Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2533-2542.DOI: 10.3969/j.issn.1004-1524.20221657
• Animal Science • Previous Articles Next Articles
LI Hongyi(), ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao*(
)
Received:
2022-11-19
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221657
日粮 Dietary | 比例 Proportion/ % | 营养素 Nutrient | 营养水平 Nutritional level |
---|---|---|---|
豆粕 Soybean meal, CP 43% | 4.50 | 代谢能 Metabolic energy/ (MJ·kg-1) | 11.37 |
皮大麦 Leather barley | 7.00 | 粗蛋白含量 Crude protein content/% | 10.31 |
小麦 Wheat | 10.00 | 粗脂肪含量 Crude fat content/% | 3.28 |
碎米 Broken rice | 50.00 | 粗纤维含量 Crude fiber content/% | 7.51 |
米糠 Rice bran | 15.00 | 钙含量 Calcium content/% | 0.26 |
统糠 Series chaff 预混料Premix | 12.00 1.50 | 有效磷含量 Available phosphorus content/% | 0.24 |
合计Total | 100.00 |
Table 1 Basic diet composition and nutrition level
日粮 Dietary | 比例 Proportion/ % | 营养素 Nutrient | 营养水平 Nutritional level |
---|---|---|---|
豆粕 Soybean meal, CP 43% | 4.50 | 代谢能 Metabolic energy/ (MJ·kg-1) | 11.37 |
皮大麦 Leather barley | 7.00 | 粗蛋白含量 Crude protein content/% | 10.31 |
小麦 Wheat | 10.00 | 粗脂肪含量 Crude fat content/% | 3.28 |
碎米 Broken rice | 50.00 | 粗纤维含量 Crude fiber content/% | 7.51 |
米糠 Rice bran | 15.00 | 钙含量 Calcium content/% | 0.26 |
统糠 Series chaff 预混料Premix | 12.00 1.50 | 有效磷含量 Available phosphorus content/% | 0.24 |
合计Total | 100.00 |
Fig.1 Feed intake of Magang geese under different dietary calcium levels The data of different treatments on the same treatment day without the same letters indicate the significant difference (P<0.05).
处理 Treatment | 平均日增重 Average daily gain/g | 耗料增重比 Feed/gain ratio |
---|---|---|
对照组Control group | 44.64±16.17 a | 6.09±2.56 |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 27.09±6.43 b | 6.33±1.37 |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 34.09±15.72 ab | 6.02±2.89 |
Table 2 Average daily gain and feed/gain ratio of Magang geese under different dietary calcium and phosphorus levels
处理 Treatment | 平均日增重 Average daily gain/g | 耗料增重比 Feed/gain ratio |
---|---|---|
对照组Control group | 44.64±16.17 a | 6.09±2.56 |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 27.09±6.43 b | 6.33±1.37 |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 34.09±15.72 ab | 6.02±2.89 |
处理 Treatment | 宰前活重 Weight | 半净膛重 Semi-eviscerated weight | 全净膛重 Eviscerated weight |
---|---|---|---|
对照组Control group | 7.58±1.03 a | 3.33±0.37 a | 2.88±0.24 a |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 6.29±0.63 b | 2.74±0.17 b | 2.39±0.12 b |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 7.04±0.73 ab | 3.12±0.23 ab | 2.72±0.17 ab |
Table 3 Slaughter performance of Magang geese under different dietary calcium and phosphorus levels kg
处理 Treatment | 宰前活重 Weight | 半净膛重 Semi-eviscerated weight | 全净膛重 Eviscerated weight |
---|---|---|---|
对照组Control group | 7.58±1.03 a | 3.33±0.37 a | 2.88±0.24 a |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 6.29±0.63 b | 2.74±0.17 b | 2.39±0.12 b |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 7.04±0.73 ab | 3.12±0.23 ab | 2.72±0.17 ab |
处理 Treatment | 粪磷含量 Content of calcium in feces | 粪钙含量 Content of phosphorus in feces | 血钙含量 Blood calcium concentration | 血磷含量 Blood phosphorus concentration |
---|---|---|---|---|
对照组Control group | 5.48±1.31 | 3.34±1.41 b | 2.92±0.26 | 4.35±1.68 |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 6.13±1.09 | 4.12±1.64 b | 3.10±0.29 | 4.81±1.91 |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 5.10±1.85 | 7.23±3.58 a | 3.13±0.28 | 4.33±1.08 |
Table 4 Calcium and phosphorus levels in blood and feces of Magang geese under different dietary calcium and phosphorus levels mmol·L-1
处理 Treatment | 粪磷含量 Content of calcium in feces | 粪钙含量 Content of phosphorus in feces | 血钙含量 Blood calcium concentration | 血磷含量 Blood phosphorus concentration |
---|---|---|---|---|
对照组Control group | 5.48±1.31 | 3.34±1.41 b | 2.92±0.26 | 4.35±1.68 |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 6.13±1.09 | 4.12±1.64 b | 3.10±0.29 | 4.81±1.91 |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 5.10±1.85 | 7.23±3.58 a | 3.13±0.28 | 4.33±1.08 |
Fig.2 Number of differential gene expression in goose liver among different treatment groups L represents the control group, M represents the 0.15% calcium hydrogen phosphate addition group, and H represents the 0.3% calcium hydrogen phosphate addition group. The same as below.
