Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (2): 232-239.DOI: 10.3969/j.issn.1004-1524.2022.02.03
• Crop Science • Previous Articles Next Articles
GONG Weiwei1(), ZHAO Yichen1,*(
), LUO Xianlin2, YANG Lingling3, ZHAO Degang4
Received:
2020-09-08
Online:
2022-02-25
Published:
2022-03-02
Contact:
ZHAO Yichen
CLC Number:
GONG Weiwei, ZHAO Yichen, LUO Xianlin, YANG Lingling, ZHAO Degang. Expression and promoter sequence analysis of NaD1 gene in Nicotiana alata[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 232-239.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.02.03
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
Na-NaD1-D-F | ATGGCTCGCTCCTTGTGCT |
Na-NaD1-D-R | TGCTTGAAGAAGAGATAATGGATAACTAA |
N-actin-F | TGAGATGCACCACGAAGCTC |
N-actin-R | CCAACATTGTCACCAGGAAGTG |
Na-sp1 | AGCTTTTCTGCATGGTGGTTTGG |
Na-sp2 | GAGACAAACCATAGGCAACAAAGAGC |
Na-sp3 | GAAGCACAAGGAGCGAGCCATAGT |
N-actin-F | TGAGATGCACCACGAAGCTC |
N-actin-R | CCAACATTGTCACCAGGAAGTG |
NaD1-F-60 | CTATGAGGTGCAAGCTAGAGAATG |
NaD1-R-177 | GGCACCTTCTGAGGATTTTGCTA |
Table 1 The sequences of primers
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
Na-NaD1-D-F | ATGGCTCGCTCCTTGTGCT |
Na-NaD1-D-R | TGCTTGAAGAAGAGATAATGGATAACTAA |
N-actin-F | TGAGATGCACCACGAAGCTC |
N-actin-R | CCAACATTGTCACCAGGAAGTG |
Na-sp1 | AGCTTTTCTGCATGGTGGTTTGG |
Na-sp2 | GAGACAAACCATAGGCAACAAAGAGC |
Na-sp3 | GAAGCACAAGGAGCGAGCCATAGT |
N-actin-F | TGAGATGCACCACGAAGCTC |
N-actin-R | CCAACATTGTCACCAGGAAGTG |
NaD1-F-60 | CTATGAGGTGCAAGCTAGAGAATG |
NaD1-R-177 | GGCACCTTCTGAGGATTTTGCTA |
Fig.1 Expression of NaD1 gene in different tissues and leaves at different growth and development stages of Nicotiana alata The bars with different letters show the significant difference at the level of 0. 05. The same as below.
功能预测 Putative function | 元件名称 Element name | 核心序列 Core sequence | 数量 Number |
---|---|---|---|
转录起始点-30 核心启动子元件Transcription start point-30 core promoter element | TATA-box | CCTATAAATA,TATA | 3 |
启动子和增强子的调控元件Regulatory elements for promoters and enhancers | CAAT-box | CAAT,CAAAT | 2 |
高转录水平顺式作用元件High transcription level cis-acting element | 5'UTR Py-rich stretch | TTTCTACTCT | 1 |
光响应元件Light-responsive element | Box Ⅰ | TTTCAAA | 1 |
光响应的部分元件Some components respond to light | Ⅰ-box | GGAAAAGGTG | 1 |
防卫和胁迫响应顺式作用元件Defense and stress response cis-acting elements | TC-rich repeats | ATTTTTTTCA | 1 |
干旱诱导相关的 MYB结合位点MYB binding sites related to drought induction | MBS | TAACTG | 1 |
乙烯响应元件Ethylene response element | ERE | ATTTCAAA | 1 |
茉莉酸甲酯响应元件Methyl jasmonate response element | TGACG-motif | TGACG | 1 |
醇溶蛋白代谢有关的顺式作用调控元件 | O2-site | GGAAAAGGTG | 1 |
cis-acting regulatory elements related to gliadin metabolism |
Table 2 The cis-acting elements in regulatory sequence in 5' terminal of NaD1 gene
功能预测 Putative function | 元件名称 Element name | 核心序列 Core sequence | 数量 Number |
---|---|---|---|
