Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (2): 266-274.DOI: 10.3969/j.issn.1004-1524.2022.02.07
• Animal Science • Previous Articles Next Articles
SHEN Benlong(), XUE Baobao, MENG Delong, SHEN Heding*(
)
Received:
2020-09-04
Online:
2022-02-25
Published:
2022-03-02
Contact:
SHEN Heding
CLC Number:
SHEN Benlong, XUE Baobao, MENG Delong, SHEN Heding. Establishment of a high temperature resistant family and determination of antioxidant capacity of razor clam Sinonovacula constricta[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 266-274.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.02.07
家系编号 Family number | 第2天 The 2nd day | 第8天 The 8th day | 第22天 The 22nd day | 第36天 The 36th day | ||||
---|---|---|---|---|---|---|---|---|
SL/μm | SH/μm | SL/μm | SH/μm | SL/mm | SH/mm | SL/mm | SH/mm | |
1 | 135.58 ±8.58 a | 105.51 ±5.93 ab | 249.40 ±15.53 a | 207.73 ±19.01 a | — | — | — | — |
2 | 136.83 ±7.03 a | 107.00 ±4.25 ab | 252.36 ±20.15 a | 209.20 ±19.53 ab | — | — | — | — |
3 | 138.75 ±7.49 ab | 109.00 ±5.38 b | 261.36 ±12.3 bc | 221.20 ±13.37 cde | 2.15 ±0.41 ab | 1.05 ±0.17 a | 4.88 ±0.67 a | 1.94 ±0.26 b |
4 | 136.58 ±8.37 a | 106.83 ±4.74 ab | 261.43 ±9.75 bc | 218.36 ±9.68 bcd | 2.17 ±0.35 ab | 1.06 ±0.16 a | 4.97 ±0.54 a | 1.99 ±0.22 ab |
5 | 136.75 ±8.49 a | 107.75 ±5.17 ab | 256.36 ±12.93 ab | 212.86 ±12.77 abc | 2.07 ±0.22 a | 1.03 ±0.11 a | 4.76 ±1.16 a | 1.90 ±0.46 a |
6 | 138.00 ±8.32 a | 107.08 ±4.56 ab | 270.53 ±12.83 def | 225.36 ±15.03 def | 2.52 ±0.44 defg | 1.23 ±0.20 bc | 6.43 ±0.94 def | 2.64 ±0.42 gi |
7 | 138.33 ±7.61 ab | 108.08 ±4.94 ab | 264.20 ±15.60 bcde | 219.86 ±15.78 cd | 2.36 ±0.33 bcd | 1.18 ±0.21 b | 5.68 ±0.65 bc | 2.28 ±0.26 cd |
8 | 143.08 ±9.82 b | 108.83 ±4.90 ab | 271.36 ±12.75 def | 225.90 ±12.08 def | 2.57 ±0.62defg | 1.28 ±0.28 bcd | 6.54 ±1.13 defg | 2.62 ±0.45 fgi |
9 | 137.83 ±7.49a | 107.58 ±4.85 ab | 262.53 ±21.66 bcd | 218.83 ±21.86 bcd | — | — | — | — |
10 | 137.33 ±7.79 a | 108.00 ±4.97 ab | 270.53 ±15.49 ef | 227.06 ±14.96 def | 2.48 ±0.43 cdef | 1.27 ±0.19 bcd | 6.26 ±0.92 cde | 2.51 ±0.36 efg |
11 | 138.08 ±7.84 a | 105.66 ±4.56 a | 263.70 ±13.05 bcd | 220.60 ±12.47 cd | 2.24 ±0.26 abc | 1.05 ±0.11 a | 5.43 ±0.88 b | 2.18 ±0.35 bc |
12 | 136.33 ±7.92 a | 106.50 ±4.50 ab | 269.03 ±14.68 cdef | 225.40 ±13.78 def | 2.46 ±0.36 cdef | 1.23 ±0.18 bc | 5.96 ±0.93 bc | 2.39 ±0.37 de |
13 | 138.33 ±8.71 ab | 106.50 ±4.72 ab | 266.36 ±14.43 cdef | 216.43 ±38.93 abcd | 2.43 ±0.4 cdef | 1.26 ±0.25 bcd | 6.01 ±1.29 bcd | 2.42 ±0.51 def |
14 | 138.91 ±7.43 ab | 108.33 ±5.37 ab | 275.03 ±14.49 f | 232.10 ±12.76 f | 2.75 ±0.4 g | 1.34 ±0.19 cd | 7.04 ±0.72 g | 2.83 ±0.29 i |
15 | 139.33 ±7.90 ab | 107.91 ±4.96 ab | 274.70 ±14.35 f | 232.06 ±13.38 f | 2.71 ±0.61 fg | 1.34 ±0.24 cd | 6.93 ±1.31 fg | 2.78 ±0.52 i |
