Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (8): 1694-1705.DOI: 10.3969/j.issn.1004-1524.20240734
• Horticultural Science • Previous Articles Next Articles
SHI Yangyang1(), LYU Lixia2,*(
), TUO Dengfeng3
Received:
2024-08-13
Online:
2025-08-25
Published:
2025-09-03
Contact:
LYU Lixia
CLC Number:
SHI Yangyang, LYU Lixia, TUO Dengfeng. Effects of AMF and PGPR on growth and nutrient absorption of Matthiola incana under low temperature and weak light stress[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1694-1705.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240734
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 菌根侵染率 Mycorrhizal colonization/% | 丛枝着生率 Arbuscule rate/% | 侵入点位数 Numbers of infection point/cm-1 | 泡囊数 Vesicles/cm-1 |
---|---|---|---|---|---|
NN | CK | 0 | 0 | 0 | 0 |
AMF | 49.3±0.6 bc | 26.5±0.9 ab | 7.3±1.2 ab | 12.3±0.3 ab | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 61.5±0.9 a | 29.2±1.6 a | 9.0±0.6 a | 14.7±0.3 a | |
LW | CK | 0 | 0 | 0 | 0 |
AMF | 45.2±0.2 c | 24.2±1.2 b | 6.3±0.7 b | 11.0±0.6 b | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 52.5±0.8 b | 27.5±0.8 ab | 7.6±0.3 ab | 12.7±0.3 ab |
Table 1 Effects of AMF and PGPR on mycorrhizal infection of M. incana under low temperature and weak light conditions
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 菌根侵染率 Mycorrhizal colonization/% | 丛枝着生率 Arbuscule rate/% | 侵入点位数 Numbers of infection point/cm-1 | 泡囊数 Vesicles/cm-1 |
---|---|---|---|---|---|
NN | CK | 0 | 0 | 0 | 0 |
AMF | 49.3±0.6 bc | 26.5±0.9 ab | 7.3±1.2 ab | 12.3±0.3 ab | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 61.5±0.9 a | 29.2±1.6 a | 9.0±0.6 a | 14.7±0.3 a | |
LW | CK | 0 | 0 | 0 | 0 |
AMF | 45.2±0.2 c | 24.2±1.2 b | 6.3±0.7 b | 11.0±0.6 b | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 52.5±0.8 b | 27.5±0.8 ab | 7.6±0.3 ab | 12.7±0.3 ab |
Fig.2 Effect of AMF on PGPR colonization under low temperature and weak light conditions Bars marked without the same letters indicate significant difference at p<0.05. The same as below.
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 株高 Plant height/cm | 叶面积 Leaf area/cm2 | 地上部干重 Dry weight of shoots/g | 根系干重 Dry weight of roots/g |
---|---|---|---|---|---|
NN | CK | 15.2±0.4 d | 671.0±20.1 de | 2.15±0.08 cd | 0.12±0.01 ef |
AMF | 16.9±0.3 ab | 855.3±28.9 c | 2.29±0.17 bc | 0.18±0.02 cd | |
PGPR | 17.1±0.2 ab | 1 036.4±22.6 b | 2.62±0.17 ab | 0.22±0.01 c | |
AMF+PGPR | 17.4±0.1 a | 1 305.8±47.4 a | 2.74±0.12 a | 0.48±0.01 a | |
LW | CK | 11.2±0.3 e | 589.1±7.4 e | 1.87±0.08 d | 0.09±0.01 f |
AMF | 15.3±0.3 d | 679.7±13.9 d | 2.18±0.16 cd | 0.15±0.01 de | |
PGPR | 16.1±0.2 cd | 828.2±20.9 c | 2.24±0.15 bcd | 0.19±0.02 cd | |
AMF+PGPR | 16.5±0.2 bc | 886.7±38.4 c | 2.32±0.16 bc | 0.28±0.02 b |
Table 2 Effects of AMF and PGPR on growth indexes of of M. incana under low temperature and weak light conditions
