Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (2): 221-231.DOI: 10.3969/j.issn.1004-1524.2022.02.02
• Crop Science • Previous Articles Next Articles
JIA Liqiang1(), ZHAO Qiufang2, CHEN Shu2, DING Bo1,*(
)
Received:
2021-05-19
Online:
2022-02-25
Published:
2022-03-02
Contact:
DING Bo
CLC Number:
JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.02.02
基因名称 Gene name | 基因号 Gene locus | 上游引物 Forward primers (5'→3') | 下游引物 Reverse primers (5'→3') |
---|---|---|---|
ZmbZIP2 | Zm00001d028372 | CATCCATCTGTAGCTCCAAGCCATC | CTGTCCCGTTTGGTAACTGCATAGG |
ZmbZIP20 | Zm00001d034571 | GGCACGCTCAGATCAGAACTCGAC | ATGCTCAGAGTCGTCACAACGCTAG |
ZmbZIP26 | Zm00001d004897 | CAGCAACGGGAAAGGAAGCCAC | GGCTGTGAAAACGCACTGGTTG |
ZmbZIP39 | Zm00001d005244 | GGGAATGCTACCATTTTGCCACAAC | TTTCGCGCTTCAATTCCCTCTCATC |
ZmbZIP40 | Zm00001d040500 | GCCAACACAGCAAGCTCTGCTC | CACGTTCATCCTGTATCCATTGCTC |
ZmbZIP50 | Zm00001d041142 | CCCAGTGCTACAAATGTCGCGAAC | ACGAGCAGGCAGGAACAGCAAC |
ZmbZIP51 | Zm00001d043908 | CCCTGGAATAGCGCCTGGTCATG | CTCCGCACTCAATGGGTTTACCAC |
ZmbZIP67 | Zm00001d043992 | TCATCACGACCAGAGCCAAATCCA | ACCGCAATTGTTCCCGTGACGTTG |
ZmbZIP73 | Zm00001d052562 | CCTATGCCAACAAATGGACATGCTG | CACTCTCACTCTCACTTCCACTCTC |
ZmbZIP96 | Zm00001d053967 | CAATGAGCGTGGAGCCAGCCAA | TACATCGCTTGAGCCTTCTGCAC |
ZmbZIP97 | Zm00001d015118 | CGTCTGCTCCATCCGCCAAC | AGAATCGCCATCTTCCTTCCCATC |
ZmbZIP100 | Zm00001d039065 | GCATCGAGCCGCCGAAGTTG | TGCCTCCAGCACAGTTCCCATTG |
ZmbZIP123 | Zm00001d039206 | CTCGTCCTGTCCGAGCACCTC | GTGAGTCCAACTACTGGCGGCTTAC |
ZmbZIP133 | Zm00001d019166 | GGAAAGGAAGAAGGCGTACCTGAG | GCCTCTTCTGTTGTTGACAGTGGTG |
ZmbZIP125 | Zm00001d045288 | GAACGGCCACACTTACCAGG | GATACGATCACGACGGCTCTAAACC |
ZmbZIP136 | Zm00001d047967 | ATGGCGACGTTGGTGTGCCAC | GAGCGAGCCGTGATGGTGGTG |
ZmbZIP138 | Zm00001d046664 | CAGCGTGGACCAGTTCTTCGAC | CATCGCCATCCACCTCCACCG |
ZmbZIP140 | Zm00001d024041 | AGAACAACAACCGCAGACTCTCAAC | CCGCCTCCCACCTTCAACGAC |
ZmbZIP142 | Zm00001d024285 | GCAACGCCTATACCGTTCTACCAG | CGGTGGATAATGGCAGGTCTGAG |
Table 1 qRT-PCR primers of ZmbZIP gene
基因名称 Gene name | 基因号 Gene locus | 上游引物 Forward primers (5'→3') | 下游引物 Reverse primers (5'→3') |
---|---|---|---|
ZmbZIP2 | Zm00001d028372 | CATCCATCTGTAGCTCCAAGCCATC | CTGTCCCGTTTGGTAACTGCATAGG |
ZmbZIP20 | Zm00001d034571 | GGCACGCTCAGATCAGAACTCGAC | ATGCTCAGAGTCGTCACAACGCTAG |
ZmbZIP26 | Zm00001d004897 | CAGCAACGGGAAAGGAAGCCAC | GGCTGTGAAAACGCACTGGTTG |
ZmbZIP39 | Zm00001d005244 | GGGAATGCTACCATTTTGCCACAAC | TTTCGCGCTTCAATTCCCTCTCATC |
ZmbZIP40 | Zm00001d040500 | GCCAACACAGCAAGCTCTGCTC | CACGTTCATCCTGTATCCATTGCTC |
