Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (2): 308-324.DOI: 10.3969/j.issn.1004-1524.20230117
• Horticultural Science • Previous Articles Next Articles
TIAN Xiaoming(), XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan
Received:
2023-02-09
Online:
2024-02-25
Published:
2024-03-05
CLC Number:
TIAN Xiaoming, XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan. Drought tolerance evaluation of four species of Ormosia[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 308-324.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230117
简称 Abbreviation | 名称 Name | 来源 Source | 株高 Plant height/cm | 地径 Ground diameter/mm |
---|---|---|---|---|
RJ | 软荚红豆Ormosia semicastrata | 湖南省通道县Tongdao County, Hunan Province | 37.2~42.4 | 6.42~7.59 |
HLM | 花榈木Ormosia henryi | 湖南省长沙县Changsha County, Hunan Province | 39.3~45.5 | 8.87~10.37 |
MJ | 木荚红豆Ormosia xylocarpa | 湖南省江华县Jianghua County, Hunan Province | 50.5~55.6 | 10.69~14.45 |
EX | 鄂西红豆Ormosia hosiei | 湖北省恩施市Enshi City, Hubei Province | 21.1~27.4 | 4.38~5.51 |
Table 1 Test material and abbreviation
简称 Abbreviation | 名称 Name | 来源 Source | 株高 Plant height/cm | 地径 Ground diameter/mm |
---|---|---|---|---|
RJ | 软荚红豆Ormosia semicastrata | 湖南省通道县Tongdao County, Hunan Province | 37.2~42.4 | 6.42~7.59 |
HLM | 花榈木Ormosia henryi | 湖南省长沙县Changsha County, Hunan Province | 39.3~45.5 | 8.87~10.37 |
MJ | 木荚红豆Ormosia xylocarpa | 湖南省江华县Jianghua County, Hunan Province | 50.5~55.6 | 10.69~14.45 |
EX | 鄂西红豆Ormosia hosiei | 湖北省恩施市Enshi City, Hubei Province | 21.1~27.4 | 4.38~5.51 |
Fig.1 Morphological characteristics of four species of Ormosia under different drought stress treatments for 28 days RJ, Ormosia semicastrata; HLM, Ormosia henryi; MJ, Ormosia xylocarpa; EX, Ormosia hosiei. CK, Control group; LD, Mild drought stress; MD, Moderate drought stress; SD, Severe drought stress. The same as below.
处理 Treatment | 株高相对生长量Relative growth of plant height/cm | 地径相对生长量Relative growth of diameter/mm | ||||||
---|---|---|---|---|---|---|---|---|
RJ | HLM | MJ | EX | RJ | HLM | MJ | EX | |
CK | 4.70±0.61 a | 1.30±0.22 b | 1.57±0.25 a | 1.47±0.20 a | 0.37±0.07 b | 0.33±0.04 a | 0.16±0.02 a | 0.21±0.02 a |
LD | 1.60±0.54 b | 2.84±0.36 a | 1.00±0.26 b | 1.13±0.26 b | 0.49±0.04 a | 0.23±0.04 b | 0.09±0.01 b | 0.17±0.02 b |
MD | 0.96±0.23 bc | 0.92±0.18 c | 0.73±0.25 bc | 0.76±0.13 c | 0.13±0.03 c | 0.20±0.02 b | 0.08±0.02 b | 0.15±0.02 c |
SD | 1.12±0.30 c | 0.82±0.20 c | 0.40±0.10 c | 0.63±0.11 c | 0.11±0.01 c | 0.21±0.04 b | 0.09±0.03 b | 0.12±0.02 d |