16 | 139.83 ±10.01 ab | 107.16 ±4.68 ab | 273.03 ±13.83 ef | 231.03 ±13.31 ef | 2.66 ±0.55 efg | 1.36 ±0.25 d | 6.71 ±0.85 efg | 2.69 ±0.33 gi |
Table 1 Shell length (SL) and shell height (SH) for families of S. constricta at larval stage and spat stage
家系编号 Family number | 第2天 The 2nd day | 第8天 The 8th day | 第22天 The 22nd day | 第36天 The 36th day | ||||
---|---|---|---|---|---|---|---|---|
SL/μm | SH/μm | SL/μm | SH/μm | SL/mm | SH/mm | SL/mm | SH/mm | |
1 | 135.58 ±8.58 a | 105.51 ±5.93 ab | 249.40 ±15.53 a | 207.73 ±19.01 a | — | — | — | — |
2 | 136.83 ±7.03 a | 107.00 ±4.25 ab | 252.36 ±20.15 a | 209.20 ±19.53 ab | — | — | — | — |
3 | 138.75 ±7.49 ab | 109.00 ±5.38 b | 261.36 ±12.3 bc | 221.20 ±13.37 cde | 2.15 ±0.41 ab | 1.05 ±0.17 a | 4.88 ±0.67 a | 1.94 ±0.26 b |
4 | 136.58 ±8.37 a | 106.83 ±4.74 ab | 261.43 ±9.75 bc | 218.36 ±9.68 bcd | 2.17 ±0.35 ab | 1.06 ±0.16 a | 4.97 ±0.54 a | 1.99 ±0.22 ab |
5 | 136.75 ±8.49 a | 107.75 ±5.17 ab | 256.36 ±12.93 ab | 212.86 ±12.77 abc | 2.07 ±0.22 a | 1.03 ±0.11 a | 4.76 ±1.16 a | 1.90 ±0.46 a |
6 | 138.00 ±8.32 a | 107.08 ±4.56 ab | 270.53 ±12.83 def | 225.36 ±15.03 def | 2.52 ±0.44 defg | 1.23 ±0.20 bc | 6.43 ±0.94 def | 2.64 ±0.42 gi |
7 | 138.33 ±7.61 ab | 108.08 ±4.94 ab | 264.20 ±15.60 bcde | 219.86 ±15.78 cd | 2.36 ±0.33 bcd | 1.18 ±0.21 b | 5.68 ±0.65 bc | 2.28 ±0.26 cd |
8 | 143.08 ±9.82 b | 108.83 ±4.90 ab | 271.36 ±12.75 def | 225.90 ±12.08 def | 2.57 ±0.62defg | 1.28 ±0.28 bcd | 6.54 ±1.13 defg | 2.62 ±0.45 fgi |
9 | 137.83 ±7.49a | 107.58 ±4.85 ab | 262.53 ±21.66 bcd | 218.83 ±21.86 bcd | — | — | — | — |
10 | 137.33 ±7.79 a | 108.00 ±4.97 ab | 270.53 ±15.49 ef | 227.06 ±14.96 def | 2.48 ±0.43 cdef | 1.27 ±0.19 bcd | 6.26 ±0.92 cde | 2.51 ±0.36 efg |
11 | 138.08 ±7.84 a | 105.66 ±4.56 a | 263.70 ±13.05 bcd | 220.60 ±12.47 cd | 2.24 ±0.26 abc | 1.05 ±0.11 a | 5.43 ±0.88 b | 2.18 ±0.35 bc |
12 | 136.33 ±7.92 a | 106.50 ±4.50 ab | 269.03 ±14.68 cdef | 225.40 ±13.78 def | 2.46 ±0.36 cdef | 1.23 ±0.18 bc | 5.96 ±0.93 bc | 2.39 ±0.37 de |
13 | 138.33 ±8.71 ab | 106.50 ±4.72 ab | 266.36 ±14.43 cdef | 216.43 ±38.93 abcd | 2.43 ±0.4 cdef | 1.26 ±0.25 bcd | 6.01 ±1.29 bcd | 2.42 ±0.51 def |
14 | 138.91 ±7.43 ab | 108.33 ±5.37 ab | 275.03 ±14.49 f | 232.10 ±12.76 f | 2.75 ±0.4 g | 1.34 ±0.19 cd | 7.04 ±0.72 g | 2.83 ±0.29 i |
15 | 139.33 ±7.90 ab | 107.91 ±4.96 ab | 274.70 ±14.35 f | 232.06 ±13.38 f | 2.71 ±0.61 fg | 1.34 ±0.24 cd | 6.93 ±1.31 fg | 2.78 ±0.52 i |
16 | 139.83 ±10.01 ab | 107.16 ±4.68 ab | 273.03 ±13.83 ef | 231.03 ±13.31 ef | 2.66 ±0.55 efg | 1.36 ±0.25 d | 6.71 ±0.85 efg | 2.69 ±0.33 gi |
Fig.2 Relative survival rates of S. constricta families 3, 4, 5, 14, 15, 16 at different temperature The families with shorter shell length were numbered 3, 4, and 5, and families with longer shell length were numbered 14, 15, 16.