ZmbZIP50 | Zm00001d041142 | CCCAGTGCTACAAATGTCGCGAAC | ACGAGCAGGCAGGAACAGCAAC |
ZmbZIP51 | Zm00001d043908 | CCCTGGAATAGCGCCTGGTCATG | CTCCGCACTCAATGGGTTTACCAC |
ZmbZIP67 | Zm00001d043992 | TCATCACGACCAGAGCCAAATCCA | ACCGCAATTGTTCCCGTGACGTTG |
ZmbZIP73 | Zm00001d052562 | CCTATGCCAACAAATGGACATGCTG | CACTCTCACTCTCACTTCCACTCTC |
ZmbZIP96 | Zm00001d053967 | CAATGAGCGTGGAGCCAGCCAA | TACATCGCTTGAGCCTTCTGCAC |
ZmbZIP97 | Zm00001d015118 | CGTCTGCTCCATCCGCCAAC | AGAATCGCCATCTTCCTTCCCATC |
ZmbZIP100 | Zm00001d039065 | GCATCGAGCCGCCGAAGTTG | TGCCTCCAGCACAGTTCCCATTG |
ZmbZIP123 | Zm00001d039206 | CTCGTCCTGTCCGAGCACCTC | GTGAGTCCAACTACTGGCGGCTTAC |
ZmbZIP133 | Zm00001d019166 | GGAAAGGAAGAAGGCGTACCTGAG | GCCTCTTCTGTTGTTGACAGTGGTG |
ZmbZIP125 | Zm00001d045288 | GAACGGCCACACTTACCAGG | GATACGATCACGACGGCTCTAAACC |
ZmbZIP136 | Zm00001d047967 | ATGGCGACGTTGGTGTGCCAC | GAGCGAGCCGTGATGGTGGTG |
ZmbZIP138 | Zm00001d046664 | CAGCGTGGACCAGTTCTTCGAC | CATCGCCATCCACCTCCACCG |
ZmbZIP140 | Zm00001d024041 | AGAACAACAACCGCAGACTCTCAAC | CCGCCTCCCACCTTCAACGAC |
ZmbZIP142 | Zm00001d024285 | GCAACGCCTATACCGTTCTACCAG | CGGTGGATAATGGCAGGTCTGAG |
基因ID Gene ID | 基因名称 Gene name | 长度 Length/bp | 分子量 Molecular mass/ku | 等电点 Isoelectric point | 染色体 Chromosome | 可变剪切 Splice variants |
---|---|---|---|---|---|---|
Zm00001d028372 | ZmbZIP2 | 583 | 62.46 | 9.55 | Chr1:32433751-32442505 | 17 |
Zm00001d034571 | ZmbZIP20 | 356 | 37.47 | 7.59 | Chr1:296596877-296600683 | 3 |
Zm00001d004897 | ZmbZIP24 | 347 | 36.48 | 8.35 | Chr2:147657998-147659916 | 1 |
Zm00001d005244 | ZmbZIP26 | 371 | 38.75 | 7.16 | Chr2:165521128-165527158 | 9 |
Zm00001d040500 | ZmbZIP39 | 194 | 21.09 | 10.13 | Chr3:47004098-47005326 | 1 |
Zm00001d041142 | ZmbZIP40 | 382 | 40.63 | 8.41 | Chr3:100232730-100240533 | 24 |
Zm00001d043908 | ZmbZIP50 | 191 | 20.72 | 9.34 | Chr3:213533138-213534279 | 1 |
Zm00001d043992 | ZmbZIP51 | 340 | 37.03 | 8.8 | Chr3:215850507-215866477 | 3 |
Zm00001d052562 | ZmbZIP60 | 417 | 43.86 | 7.31 | Chr4:193207888-193210831 | 1 |
Zm00001d053967 | ZmbZIP67 | 314 | 33.62 | 6.17 | Chr4:244414417-244418397 | 1 |
Zm00001d015118 | ZmbZIP73 | 290 | 31.01 | 5.22 | Chr5:76331375-76334353 | 1 |
Zm00001d039065 | ZmbZIP96 | 377 | 40.12 | 7.51 | Chr6:169491185-169496107 | 10 |
Zm00001d039206 | ZmbZIP97 | 208 | 22.36 | 6.84 | Chr6:172509105-172510659 | 1 |
Zm00001d019166 | ZmbZIP100 | 379 | 39.68 | 6.88 | Chr7:19967615-19972466 | 8 |
Zm00001d045288 | ZmbZIP123 | 547 | 60.82 | 7.95 | Chr9:18011858-18027409 | 1 |