转录起始点-30 核心启动子元件Transcription start point-30 core promoter element | TATA-box | CCTATAAATA,TATA | 3 |
启动子和增强子的调控元件Regulatory elements for promoters and enhancers | CAAT-box | CAAT,CAAAT | 2 |
高转录水平顺式作用元件High transcription level cis-acting element | 5'UTR Py-rich stretch | TTTCTACTCT | 1 |
光响应元件Light-responsive element | Box Ⅰ | TTTCAAA | 1 |
光响应的部分元件Some components respond to light | Ⅰ-box | GGAAAAGGTG | 1 |
防卫和胁迫响应顺式作用元件Defense and stress response cis-acting elements | TC-rich repeats | ATTTTTTTCA | 1 |
干旱诱导相关的 MYB结合位点MYB binding sites related to drought induction | MBS | TAACTG | 1 |
乙烯响应元件Ethylene response element | ERE | ATTTCAAA | 1 |
茉莉酸甲酯响应元件Methyl jasmonate response element | TGACG-motif | TGACG | 1 |
醇溶蛋白代谢有关的顺式作用调控元件 | O2-site | GGAAAAGGTG | 1 |
cis-acting regulatory elements related to gliadin metabolism |
Fig.4 Verification of transcriptional activity of the NaD1 gene promoter A, Double enzyme digestion agarose gel electrophoresis of recombinant plasmid: 1, DL2000 Marker; 2, pNaD1-644; 3, pNaD1-310; 4, 15 000 Marker; B, GUS histochemical staining on the leaves of resistant seedlings: 1, Wild type; 2, pCAMBIA1391z-pNaD1-310∶∶GUS; 3, pCAMBIA1391z-pNaD1-644∶∶GUS.
[1] |
LAY F T, BRUGLIERA F, ANDERSON M A. Isolation and properties of floral defensins from ornamental tobacco and Petunia[J]. Plant Physiology, 2003, 131(3):1283-1293.
DOI URL |
[2] |
LAY F T, SCHIRRA H J, SCANLON M J, et al. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP[J]. Journal of Molecular Biology, 2003, 325(1):175-188.
DOI URL |
[3] |
MILLIGAN S B, GASSER C S. Nature and regulation of pistil-expressed genes in tomato[J]. Plant Molecular Biology, 1995, 28(4):691-711.
DOI URL |
[4] |
KARUNANANDAA B, SINGH A, KAO T H. Characterization of a predominantly pistil-expressed gene encoding a γ-thionin-like protein of Petunia inflata[J]. Plant Molecular Biology, 1994, 26(1):459-464.
DOI URL |
[5] |
VAN DEN HEUVEL K J, HULZINK J M, BARENDSE G W, et al. The expression of tgas118, encoding a defensin in Lycopersicon esculentum, is regulated by gibberellin[J]. Journal of Experimental Botany, 2001, 52(360):1427-1436.
DOI URL |
[6] |
VAN DER WEERDEN N L, HANCOCK R E W, ANDERSON M A. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process[J]. Journal of Biological Chemistry, 2010, 285(48):37513-37520.
DOI URL |
[7] |
VAN DER WEERDEN N L, LAY F T, ANDERSON M A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae[J]. Journal of Biological Chemistry, 2008, 283(21):14445-14452.
DOI URL |
[8] |
HAYES B M, BLEACKLEY M R, WILTSHIRE J L, et al. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(8):3667-3675.
DOI URL |
[9] |
LAY F T, MILLS G D, POON I K H, et al. Dimerization of plant defensin NaD1 enhances its antifungal activity[J]. Journal of Biological Chemistry, 2012, 287(24):19961-19972.
DOI URL |
[10] |
LEMMON M A. Membrane recognition by phospholipid-binding domains[J]. Nature Reviews Molecular Cell Biology, 2008, 9(2):99-111.