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 株高 Plant height/cm | 叶面积 Leaf area/cm2 | 地上部干重 Dry weight of shoots/g | 根系干重 Dry weight of roots/g |
---|---|---|---|---|---|
NN | CK | 15.2±0.4 d | 671.0±20.1 de | 2.15±0.08 cd | 0.12±0.01 ef |
AMF | 16.9±0.3 ab | 855.3±28.9 c | 2.29±0.17 bc | 0.18±0.02 cd | |
PGPR | 17.1±0.2 ab | 1 036.4±22.6 b | 2.62±0.17 ab | 0.22±0.01 c | |
AMF+PGPR | 17.4±0.1 a | 1 305.8±47.4 a | 2.74±0.12 a | 0.48±0.01 a | |
LW | CK | 11.2±0.3 e | 589.1±7.4 e | 1.87±0.08 d | 0.09±0.01 f |
AMF | 15.3±0.3 d | 679.7±13.9 d | 2.18±0.16 cd | 0.15±0.01 de | |
PGPR | 16.1±0.2 cd | 828.2±20.9 c | 2.24±0.15 bcd | 0.19±0.02 cd | |
AMF+PGPR | 16.5±0.2 bc | 886.7±38.4 c | 2.32±0.16 bc | 0.28±0.02 b |
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | |||
---|---|---|---|---|---|---|---|
地上部Shoot | 根Root | 地上部Shoot | 根Root | 地上部Shoot | 根Root | ||
NN | CK | 28.1±2.2 de | 11.6±1.0 f | 55.2±1.2 e | 27.7±1.1 f | 11.5±0.3 e | 3.0±0.2 f |
AMF | 30.8±1.0 cde | 27.0±0.9 cd | 76.9±0.7 b | 38.1±0.2 d | 13.1±0.6 d | 4.2±0.1 d | |
PGPR | 41.9±2.0 ab | 30.9±1.3 b | 94.9±1.8 a | 40.6±0.6 c | 21.6±0.5 a | 5.2±0.1 c | |
AMF+PGPR | 45.9±4.1 a | 35.5±0.9 a | 97.6±2.1 a | 55.3±1.1 a | 21.4±0.7 a | 8.4±0.2 a | |
LW | CK | 26.3±3.0 e | 11.4±0.5 f | 41.5±1.4 f | 20.7±0.5 g | 8.7±0.5 f | 2.3±0.1 g |
AMF | 28.9±0.5 de | 22.6±1.3 e | 61.6±1.2 d | 33.8±0.9 e | 16.3±0.5 c | 3.4±0.1 e | |
PGPR | 35.7±1.1 bcd | 24.6±0.6 de | 71.6±1.7 c | 36.5±0.5 d | 16.5±0.3 c | 4.2±0.1 d | |
AMF+PGPR | 38.9±2.1 bc | 29.6±0.9 bc | 78.6±1.8 b | 49.4±1.3 b | 18.1±0.3 b | 6.7±0.1 b |
Table 3 Effects of AMF and PGPR on N, P, and K content of of M. incana under low temperature and weak light conditions mg·kg-1
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | |||
---|---|---|---|---|---|---|---|
地上部Shoot | 根Root | 地上部Shoot | 根Root | 地上部Shoot | 根Root | ||
NN | CK | 28.1±2.2 de | 11.6±1.0 f | 55.2±1.2 e | 27.7±1.1 f | 11.5±0.3 e | 3.0±0.2 f |
AMF | 30.8±1.0 cde | 27.0±0.9 cd | 76.9±0.7 b | 38.1±0.2 d | 13.1±0.6 d | 4.2±0.1 d | |
PGPR | 41.9±2.0 ab | 30.9±1.3 b | 94.9±1.8 a | 40.6±0.6 c | 21.6±0.5 a | 5.2±0.1 c | |
AMF+PGPR | 45.9±4.1 a | 35.5±0.9 a | 97.6±2.1 a | 55.3±1.1 a | 21.4±0.7 a | 8.4±0.2 a | |
LW | CK | 26.3±3.0 e | 11.4±0.5 f | 41.5±1.4 f | 20.7±0.5 g | 8.7±0.5 f | 2.3±0.1 g |
AMF | 28.9±0.5 de | 22.6±1.3 e | 61.6±1.2 d | 33.8±0.9 e | 16.3±0.5 c | 3.4±0.1 e | |
PGPR | 35.7±1.1 bcd | 24.6±0.6 de | 71.6±1.7 c | 36.5±0.5 d | 16.5±0.3 c | 4.2±0.1 d | |
AMF+PGPR | 38.9±2.1 bc | 29.6±0.9 bc | 78.6±1.8 b | 49.4±1.3 b | 18.1±0.3 b | 6.7±0.1 b |
Fig.4 Effect of AMF and PGPR on indole-3-acetic acid (IAA) and abscisic acid (ABA) content of M. incana under low temperature and weak light conditions
Fig.5 Effect of AMF and PGPR on cell membrane metabolism and antioxidant enzyme activity of M. incana under low temperature and weak light conditions SOD,Superoxide dismutase;POD, Peroxidase; MDA, Malondialdehyde.