Zm00001d047967 | ZmbZIP133 | 423 | 45.11 | 9.94 | Chr9:146611340-146618721 | 4 |
Zm00001d046664 | ZmbZIP136 | 187 | 20.02 | 8.56 | Chr10:5649486-5650525 | 1 |
Zm00001d024041 | ZmbZIP138 | 282 | 29.93 | 7.12 | Chr10:39073197-39078744 | 11 |
Zm00001d024285 | ZmbZIP140 | 213 | 23.6 | 6.03 | Chr10:61712124-61716615 | 1 |
Zm00001d025638 | ZmbZIP142 | 273 | 30.15 | 8.45 | Chr10:124742514-124747717 | 1 |
Table 2 Basic information of bZIPfamily gene in maize
基因ID Gene ID | 基因名称 Gene name | 长度 Length/bp | 分子量 Molecular mass/ku | 等电点 Isoelectric point | 染色体 Chromosome | 可变剪切 Splice variants |
---|---|---|---|---|---|---|
Zm00001d028372 | ZmbZIP2 | 583 | 62.46 | 9.55 | Chr1:32433751-32442505 | 17 |
Zm00001d034571 | ZmbZIP20 | 356 | 37.47 | 7.59 | Chr1:296596877-296600683 | 3 |
Zm00001d004897 | ZmbZIP24 | 347 | 36.48 | 8.35 | Chr2:147657998-147659916 | 1 |
Zm00001d005244 | ZmbZIP26 | 371 | 38.75 | 7.16 | Chr2:165521128-165527158 | 9 |
Zm00001d040500 | ZmbZIP39 | 194 | 21.09 | 10.13 | Chr3:47004098-47005326 | 1 |
Zm00001d041142 | ZmbZIP40 | 382 | 40.63 | 8.41 | Chr3:100232730-100240533 | 24 |
Zm00001d043908 | ZmbZIP50 | 191 | 20.72 | 9.34 | Chr3:213533138-213534279 | 1 |
Zm00001d043992 | ZmbZIP51 | 340 | 37.03 | 8.8 | Chr3:215850507-215866477 | 3 |
Zm00001d052562 | ZmbZIP60 | 417 | 43.86 | 7.31 | Chr4:193207888-193210831 | 1 |
Zm00001d053967 | ZmbZIP67 | 314 | 33.62 | 6.17 | Chr4:244414417-244418397 | 1 |
Zm00001d015118 | ZmbZIP73 | 290 | 31.01 | 5.22 | Chr5:76331375-76334353 | 1 |
Zm00001d039065 | ZmbZIP96 | 377 | 40.12 | 7.51 | Chr6:169491185-169496107 | 10 |
Zm00001d039206 | ZmbZIP97 | 208 | 22.36 | 6.84 | Chr6:172509105-172510659 | 1 |
Zm00001d019166 | ZmbZIP100 | 379 | 39.68 | 6.88 | Chr7:19967615-19972466 | 8 |
Zm00001d045288 | ZmbZIP123 | 547 | 60.82 | 7.95 | Chr9:18011858-18027409 | 1 |
Zm00001d047967 | ZmbZIP133 | 423 | 45.11 | 9.94 | Chr9:146611340-146618721 | 4 |
Zm00001d046664 | ZmbZIP136 | 187 | 20.02 | 8.56 | Chr10:5649486-5650525 | 1 |
Zm00001d024041 | ZmbZIP138 | 282 | 29.93 | 7.12 | Chr10:39073197-39078744 | 11 |
Zm00001d024285 | ZmbZIP140 | 213 | 23.6 | 6.03 | Chr10:61712124-61716615 | 1 |
Zm00001d025638 | ZmbZIP142 | 273 | 30.15 | 8.45 | Chr10:124742514-124747717 | 1 |
Fig.2 Multiple sequence alignment of conserved domain of ZmbZIP proteins and their phylogenetic tree A, Multiple sequence alignment of conserved domain of ZmbZIP; B, Phylogenetic tree of ZmbZIPs.
Fig.3 Expression pattern of ZmbZIPs in different organs of maize R, S, L, CB, T, E represent root, stem, leaf, corn brack and tassel, respectively. Bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