DOI URL |
[11] |
BLEACKLEY M R, PAYNE J A, HAYES B M, et al. Nicotiana alata defensin chimeras reveal differences in the mechanism of fungal and tumor cell killing and an enhanced antifungal variant[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(10):6302-6312.
DOI URL |
[12] | REKHA M M, REDDY P D, GOPINATH C. The tobacco can kill the cancer-by a molecule called NaD1 which is obtained from flowers of Nicotiana alata[J]. Acta Crystallographica, 2015, 13(2):1132-1145. |
[13] |
BAXTER A A, POON I K, HULETT M D. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process[J]. Cell Death Discovery, 2017, 3:16102.
DOI URL |
[14] | 贺飞燕, 闫建俊, 白云凤, 等. 启动子的类型及应用[J]. 山西农业科学, 2017, 45(1):115-120. |
HE F Y, YAN J J, BAI Y F, et al. Types and applications of promoters[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(1):115-120.(in Chinese with English abstract) | |
[15] | 吴雪峰, 赵开军, 陈毓荃. 植物启动子的诱导模序[J]. 中国生物工程杂志, 2004, 24(12):14-21. |
WU X F, ZHAO K J, CHEN Y Q. The motifs of plant inducible promoters[J]. Progress in Biotechnology, 2004, 24(12):14-21.(in Chinese with English abstract) | |
[16] | 张春晓, 王文棋, 蒋湘宁, 等. 植物基因启动子研究进展[J]. 遗传学报, 2004, 31(12):1455-1464. |
ZHANG C X, WANG W Q, JIANG X N, et al. Review on plant gene promoters[J]. Acta Genetica Sinica, 2004, 31(12):1455-1464.(in Chinese with English abstract) | |
[17] | POTENZA C, ALEMAN L, SENGUPTA-GOPALAN C. Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation[J]. In Vitro Cellular & Developmental Biology-Plant, 2004, 40(1):1-22. |
[18] |
李田, 孙景宽, 刘京涛. 植物启动子研究进展[J]. 生物技术通报, 2015, 31(2):18-25.
DOI |
LI T, SUN J K, LIU J T. Research advances on plant promoter[J]. Biotechnology Bulletin, 2015, 31(2):18-25.(in Chinese with English abstract) | |
[19] | 李泽卿. 二球悬铃木花发育基因PaAP3、PaPI和PaSTK启动子的克隆、功能分析及其在不育中的应用[D]. 武汉: 华中农业大学, 2017. |
LI Z Q. Cloning, functional analysis and application in sterility of PaAP3, PaPI and PaSTK promoters of Platanus acerifolia[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[20] | 魏胜华, 孟娜. 改良CTAB法提取大戟属药用植物叶片总DNA试验[J]. 湖北农业科学, 2011, 50(16):3418-3420. |
WEI S H, MENG N. A modified CTAB method for total DNA extraction from the medicinal herb leaves of Euphorbia Linn[J]. Hubei Agricultural Sciences, 2011, 50(16):3418-3420.(in Chinese with English abstract) | |
[21] | 杨玲玲. 烟草NaD1基因克隆及结构分析[D]. 贵阳: 贵州大学, 2018. |
YANG L L. Molecular cloning and structural analysis of NaD1 in Nicotiana alata[D]. Guiyang: Guizhou University, 2018. (in Chinese with English abstract) | |
[22] | 朱鹤, 贺艳, 张全启. 半滑舌鳎des基因的表达及其启动子功能分析[J]. 中国海洋大学学报(自然科学版), 2020, 50(S1):84-93. |
ZHU H, HE Y, ZHANG Q Q. Expression pattern and promoter analysis of des gene in Cynoglossus semilaevis[J]. Periodical of Ocean University of China, 2020, 50(S1):84-93.(in Chinese with English abstract) | |
[23] | 周家红, 郭印, 孟莎莎, 等. 突触黏附分子编码基因NRXN2α启动子的功能分析[J]. 中国细胞生物学学报, 2020, 42(6):997-1007. |
ZHOU J H, GUO Y, MENG S S, et al. Functional analysis of the promoter of NRXN2α gene coding synaptic adhesion molecule[J]. Chinese Journal of Cell Biology, 2020, 42(6):997-1007.(in Chinese with English abstract) |