[1] | 陈保冬, 付伟, 伍松林, 等. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
CHEN B D, FU W, WU S L, et al. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling[J]. Chinese Journal of Plant Ecology, 2024, 48(1): 1-20. (in Chinese with English abstract) | |
[2] | AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505(7484): 543-545. |
[3] | ROSMIM A T, ÍRIS V, SÓNIA V G, et al. Arbuscular mycorrhizal fungi (AMF) promote the growth of the pioneer dune plant of coastal areas[J]. African Journal of Microbiology Research, 2020, 14(10): 579-586. |
[4] | GUNES H, DEMIR S, ERDINC C, et al. Effects of arbuscular mycorrhizal fungi (AMF) and biochar on the growth of pepper (Capsicum annuum L.) under salt stress[J]. Gesunde Pflanzen, 2023, 75(6): 2669-2681. |
[5] | 杨娅琳, 武自强, 刘丽, 等. 油茶炭疽病发生与丛枝菌根真菌(AMF)关系研究[J]. 生物学杂志, 2023, 40(5): 35-40. |
YANG Y L, WU Z Q, LIU L, et al. The relationship between arbuscular mycorrhizal fungi (AMF) and anthracnose occurrence in Camellia oleifera[J]. Journal of Biology, 2023, 40(5): 35-40. (in Chinese with English abstract) | |
[6] | SAMMAMA H, MAZRI M A, OUAHMANE L, et al. Microbial inoculation improves soil properties, nutrient uptake, and plant growth in soft wheat-faba bean intercropping[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(4): 5159-5173. |
[7] | 陈笑莹, 宋凤斌, 朱先灿, 等. 低温胁迫下丛枝菌根真菌对玉米幼苗形态、生长和光合的影响[J]. 华北农学报, 2014, 29(S1): 155-161. |
CHEN X Y, SONG F B, ZHU X C, et al. Effect of arbuscular mycorrhizal fungus on morphology, growth and photosynthetic characteristics in maize seedlings under low temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(S1): 155-161. | |
[8] | LI S X, YANG W Y, GUO J H, et al. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi[J]. Plant Physiology and Biochemistry, 2020, 154: 1-10. |
[9] | 谢雪曼, 王凯渊, 余兰, 等. 接种AM真菌改善龙眼幼苗抗寒生理的研究[J]. 西南大学学报(自然科学版), 2023, 45(2): 76-85. |
XIE X M, WANG K Y, YU L, et al. Inoculation of AM fungi improves the cold resistance physiology of Longan seedings[J]. Journal of Southwest University(Natural Science Edition), 2023, 45(2): 76-85. (in Chinese with English abstract) | |
[10] | 任禛, 陈泽斌, 胡昳, 等. 弱光胁迫下接种Glomus mosseae对玉米生长生理指标的影响[J]. 玉米科学, 2016, 24(2): 160-165. |
REN Z, CHEN Z B, HU D, et al. Effect of Glomus mosseae inoculation on growth and physiological indexes of maize under low-light stress[J]. Journal of Maize Sciences, 2016, 24(2): 160-165. (in Chinese with English abstract) | |
[11] | BHAT M A, KUMAR V, AHMAD BHAT M, et al. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress[J]. Frontiers in Microbiology, 2020, 11: 1952. |
[12] | 沈甜, 王琼瑶, 崔永亮, 等. 植物根际促生细菌对蒲儿根富集铜及土壤理化性质的影响[J]. 农业环境科学学报, 2020, 39(3): 572-580. |
SHEN T, WANG Q Y, CUI Y L, et al. Effects of plant growth-promoting rhizobacteria on the copper enrichment ability of Sinosenecio oldhamianus and physicochemical properties of soil[J]. Journal of Agro-Environment Science, 2020, 39(3): 572-580. (in Chinese with English abstract) | |
[13] | SINGH R P, SHELKE G M, KUMAR A, et al. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants[J]. Frontiers in Microbiology, 2015, 6: 937. |
[14] | ALSHEGAIHI R M, ALATAWI A, ALENEZI M A. Ameliorative effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on Cu stress in maize (Zea mays L.) with a focus on oxidative damage, antioxidant responses, and gene expression[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(2): 2437-2455. |
[15] | 李文彬, 宁楚涵, 李伟, 等. 菲和芘胁迫下AMF和PGPR对高羊茅生理生态的响应[J]. 草业学报, 2019, 28(8): 84-94. |
LI W B, NING C H, LI W, et al. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress[J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. (in Chinese with English abstract) | |