Table 2 Relative growth of plant height and ground diameter of four species of Ormosia under drought stress
处理 Treatment | 株高相对生长量Relative growth of plant height/cm | 地径相对生长量Relative growth of diameter/mm | ||||||
---|---|---|---|---|---|---|---|---|
RJ | HLM | MJ | EX | RJ | HLM | MJ | EX | |
CK | 4.70±0.61 a | 1.30±0.22 b | 1.57±0.25 a | 1.47±0.20 a | 0.37±0.07 b | 0.33±0.04 a | 0.16±0.02 a | 0.21±0.02 a |
LD | 1.60±0.54 b | 2.84±0.36 a | 1.00±0.26 b | 1.13±0.26 b | 0.49±0.04 a | 0.23±0.04 b | 0.09±0.01 b | 0.17±0.02 b |
MD | 0.96±0.23 bc | 0.92±0.18 c | 0.73±0.25 bc | 0.76±0.13 c | 0.13±0.03 c | 0.20±0.02 b | 0.08±0.02 b | 0.15±0.02 c |
SD | 1.12±0.30 c | 0.82±0.20 c | 0.40±0.10 c | 0.63±0.11 c | 0.11±0.01 c | 0.21±0.04 b | 0.09±0.03 b | 0.12±0.02 d |
Fig.2 Relative water content in leaves of four species of Ormosia under drought stress Different lowercase letters showed significant differences between different treatments at the same time (P<0.05); Different capital letters showed significant differences at different times under the same treatment (P<0.05). The same as below.
物种 Species | 处理组 Treatment | 不同时间(d)的丙二醛含量Malondialdehyde content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 0.025 abA | 0.022 abA | 0.021 bC | 0.029 aC | 0.027 abC | 0.026 abB |
LD | 0.027 bA | 0.028 bA | 0.027 bB | 0.030 bBC | 0.041 aB | 0.029 bAB | |
MD | 0.021 cA | 0.027 bcA | 0.029 bAB | 0.033 bB | 0.047 aAB | 0.029 bAB | |
SD | 0.022 dA | 0.031 cA | 0.032 cA | 0.040 bA | 0.055 aA | 0.034 bcA | |
HLM | CK | 0.030 aA | 0.0320 aA | 0.030 aB | 0.030 aB | 0.032 aC | 0.030 aA |
LD | 0.030 bA | 0.032 abA | 0.035 abAB | 0.037 abA | 0.037 aBC | 0.031 abA | |
MD | 0.030 cA | 0.034 bcA | 0.036 abcAB | 0.038 abA | 0.041 aB | 0.032 bcA | |
SD | 0.029 eA | 0.034 dA | 0.039 cA | 0.043 bA | 0.049 aA | 0.035 dA | |
MJ | CK | 0.043 aA | 0.043 aB | 0.043 aB | 0.043 aB | 0.043 aD | 0.039 aA |
LD | 0.044 bcA | 0.043 bcB | 0.050 aA | 0.045 bcB | 0.048 abC | 0.042 cA | |
MD | 0.041 cA | 0.045 bcAB | 0.050 abA | 0.050 abA | 0.054 aB | 0.042 cA | |
SD | 0.042 dA | 0.049 cA | 0.054 bA | 0.056 bA | 0.060 aA | 0.045 dA | |
EX | CK | 0.030 aA | 0.029 aA | 0.030 aB | 0.031 aC | 0.031 aB | 0.027 aA |
LD | 0.027 bA | 0.029 abA | 0.035 aAB | 0.034 abBC | 0.034 abB | 0.028 abA | |
MD | 0.030 bA | 0.029 bA | 0.037 aA | 0.039 aAB | 0.038 aB | 0.029 bA | |
SD | 0.027 bA | 0.030 bA | 0.042 aA | 0.041 aA | 0.048 aA | 0.032 bA |