Fig.4 Enrichment pathway of differential genes A, Enrichment pathway of differential genes in the 0.3% calcium hydrogen phosphate addition group significantly higher than those in the control group; B, Enrichment pathway of differential genes in the 0.3% calcium hydrogen phosphate addition group significantly lower than those in the control group.
Fig.5 Top 8 differential gene expressions between 0.3% calcium hydrogen addition group and control group A, Top 8 differential genes in the 0.3% calcium hydrogen addition group significantly higher than those in the control group; B, Top 8 differential genes in the 0.3% calcium hydrogen addition group significantly lower than those in the control group. *, ** indicates the significant difference at the level of 0.05 or 0.01.
处理 Treatment | 肝脏中GP活性 GP activity in liver/ (ng·mL-1·g-1) |
---|---|
对照组Control group | 33.03±7.19 a |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 24.13±3.97 b |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 20.32±1.72 b |
Table 5 GP activity in liver of Magang geese under different dietary calcium and phosphorus levels
处理 Treatment | 肝脏中GP活性 GP activity in liver/ (ng·mL-1·g-1) |
---|---|
对照组Control group | 33.03±7.19 a |
0.15%磷酸氢钙组 0.15% calcium hydrogen phosphate addition group | 24.13±3.97 b |
0.3%磷酸氢钙组 0.3% calcium hydrogen phosphate addition group | 20.32±1.72 b |
[1] | WANG Y B, WANG W W, ZHANG S, et al. Recommended levels of calcium and non-phytate phosphorus for yellow-feathered broilers (finisher phase)[J]. Animal Bioscience, 2022, 35(12): 1940-1947. |
[2] | KOP-BOZBAY C, AKDAG A, ATAN H L, et al. Body weight of young broilers fed with declining calcium and phosphorus contents during the starter period is irresponsive to changes in the skeleton[J]. Journal of Animal Physiology and Animal Nutrition, 2021, 105(4): 747-756. |
[3] | HAN J C, WANG X N, WU L H, et al. Dietary calcium levels regulate calcium transporter gene expression levels in the small intestine of broiler chickens[J]. British Poultry Science, 2022, 63(2): 202-210. |
[4] | 李园园, 习雪勇, 张源生, 等. 低聚糖、酵母钙对霍尔多巴吉鹅的生长性能、体尺指标、屠宰性能和肌肉品质的影响[J]. 饲料工业, 2021, 42(23): 31-36. |
LI Y Y, Ⅺ X Y, ZHANG Y S, et al. Effects of oligosaccharides and yeast calcium on growth performance, body size index, slaughter performance and muscle quality of haldobuji geese[J]. Feed Industry, 2021, 42(23): 31-36. (in Chinese with English abstract) | |
[5] | ALAGAWANY M, ABD EL-HACK M E, ASHOUR E A, et al. Consequences of varying dietary calcium and phosphorus levels on lipid profile, antioxidant and immunity parameters of growing Egyptian geese[J]. Italian Journal of Animal Science, 2020, 19(1): 1490-1497. |
[6] | ALAGAWANY M, ALI ASHOUR E, EL-KHOLY M S, et al. Effect of dietary calcium and phosphorus levels on growth, carcass characteristics and liver and kidney functions of growing Egyptian geese[J]. Poultry Science, 2021, 100(8): 101244. |
[7] | 宿国强. 不同钙和蛋白质水平饲粮对雏鹅生长性能及肠、肾结构与功能的影响研究[D]. 扬州: 扬州大学, 2022: 94. |
SU G Q. Effects of different calcium and protein levels on growth performance, intestinal and renal structure and function of goslings[D]. Yangzhou: Yangzhou University, 2022: 94. (in Chinese with English abstract) | |
[8] | 奚雨萌, 闫俊书, 应诗家, 等. 高蛋白质高钙饲粮对雏鹅内脏型痛风发生、肾脏功能及肠道微生物区系的影响[J]. 动物营养学报, 2019, 31(2): 612-621. |
Ⅺ Y M, YAN J S, YING S J, et al. Effects of high protein and calcium diets on visceral gout development, kidney function and intestinal microbial community of goslings[J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 612-621. (in Chinese with English abstract) | |
[9] | REYER H, OSTER M, PONSUKSILI S, et al. Transcriptional responses in jejunum of two layer chicken strains following variations in dietary calcium and phosphorus levels[J]. BMC Genomics, 2021, 22(1): 485. |
[10] | KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. |
[11] | LI B, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. |
[12] | LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. |