[16] | 刘贵猛, 谭树朋, 孙文献, 等. AMF和PGPR对生姜青枯病的影响[J]. 菌物研究, 2017, 15(1): 1-7. |
LIU G M, TAN S P, SUN W X, et al. Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on bacterial wilt of ginger[J]. Journal of Fungal Research, 2017, 15(1): 1-7. (in Chinese with English abstract) | |
[17] | CHEN Q, DENG X H, ELZENGA J T M, et al. Effect of soil bacteriomes on mycorrhizal colonization by Rhizophagus irregularis: interactive effects on maize (Zea mays L.) growth under salt stress[J]. Biology and Fertility of Soils, 2022, 58(5): 515-525. |
[18] | PAN J, HUANG C H, PENG F, et al. Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum Bobr. under saline soil conditions[J]. Research in Cold and Arid Regions, 2022, 14(6): 393-402. |
[19] | 韩亚楠, 刘润进, 李敏. AM真菌和PGPR菌剂组合对低温胁迫下黄瓜生长及防御酶活性的影响[J]. 中国蔬菜, 2014(7): 35-39. |
HAN Y N, LIU R J, LI M. Effects of arbuscular mycorrhizal fungi and PGPR combination agents on growth and defense enzyme activity of cucumber under low temperature stress[J]. China Vegetables, 2014(7): 35-39. (in Chinese with English abstract) | |
[20] | 龚仲幸, 何勇, 朱祝军. 水杨酸对低温胁迫下紫罗兰的生理效应[J]. 江苏农业科学, 2015, 43(6): 150-154. |
GONG Z X, HE Y, ZHU Z J. Physiological effects of salicylic acid on violet under low temperature stress[J]. Jiangsu Agricultural Sciences, 2015, 43(6): 150-154. (in Chinese with English abstract) | |
[21] | 罗红艺, 刘璇, 李思思, 等. 无机盐对紫罗兰切花的保鲜效应[J]. 华中师范大学学报(自然科学版), 2015, 49(5): 763-766. |
LUO H Y, LIU X, LI S S, et al. Effects of fresh preservative agents with different inorganic ions on cut flowers of Matthiola incana[J]. Journal of Central China Normal University(Natural Sciences), 2015, 49(5): 763-766. (in Chinese with English abstract) | |
[22] | 姚汉央, 弓雅婧, 苏宏鼎, 等. 紫罗兰挥发物化学成分分析及促生活性物质鉴定[J]. 云南农业大学学报(自然科学), 2022, 37(5): 842-852. |
YAO H Y, GONG Y J, SU H D, et al. Chemical constituents and effective growth promoting compounds in Matthiola incana volatiles[J]. Journal of Yunnan Agricultural University(Natural Science), 2022, 37(5): 842-852. (in Chinese with English abstract) | |
[23] | NOORASYIKIN M N, ZAINAB M. PGPR by bacillus in vetiver grass’s root enhance strength of soil-root matrix system toward slope stabilization in malaysia[J]. Journal of Engineering and Applied Sciences, 2017, 12(12): 3051-3054. |
[24] | 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. |
[25] | 王学奎. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015. |
[26] | ORDOOKHANI K, KHAVAZI K, MOEZZI A, et al. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato[J]. African Journal of Agricultural Research, 2010, 5(10): 1108-1116. |
[27] | ABKENAR M B, MOZAFARI H, KARIMZADEH K, et al. Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) as an alternative to mineral fertilizers to improve the growth, essential oil profile, and phenolic content of Satureja macrantha L.[J]. Journal of Crop Health, 2024, 76(1): 347-356. |
[28] | AROCA R, PORCEL R, RUIZ-LOZANO J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?[J]. New Phytologist, 2007, 173(4): 808-816. |
[29] | 杜红, 李玉鹏, 程文, 等. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
DU H, LI Y P, CHENG W, et al. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. (in Chinese with English abstract) | |
[30] | 曹克友, 魏佑营, 吴静, 等. 低温弱光胁迫对辣椒CMS三系幼苗光合特性与叶绿素含量的影响[J]. 山东农业科学, 2008, 40(6): 13-16, 19. |
CAO K Y, WEI Y Y, WU J, et al. Effects of low temperature and weak light on photosynthetic characteristics and chlorophyll content in seedlings of hot pepper CMS three-lines[J]. Shandong Agricultural Sciences, 2008, 40(6): 13-16, 19. (in Chinese with English abstract) | |
[31] | 闫妍, 孙超, 于贤昌, 等. 低温胁迫对接种丛枝菌根真菌番茄幼苗生理特性的影响[J]. 中国农业大学学报, 2011, 16(6): 64-69. |
