN Wanyu, WANG He. Characterization and fixation analysis of three atrazine-degrading strains [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1078-1087. |
[8] | XIN Xiaoting, LIU Daqun, ZHANG Chengcheng, WU Min, CHEN Denggao, ZHANG Jianming. Screening, identification and application of high efficient nitrite degrading functional strains in Chinese characteristic fermented vegetables [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 335-345. |
[9] | XU Shuangyan, ZHANG Tao, ZHANG Cheng, LIN Hui, SHUI Xianlei, ZHENG Huabao. Isolation and identification of an erythromycin degradation bacterium strain and its biodegradation characteristics [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 131-141. |
[10] | GAO Wenjing, XIAO Lijiao, WANG Shunmin, HAN Qiuxia. Screening, identification and characterization of two halophilic, diesel-degrading bacteria [J]. , 2020, 32(7): 1241-1252. |
[11] | LIANG Haohua, TAO Hong, WANG Yajuan, LI Jiaoling. Isolation, identification and degradation characteristics of a dibutyl phthalate and di-(2-ethylhexyl) phthalate degrading bacterium [J]. , 2019, 31(7): 1145-1153. |
[12] | HE Kaiyu, TANG Tao, XUAN Caidi, WU Yuanyuan, HE Hongmei, WU Min, ZHAO Xueping, XU Xiahong, WANG Qiang. Hydrolysis, volatility and degradation of amicarbazone in water-sediment system [J]. , 2019, 31(12): 2057-2063. |
[13] | YU Youyi, YANG Lu, LIAO Xiang, CHENG Ping, WU Shengli, LI Hong. Residual degradation dynamics of lambda-cyhalothrin and cypermethrin in apple and its removal method [J]. , 2018, 30(8): 1376-1381. |
[14] | LI Guoli, ZENG Xiaoying, ZHAI Lixiang, LENG Yan, LIU Mengyuan, LI Shiweng, CHEN Tuo. Screening, identification and characteristics of Lysinibacillus fusiformis 23-1 for petroleum degradation [J]. , 2018, 30(7): 1229-1236. |
[15] | WANG Daiyi, ZHANG Fengsong, PAN Juan, LIU Denglu, GOU Tizhong. Effect of rice straw derived biochar addition on adsorption and degradation of androstenedione [J]. , 2018, 30(4): 632-639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||