Fig.3 The effect of temperature on peroxidase activity of S. constricta families The abscissa represents that each family was sampled at different temperatures on 0, 1, 3, and 7 days.Data was detected based on protein weight. The same as below.
[1] | 常亚青. 贝类增养殖学[M]. 北京: 中国农业出版社, 2007: 249. |
[2] |
PARKER L M, ROSS P M, O’CONNOR W A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata(Gould 1850)[J]. Global Change Biology, 2009, 15(9):2123-2136.
DOI URL |
[3] | 杨东敏, 张艳丽, 丁鉴锋, 等. 高温、低盐对菲律宾蛤仔免疫能力的影响[J]. 大连海洋大学学报, 2017, 32(3):302-309. |
YANG D M, ZHANG Y L, DING J F, et al. Synergistic effects of high temperature and low salinity on immunity of Manila clam Ruditapes philippinarum[J]. Journal of Dalian Ocean University, 2017, 32(3):302-309.(in Chinese with English abstract) | |
[4] | 刘超, 郭景兰, 彭张明, 等. 施氏獭蛤稚贝对高温和干露的耐受性研究[J]. 水产科学, 2015, 34(3):169-173. |
LIU C, GUO J L, PENG Z M, et al. Tolerance of juvenile shellfish Lutraria sieboldii to high-temperature and dry exposure[J]. Fisheries Science, 2015, 34(3):169-173.(in Chinese with English abstract) | |
[5] | 袁有宪, 曲克明, 陈聚法, 等. 栉孔扇贝对环境变化适应性研究-温度对存活、呼吸、摄食及消化的影响[J]. 中国水产科学, 2000, 7(3):24-27. |
YUAN Y X, QU K M, CHEN J F, et al. Adaptability of Chlymys farreri to environment-effects of temperature on survival, respiration, ingestion and digestion[J]. Journal of Fishery Sciences of China, 2000, 7(3):24-27.(in Chinese with English abstract) | |
[6] | 王静, 姚翠鸾. 温度胁迫对紫贻贝与翡翠贻贝生理活动的影响和Hsp27的响应[J]. 集美大学学报(自然科学版), 2019, 24(1) 1-9. |
WANG J, YAO C L. The impacts of temperature stress on some physidogical processes and response of Hsp27 in Mytilus galloprovincialis and Perna viridis[J]. Journal of Jimei University (Natural Science), 2019, 24(1):1-9.(in Chinese with English abstract) | |
[7] | 范德朋, 潘鲁青, 马甡, 等. 温度对缢蛏(Sinonovacula constricta)耗氧率和排氨率的影响[J]. 青岛海洋大学学报(自然科学版), 2002, 32(1):56-62. |
FAN D P, PAN L Q, MA S, et al. Effects of temperature on oxygen consumption rate and ammonia excretion rate of Sinonovacula constricta[J]. Journal of Ocean University of Qingdao, 2002, 32(1):56-62.(in Chinese with English abstract) | |
[8] |
MATOZZO V, CHINELLATO A, MUNARI M, et al. Can the combination of decreased pH and increased temperature values induce oxidative stress in the clam Chamelea gallina and the mussel Mytilus galloprovincialis?[J]. Marine Pollution Bulletin, 2013, 72(1):34-40.
DOI URL |
[9] |
ABELE D, HEISE K, PORTNER H O, et al. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria[J]. Journal of Experimental Biology, 2002, 205(13):1831-1841.