YAN Y, SUN C, YU X C, et al. Effects of arbuscular mycorrhizal fungi on physiological properties of tomato seedlings under low temperature stress[J]. Journal of China Agricultural University, 2011, 16(6): 64-69. (in Chinese with English abstract) | |
[32] | 刘爱荣, 陈双臣, 刘燕英, 等. 丛枝菌根真菌对低温下黄瓜幼苗光合生理和抗氧化酶活性的影响[J]. 生态学报, 2011, 31(12): 3497-3503. |
LIU A R, CHEN S C, LIU Y Y, et al. Effects of AM fungi on leaf photosynthetic physiological parameters and antioxidant enzyme activities under low temperature[J]. Acta Ecologica Sinica, 2011, 31(12): 3497-3503. (in Chinese with English abstract) | |
[33] | 黄志, 许炜萍, 郁昉斌, 等. 接种AMF对弱光环境及盐胁迫下甜瓜光合特性的影响[J]. 西北植物学报, 2018, 38(2): 307-315. |
HUANG Z, XU W P, YU F B, et al. Photosynthesis responses of Cucumis melo seedlings to Glomus under low light and salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(2): 307-315. (in Chinese with English abstract) | |
[34] | 艾星梅, 郑舒媛, 杨艳余, 等. 弱光下PGPR对重瓣百合开花期光合特性及生长的影响[J]. 西南林业大学学报(自然科学), 2017, 37(5): 72-79. |
AI X M, ZHENG S Y, YANG Y Y, et al. Effects of plant growth promoting rhizobacteria on photosynthetic characteristics and growth of ‘Carolina’ before and after florescence under low light[J]. Journal of Southwest Forestry University(Natural Sciences), 2017, 37(5): 72-79. (in Chinese with English abstract) | |
[35] | 李文英, 彭智平, 杨少海, 等. 植物根际促生菌对香蕉幼苗生长及抗枯萎病效应研究[J]. 园艺学报, 2012, 39(2): 234-242. |
LI W Y, PENG Z P, YANG S H, et al. Effects of plant growth-promoting rhizobacteria on growth and controlling Fusarium-wilt disease of banana seedlings[J]. Acta Horticulturae Sinica, 2012, 39(2): 234-242. (in Chinese with English abstract) | |
[36] | LV J H, ZHENG T, SONG Z L, et al. Strawberry proteome responses to controlled hot and cold stress partly mimic post-harvest storage temperature effects on fruit quality[J]. Frontiers in Nutrition, 2021, 8: 812666. |
[37] | 马俊卿. 基于多组学方法研究AMF共生诱导的玉米根系分泌物变化及变化机理[D]. 南宁: 广西大学, 2022. |
MA J Q. Investigation of AMF symbiosis induced changes and mechanisms of changes in root exudates of maize based on multi omics approaches[D]. Nanning: Guangxi University, 2022. (in Chinese with English abstract) | |
[38] | MAHESHWARI D K. Bacterial metabolites in sustainable agroecosystem[M]. Cham: Springer International Publishing, 2015. |
[39] | KHALLOUFI M, MARTÍNEZ-ANDÚJAR C, LACHAÂL M, et al. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance[J]. Journal of Plant Physiology, 2017, 214: 134-144. |
[40] | ZUBAIR M, HANIF A, FARZAND A, et al. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat[J]. Microorganisms, 2019, 7(9): 337. |
[41] | 陈蕾太, 孙爱清, 杨敏, 等. 逆境条件下小麦种子活力与种子萌发相关酶活性及其基因表达的关系[J]. 应用生态学报, 2017, 28(2): 609-619. |
CHEN L T, SUN A Q, YANG M, et al. Relationships of wheat seed vigor with enzyme activities and gene expression related to seed germination under stress conditions[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 609-619. (in Chinese with English abstract) | |
[42] | 黄丽芳, 刘建汀, 王彬, 等. 低温弱光对西葫芦幼苗生长生理指标的影响[J]. 福建农业科技, 2018, 49(7): 11-16. |
HUANG L F, LIU J T, WANG B, et al. Effects of low temperature and weak illumination on physiological indices of summer squash seedlings[J]. Fujian Agricultural Science and Technology, 2018, 49(7): 11-16. (in Chinese with English abstract) | |
[43] | 徐雅梅, 褚希彤, 吴叶, 等. 接种丛枝菌根真菌对低温胁迫下垂穗披碱草影响的研究[J]. 草地学报, 2016, 24(5): 1009-1015. |
XU Y M, CHU X T, WU Y, et al. Effect of arbuscular mycorrhiza inoculation on cold resistance in Elymus nutans[J]. Acta Agrestia Sinica, 2016, 24(5): 1009-1015. (in Chinese with English abstract) | |
[44] | 赵友学, 杨燕波, 朱宇峰, 等. 内生细菌Pantoea alhagi NX-11及其胞外多糖对低温胁迫下水稻苗的促生效应[J]. 江苏农业学报, 2022, 38(2): 296-303. |