[1] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2):323-324. |
[2] | HURST H C. Transcription factors.1: bZIP proteins[J]. Protein Profile, 1995, 2(2):101-68. |
[3] |
WANG J Z, ZHOU J X, ZHANG B L, et al. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on Sorghum[J]. Journal of Integrative Plant Biology, 2011, 53(3):212-231.
DOI URL |
[4] |
WEI K F, CHEN J, WANG Y M, et al. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6):463-476.
DOI URL |
[5] |
JIN Z W, XU W, LIU A Z. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.)[J]. Planta, 2014, 239(2):299-312.
DOI URL |
[6] |
BALOGLU M C, ELDEM V, HAJYZADEH M, et al. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4):e96014.
DOI URL |
[7] |
GAO M, ZHANG H J, GUO C L, et al. Evolutionary and expression analyses of basic zipper transcription factors in the highly homozygous model grape PN40024 (Vitis vinifera L.)[J]. Plant Molecular Biology Reporter, 2014, 32(5):1085-1102.
DOI URL |
[8] |
LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15:281.
DOI URL |
[9] | ZHAO J, GUO R R, GUO C L, et al. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016, 7:376. |
[10] |
LI D Y, FU F Y, ZHANG H J, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.)[J]. BMC Genomics, 2015, 16(1):1-18.
DOI URL |
[11] |
LIU M Y, WEN Y D, SUN W J, et al. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat[J]. BMC Genomics, 2019, 20(1):483.
DOI URL |
[12] |
YANG Z M, SUN J, CHEN Y, et al. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida[J]. BMC Genetics, 2019, 20(1):1-18.
DOI URL |
[13] |
JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111.
DOI URL |
[14] |
YIN Y, ZHU Q, DAI S, et al. RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development[J]. The EMBO Journal, 1997, 16(17):5247-5259.
DOI URL |
[15] |
SILVEIRA A B, GAUER L, TOMAZ J P, et al. The ArabidopsisAtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development[J]. Plant Science, 2007, 172(6):1148-1156.
DOI URL |
[16] |
ZOU M J, GUAN Y C, REN H B, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6):675-683.
DOI URL |
[17] |
GUAN Y C, REN H B, XIE H, et al. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis[J]. The Plant Journal, 2009, 60(2):207-217.
DOI URL |
[18] |
YANG S Q, XU K, CHEN S J, et al. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19(1):1-15.
DOI URL |
[19] |
GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance[J]. Frontiers in Plant Science, 2020, 11:139.