[13] | 孙巍, 贾禄, 孙会, 等. 不同钙水平日粮对鹅肉品质的影响[J]. 饲料工业, 2010, 31(9): 16-18. |
SUN W, JIA L, SUN H, et al. Effects of different calcium levels on goose meat quality[J]. Feed Industry, 2010, 31(9): 16-18. (in Chinese) | |
[14] | 罗旭, 张爱忠, 姜宁, 等. 日粮纤维水平对不同生长阶段籽鹅屠宰性能和血液生化指标的影响[J]. 黑龙江畜牧兽医, 2017(21): 144-148. |
LUO X, ZHANG A Z, JIANG N, et al. Effects of dietary fiber level on slaughter performance and blood biochemical indexes of goose at different growth stages[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(21): 144-148. (in Chinese) | |
[15] | 王宗伟, 牟晓玲, 杨国伟, 等. 日粮营养水平对肉鹅血清钙磷、碱性磷酸酶及胫骨钙磷的影响[J]. 中国家禽, 2009, 31(15): 16-20. |
WANG Z W, MOU X L, YANG G W, et al. Effects of dietary nutritional levels on calcium, phosphorus concentrations and ALK activity in serum and calcium, phosphorus contents in Tibia for geese[J]. China Poultry, 2009, 31(15): 16-20. (in Chinese with English abstract) | |
[16] | 郝艳霜, 冯焯, 赵国先, 等. 日粮钙磷水平对育成期坝上长尾鸡生长性能和血液生化指标的影响[J]. 粮食与饲料工业, 2018(3): 47-50. |
HAO Y S, FENG Z, ZHAO G X, et al. Effects of dietary calcium and phosphorus levels on growth performance and blood biochemical indexes of the Bashang long-tailed chickens in rearing period[J]. Cereal & Feed Industry, 2018(3): 47-50. (in Chinese with English abstract) | |
[17] | 陈冬梅. 植酸酶和柠檬酸对肉鸡生产性能及钙、磷利用率的影响[J]. 饲料工业, 2003, 24(1): 22-24. |
CHEN D M. Effects of phytase and citric acid on performance and utilization ratio of calcium and phosphorus in broilers[J]. Feed Industry, 2003, 24(1): 22-24. (in Chinese) | |
[18] | 胡顺勇, 胡胜超, 郭均友, 等. 浅谈动物机体微量元素钙和磷的作用机理[J]. 山东畜牧兽医, 2020, 41(11): 76-77. |
HU S Y, HU S C, GUO J Y, et al. Discussion on the action mechanism of trace elements calcium and phosphorus in animal body[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2020, 41(11): 76-77. (in Chinese) | |
[19] | STATHI A, MAMAIS M, CHRYSINA E D, et al. Anomeric spironucleosides of β-d-glucopyranosyl uracil as potential inhibitors of glycogen phosphorylase[J]. Molecules, 2019, 24(12): 2327. |
[20] | AGIUS L. Role of glycogen phosphorylase in liver glycogen metabolism[J]. Molecular Aspects of Medicine, 2015, 46: 34-45. |
[21] | ZOIS CHRISTOS E, HENDRIKS ANNE M, SYED H, et al. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation[J]. Cell Death & Disease, 2022, 13(6): 573. |
[1] | TAN Shuxia, ZHAO Taodi, YANG Hao, NING Kejun, LIU Li, HE Qingyuan, HUANG Shoucheng, SHU Yingjie. Effects of shading on agronomic characters, yield and nitrogen metabolism of 10 vegetable soybean varieties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 729-735. |
[2] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
[3] | XIA Lunbin, MA Longlong, QIAO Deliang, HE Yanfei, JIANG Ping. Effects of Hyriopsis cumingii polysaccharides on growth performance, antioxidant activity and immune function in growing broiler [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 547-555. |
[4] | KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610. |
[5] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
[6] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[7] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[8] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[9] | REN Mengyun, DU Longgang, WANG Meixing, HUANG Yifeng. Characteristics of soluble sugar components in waxy corn and its postharvest quality [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1133-1140. |
[10] | AN Yawen, YANG Xiaodong, GAO Zhixiong, GUO Shaoqian, GAO Aiwu, YANG Jinli, WANG Hairong. Effects of adding Sophora alopecuroides to high grain diet on growth and serum biochemical indexes of lambs [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 908-914. |
[11] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[12] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[13] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[14] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[15] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||