ZHAO Y X, YANG Y B, ZHU Y F, et al. Effects of endophytic bacterium Pantoea alhagi NX-11 and its extracellular polysaccharides on the growth of paddy rice seedlings under low temperature stress[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(2): 296-303. (in Chinese with English abstract) | |
[45] | 刘耀臣, 陈可, 于伟红, 等. 水杨酸和AM真菌增强黄瓜耐低温的效应[J]. 北方园艺, 2020(10): 10-15. |
LIU Y C, CHEN K, YU W H, et al. Effects of salicylic acid and AM fungi on cucumber tolerance to low temperature[J]. Northern Horticulture, 2020(10): 10-15. (in Chinese with English abstract) |
[1] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
[2] | CHEN Mengwei, LIANG Xu, ZHANG Chenglei, LIANG Jing, XU Yingzi, XIANG Dandan, YANG Zhaoqu, XIE Yongdong. Effects of microbial fertilizer on soil properties and leaf nutrition of Dongkui bayberry [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1130-1138. |
[3] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
[4] | LI Shuyan, JIAO Ting, QI Shuai, ZHANG Xia, WANG Huning, ZHAO Shengguo. In vitro study on effects of isochlorogenic acid supplementation in sheep diets on nutrient digestion and rumen fermentation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1753-1763. |
[5] | ZENG Hongxue, QU Xinghong. Effect of low-temperature stress on proline metabolism and ascorbic acid-glutathione cycle during germination of three Pueraria lobata germplasm lines [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1558-1568. |
[6] | YAN Hongyuan, YU Zheping, ZHANG Shuwen, NI Xiaopeng, LI Xiangnan, LIANG Senmiao. Analysis of the correlation between the occurrence of the flesh scallion disease of Myrica rubra and nutritional elements [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1626-1633. |
[7] | HU Tiejun. Effects of chemical fertilizer reduction combined with microbial fertilizer application on yield, quality, and soil properties of broccoli [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1657-1665. |
[8] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
[9] | LI Xiao, YAN Tingyu, NIU Lili, ZHAI Panpan, ZHANG Huafeng, YANG Xiaohua, PENG Yuanjin. Chemical composition, antioxidant capacity and protective activity against DNA damage of organic selenium-enriched matcha [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2222-2232. |
[10] | PAN Yajie, CHANG Huiqing, SONG Panpan. Nutrients characteristics of pig manure in large-scale farms and effect of filler addition during composting [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1690-1698. |
[11] | TIE Jianzhong, LIU Yayu, GAO Xueqin, XU Zhiqi, HU Linli, YU Jihua. Effects of planting and breeding waste composting on nutrient utilization and soil properties of zucchini in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1427-1439. |
[12] | WU Chuanmei, HE Ji, WU Wenshan, CAI Jun, XIANG Yangzhou. Effects of intercropping on stoichiometric characteristics and nutrients contribution rate of soil aggregates in Rosa roxbunghii Tratt. orchard [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1132-1143. |
[13] | ZHAO Yunyan, SUN Jian, LIANG Junchao, WANG Zhiqi, YAN Tingxian, YAN Xiaowen, WEI Wenliang, LE Meiwang. Effects of low temperature on seedling growth at sesame early seedling period and screening of low-temperature tolerant materials [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 752-768. |
[14] | NIE Wei, MENG Ke, RONG Xuan, QIANG Hao, GUO Chenhao, TAO Maohai, FENG Dengzhen. Analysis of GRM1 gene polymorphism and its correlation with meat quality traits in sheep [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 799-808. |
[15] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||