[1] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[2] | XU Na, WANG Dahai, DU Chuanyin, DU Shasha, WANG Xiaomeng, ZHANG Yan, ZHANG Yuqin, WU Yuanhua, GUAN Ensen, SHI Yi. Effects of planting space on growth and development of tobacco seedlings [J]. , 2020, 32(8): 1342-1350. |
[3] | CHEN Qianli, WANG Hancheng, LIANG Yongjin, CAI Liuti, HUANG Yu, ZHOU Hao, LI Zhong, HAN Jie. Fungal composition and diversity analysis of healthy and rotten tobacco leaves after curing [J]. , 2020, 32(6): 1019-1028. |
[4] | WANG Jing, PENG Shuang, HU Sheng, ZHUO Wei, CHEN Qian, LI Liqin. Cloning expression vector construction and expression analysis of tobacco ATPase4 gene [J]. , 2019, 31(2): 173-181. |
[5] | BAI Yuxiang, YANG Huanwen, XU Zhaoli, WU Tao, YI Jianhua, WANG Ge. Relationship within phenolic acids and soil properties in continuous cropping tobacco soil [J]. , 2018, 30(11): 1907-1914. |
[6] | YANG Juan, MI Qili, XIONG Wen, ZHU Ruizhi, LOU Mumeng, YAO Jianhua, LUO Yiyong. Application of foodborne lactic acid bacteria in improving tobacco quality [J]. , 2018, 30(5): 854-862. |
[7] | WANG Wanneng, XIANG Gangliao, ZHAI Yuchen, MA Kuoyan, DAI Ya, TAN Lanlan. Dynamic variation rules of protein degradation in flue-cured tobaccos [J]. , 2017, 29(12): 2120-2127. |
[8] | ZHUO Wei, CHEN Qian, LU Liming, LI Liqin. Cloning and expression analysis of NtCIPK2 gene in Nicotiana tabacum [J]. , 2017, 29(10): 1597-1604. |
[9] | HUANG Luping, LIU Lun, LU Liming, LI Liqin. Cloning, sequence and expression analysis of a potassium channel NtKAT3 in tobacco [J]. , 2017, 29(7): 1057-1063. |
[10] | LIU Fang, HAN Dan, ZHAO Mingqin, LI Xiaoyong, GUAN Chengwei. Effects of application of microbial agents along with humic acid potassium on tobacco-planted soil and economic benefit of flue-cured tobacco [J]. , 2017, 29(7): 1064-1069. |
[11] | HUANG Fangfang, YIN Jie, YAN Zhipeng, XIAO Weiqiang, BI Yiming, YANG Yanqin, ZHOU Guojun, NIU Fangfang, YANG Jun. Moisture retentiveness, pyrolysis productions and biological safety of polysaccharides extracts from Sargassum horneri in cut tobacco [J]. , 2017, 29(5): 831-839. |
[12] | LUO An. Detection and analysis of an egg cell-expressed gene in Nicotiana tabacum [J]. , 2017, 29(3): 360-365. |
[13] | XU Li, HUANG Luping, LU Liming, LI Liqin. Cloning and expression analysis of potassium channel NtTPK gene in tobacco [J]. , 2017, 29(3): 366-372. |
[14] | REN Xueliang, LI Liqin, XU Li, GUO Yushuang, LU Liming. Cloning and bioinformatic analysis of glucosetransferase gene NtGT3 in Nicotiana tabacum [J]. , 2017, 29(1): 23-30. |
[15] | JIANG Xin-ye, LI Shan, ZHANG Hao, LI Qi-quan, LI Bin, WANG Chang-quan, LI Bing. Evaluation on content and distribution characteristics of soil available microelements in tobacco growing area in Northern Sichuan [J]. , 2016, 28(9): 1572-1579. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||