DOI URL |
[20] |
YANG Y, YU T F, MA J, et al. The soybean bZIP transcription factor gene GmbZIP2confers drought and salt resistances in transgenic plants[J]. International Journal of Molecular Sciences, 2020, 21(2):670.
DOI URL |
[21] |
WELTMEIER F, EHLERT A, MAYER C S, et al. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors[J]. The EMBO Journal, 2006, 25(13):3133-3143.
DOI URL |
[22] |
SHIMIZU H, SATO K, BERBERICH T, et al. LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants[J]. Plant and Cell Physiology, 2005, 46(10):1623-1634.
DOI URL |
[23] |
LIU C T, WU Y B, WANG X P. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169.
DOI URL |
[24] |
NIEVA C, BUSK P K, DOMÍNGUEZ-PUIGJANER E, et al. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28[J]. Plant Molecular Biology, 2005, 58(6):899-914.
DOI URL |
[25] |
YANG J B, WANG M Y, LI W J, et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat[J]. Plant Biotechnology Journal, 2019, 17(9):1823-1833.
DOI URL |
[26] |
LUANG S, SORNARAJ P, BAZANOVA N, et al. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase[J]. Plant Molecular Biology, 2018, 96(6):543-561.
DOI URL |
[27] |
THUROW C, SCHIERMEYER A, KRAWCZYK S, et al. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development[J]. The Plant Journal, 2005, 44(1):100-113.
DOI URL |
[28] | ULM R, BAUMANN A, ORAVECZ A, et al. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(5):1397-1402. |
[29] |
CAO L R, LU X M, ZHANG P Y, et al. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2019, 20(17):4103.
DOI URL |
[30] |
HERATH V, VERCHOT J. Insight into the bZIP gene family in Solanum tuberosum: genome and transcriptome analysis to understand the roles of gene diversification in spatiotemporal gene expression and function[J]. International Journal of Molecular Sciences, 2020, 22(1):253.
DOI URL |
[1] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[2] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
[3] | GAO Xin, YANG Hengshan, ZHANG Ruifu, ZHANG Yuqin, LI Rui, ZHANG Mingwei. Difference analysis on seed yield and root cap characteristics for spring maize under water fertilizer and high yield optimization of shallow burying drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 1-9. |
[4] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
[5] | ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034. |
[6] | ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872. |
[7] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[8] | YANG Mei, HU Xiaolan, SHEN Tao, TAN Kang, LIU Dailing, QIU Hongbo. Construction of single fragment substitution lines of maize 8th chromosome and sreening of resistant maize germplasm to gray leaf spot [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 383-389. |
[9] | QU Zhan, YANG Litao. Development of plasmid DNA reference material of genetically modified maize TC1507 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 390-395. |
[10] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[11] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, JIANG Yong, ZHANG Yang, WANG Zhixiu, XU Qi, CHANG Guobin, CHEN Guohong. Study on depositions of mineral elements and expression levels of key genes in different tissues of Liancheng white ducks [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2264-2274. |
[12] | WANG Bo, ZHANG Yongqiang, GONG Siyu, DONG Quanyao, FU Xiaozhao. Impact of Internet development in rural area on total factor productivity of maize in China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2435-2445. |
[13] | DU Jinliang, CAO Liping, JIA Rui, GU Zhengyan, HE Qin, XU Pao, JENEY Galina, MA Yuzhong, YIN Guojun. Protective effects of Glycyrrhiza total flavones on liver injury of tilapia (Oreochromis niloticus) under high fat condition [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1826-1835. |
[14] | YANG Haijian, ZHANG Yungui, ZHOU Xinzhi, HONG Lin, YANG Lei, PENG Fangfang, WANG Wu. Analysis of anthocyanin synthesis and related gene expression in blood orange peel under different PE materials shading during fruit coloring period [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1861-1869. |
[15] | LIU Genhong, XUE Yinxin, ZHANG Qian, ZHOU Jiarui, MAI Xiaofeng. Effects of different tillage depth and amount of straw returned to the field on maize growth under drip-irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 8-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||