DOI URL |
[10] |
FORMAN H J, MAIORINO M, URSINI F. Signaling functions of reactive oxygen species[J]. Biochemistry, 2010, 49(5):835-842.
DOI URL |
[11] | 张显良. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 23. |
[12] | 王兴强, 曹梅, 阎斌伦. 缢蛏Sinonovacula constricta(Lamarck)养殖期间发病原因及防治对策[J]. 现代渔业信息, 2006, 21(5):13-16. |
WANG X Q, CAO M, YAN B L. Analysis of diseases cause and prevention measures in farming of Sinonovacula constricta(Lamarck)[J]. Modern Fisheries Information, 2006, 21(5):13-16.(in Chinese with English abstract) | |
[13] | 李云峰. 家系选择在水产动物养殖中的应用[J]. 北京水产, 2007(5):44-46. |
LI Y F. Application of family selection in aquaculture[J]. Journal of Beijing Fisheries, 2007(5):44-46.(in Chinese) | |
[14] |
EVANS S, LANGDON C. Effects of genotype × environment interactions on the selection of broadly adapted pacific oysters (Crassostrea gigas)[J]. Aquaculture, 2006, 261(2):522-534.
DOI URL |
[15] | 闫喜武, 霍忠明, 张跃环, 等. 菲律宾蛤仔家系的建立及早期生长发育[J]. 水产学报, 2010, 34(1):32-40. |
YAN X W, HUO Z M, ZHANG Y H, et al. Preliminary study of establishment of families and their early growth and development for Manila clam(Ruditapes philippinarum)[J]. Journal of Fisheries of China, 2010, 34(1):32-40.(in Chinese with English abstract)
DOI URL |
|
[16] | 刘项峰, 于佐安, 王军, 等. 虾夷扇贝耐高温实验及其遗传力的估计[J]. 齐鲁渔业, 2017, 34(8):1-4. |
LIU X F, YU Z A, WANG J, et al. High temperature tolerance experiment and heritability estimation of Mizuhopecten yessoensis[J]. Shandong Fisheries, 2017, 34(8):1-4.(in Chinese) | |
[17] | 王庆志, 李石磊, 付成东, 等. 虾夷扇贝耐高温育种家系的建立与早期筛查[J]. 水产学报, 2014, 38(3):371-377. |
WANG Q Z, LI S L, FU C D, et al. Establishment of high temperature resistance families and use of laboratory assays to predict subsequent survival in juvenile stage of the Japanese scallop (Mizuhopecten yessoensis)[J]. Journal of Fisheries of China, 2014, 38(3):371-377.(in Chinese with English abstract) | |
[18] | 廖一波, 陈全震, 曾江宁, 等. 四种主要经济贝类的热忍受研究[J]. 海洋通报, 2007, 26(1):50-54. |
LIAO Y B, CHEN Q Z, ZENG J N, et al. Thermal tolerance of four commercial shellfishes[J]. Marine Science Bulletin, 2007, 26(1):50-54.(in Chinese with English abstract) | |
[19] | 杨先乐, 林茂, 喻文娟, 等. MTT比色法在药物对鱼类细胞的毒性检测中的应用[J]. 上海水产大学学报, 2007, 16(2):157-161. |
YANG X L, LIN M, YU W J, et al. MTT assay applied to detect the toxicity of drug on fish cell lines[J]. Journal of Shanghai Fisheries University, 2007, 16(2):157-161.(in Chinese with English abstract) | |
[20] | 沈夏霜, 敖秋桅, 甘西, 等. 吉富罗非鱼抗病品系F5代抗病性能和生长性能的评估[J]. 南方水产科学, 2018, 14(3):83-90. |
SHEN X S, AO Q W, GAN X, et al. Estimation of disease resistance and growth in F5 generation families of GIFT tilapia[J]. South China Fisheries Science, 2018, 14(3):83-90.(in Chinese with English abstract) | |
[21] | 贾永义, 顾志敏, 杨元杰, 等. 日本沼虾家系的初步构建及生长相关性状的遗传力估计[J]. 浙江海洋学院学报(自然科学版), 2014, 33(2):154-160. |
JIA Y Y, GU Z M, YANG Y J, et al. Initial family construction and heritability estimates for growth-related traits in Macrobrachium nipponensis[J]. Journal of Zhejiang Ocean University (Natural Science), 2014, 33(2):154-160.(in Chinese with English abstract) | |
[22] | 刘志刚, 王辉, 栗志民, 等. 墨西哥湾扇贝高起始致死温度的研究[J]. 中国水产科学, 2007, 14(5):778-785. |
LIU Z G, WANG H, LI Z M, et al. Upper incipient lethal temperature of Argopecten irradians concentricus Say[J]. Journal of Fishery Sciences of China, 2007, 14(5):778-785.(in Chinese with English abstract) | |
[23] | TREMBLAY R, MYRAND B, GUDERLEY H. Thermal sensitivity of organismal and mitochondrial oxygen consumption in relation to susceptibility of blue mussels, Mytilus edulis(L.), to summer mortality[J]. Journal of Shellfish Research, 1998, 17(1):141-152. |
[24] |
ABELE D, BURLANDO B, VIARENGO A, et al. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1998, 120(2):425-435.
DOI URL |
[25] |
GUERRA C, ZENTENO-SAVÍN T, MAEDA-MARTÍNEZ A N, et al. Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived Catarina scallop Argopecten ventricosus reared in its natural environment[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 162(4):421-430.
DOI URL |
[26] | 连姗姗, 李雪, 邢强, 等. 繁殖和高温对栉孔扇贝抗氧化能力的影响[J]. 中国海洋大学学报(自然科学版), 2015, 45(10):18-24. |
LIAN S S, LI X, XING Q, et al. Effects of reproduction and heat stress on the antioxidant ability of Zhikong scallop(Chlamys farreri)[J]. Periodical of Ocean University of China, 2015, 45(10):18-24.(in Chinese with English abstract) | |
[27] | LU S C. Glutathione synjournal[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(5):3143-3153. |
[1] | YE Jing, YANG Yuanling, SHI Qingqiu, WU Longfei, SONG Guotao. Bioinformatics analysis and function prediction of miR172 gene family in Eucommia ulmoides [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 70-78. |
[2] | CAI Fangyang, ZHAO Yichen, LI Yi, ZHAO Degang. Identification and analysis of ABC transporters family from Eucommia ulmoides [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1581-1591. |
[3] | XIONG Xue, ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1625-1639. |
[4] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[5] | MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. |
[6] | YUAN Xilei, WANG Zhenshan, JIA Xiaoping, SANG Luman, LI Jianfeng, ZHANG Bo. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family [J]. , 2020, 32(6): 1133-1140. |
[7] | QIN Ling, ZHANG Xin, RONG Chunxiao, MO Chuanyuan, FAN Lu, YAN Jie, MENG Ying, ZHANG Manrang. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple [J]. , 2020, 32(2): 262-273. |
[8] | ZHONG Jing, TAN Fen, ZHANG Hongquan, XIONG Xiaoqin, HUANG Lixia. Expression pattern and protein structure analysis of maize XYLPs gene family [J]. , 2020, 32(10): 1741-1747. |
[9] | RUAN Xianle, WANG Junsheng, LIU Hongzhan, CHEN Liangbing, ZHAO Jinhui. Bioinformatics analysis of miR169 gene family in Brassica napus L. and prediction of their target genes [J]. , 2018, 30(8): 1273-1280. |
[10] | ZONG Qiufang, HUANG Yanjie, WU Lisi, WU Shenglong, BAO Wenbin. Analysis of genetic codon usage preference in pig Claudin family [J]. , 2018, 30(12): 2007-2017. |
[11] | ZHANG Lizhi, FAN Sheng, AN Na, ZUO Xiya, GAO Cai, ZHANG Dong, HAN Mingyu. Identification and expression analysis of PAL gene family in apple [J]. , 2018, 30(12): 2031-2043. |
[12] | PANG Xin, CHENG Yuan, GUO Qinwei, ZHENG Jiaqiu, WAN Hongjian. Genome-wide identification and expression analysis of purple acid phosphatases genes in pepper [J]. , 2017, 29(9): 1498-1505. |
[13] | YU Chenliang, ZHANG Chenghao, ZHAN Yihua, DONG Wenqi. Identification, evolution and expression analysis of Pht1 gene family in Sorghum bicolor [J]. , 2017, 29(1): 16-22. |
[14] | HAN Yachao1,2,ZHAO Bin2,*. Functional analysis of Rho protein family during the establishment of arbuscular mycorrhizal fungusplant symbiosis [J]. , 2016, 28(5): 828-. |
[15] | YU Yin\|quan,WANG Shu\|jin. The choice of cooperation mechanism between leading enterprises and family farms: The empirical analysis based on the enterprise level [J]. , 2015, 27(7): 1259-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||