Table 3 Malondialdehyde content of four species of Ormosia under drought stress μmol·g-1
物种 Species | 处理组 Treatment | 不同时间(d)的丙二醛含量Malondialdehyde content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 0.025 abA | 0.022 abA | 0.021 bC | 0.029 aC | 0.027 abC | 0.026 abB |
LD | 0.027 bA | 0.028 bA | 0.027 bB | 0.030 bBC | 0.041 aB | 0.029 bAB | |
MD | 0.021 cA | 0.027 bcA | 0.029 bAB | 0.033 bB | 0.047 aAB | 0.029 bAB | |
SD | 0.022 dA | 0.031 cA | 0.032 cA | 0.040 bA | 0.055 aA | 0.034 bcA | |
HLM | CK | 0.030 aA | 0.0320 aA | 0.030 aB | 0.030 aB | 0.032 aC | 0.030 aA |
LD | 0.030 bA | 0.032 abA | 0.035 abAB | 0.037 abA | 0.037 aBC | 0.031 abA | |
MD | 0.030 cA | 0.034 bcA | 0.036 abcAB | 0.038 abA | 0.041 aB | 0.032 bcA | |
SD | 0.029 eA | 0.034 dA | 0.039 cA | 0.043 bA | 0.049 aA | 0.035 dA | |
MJ | CK | 0.043 aA | 0.043 aB | 0.043 aB | 0.043 aB | 0.043 aD | 0.039 aA |
LD | 0.044 bcA | 0.043 bcB | 0.050 aA | 0.045 bcB | 0.048 abC | 0.042 cA | |
MD | 0.041 cA | 0.045 bcAB | 0.050 abA | 0.050 abA | 0.054 aB | 0.042 cA | |
SD | 0.042 dA | 0.049 cA | 0.054 bA | 0.056 bA | 0.060 aA | 0.045 dA | |
EX | CK | 0.030 aA | 0.029 aA | 0.030 aB | 0.031 aC | 0.031 aB | 0.027 aA |
LD | 0.027 bA | 0.029 abA | 0.035 aAB | 0.034 abBC | 0.034 abB | 0.028 abA | |
MD | 0.030 bA | 0.029 bA | 0.037 aA | 0.039 aAB | 0.038 aB | 0.029 bA | |
SD | 0.027 bA | 0.030 bA | 0.042 aA | 0.041 aA | 0.048 aA | 0.032 bA |
物种 Species | 处理组 Treatment | 不同时间(d)的相对电导率Relative conductivity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 21.68 aA | 21.99 aB | 22.71 aB | 23.95 aC | 20.54 aD | 23.31 aB |
LD | 22.80 cA | 26.86 bcA | 29.55 abA | 34.16 aB | 28.4 bC | 27.03 bcAB | |
MD | 23.63 cA | 27.60 cA | 32.47 bA | 35.24 abB | 38.33 aB | 25.78 cAB | |
SD | 23.05 cA | 28.56 bcA | 32.55 bA | 50.38 aA | 50.73 aA | 29.05 bA | |
HLM | CK | 22.29 bA | 26.63 aAB | 24.3 abC | 19.2 cC | 23.53 bD | 23.54 bC |
LD | 25.23 bA | 24.25 bBC | 26.47 bC | 32.48 aB | 34.74 aC | 26.92 bB | |
MD | 24.54 dA | 20.82 dC | 31.57 bcB | 34.58 bB | 39.95 aB | 29.81 cAB | |
SD | 23.29 eA | 29.46 dA | 35.13 cA | 40.42 bA | 45.63 aA | 30.85 dA | |
MJ | CK | 23.01 aA | 22.7 aC | 24.09 aC | 22.66 aD | 22.9 aC | 25.78 aB |
LD | 20.87 bA | 26.37 aB | 24.29 abC | 27.27 aC | 27.1 aC | 25.24 aB | |
MD | 21.20 dA | 26.36 cB | 30.79 bB | 38.1 aB | 40.85 aB | 28.83 bcB | |
SD | 23.64 dA | 33.25 cA | 38.92 bA | 43.23 bA | 51.94 aA | 38.29 bcA | |
EX | CK | 22.52 abA | 24.45 aAB | 21.69 abC | 22.63 abC | 19.91 bD | 23.66 aA |
LD | 23.22 bcA | 21.26 cB | 24.72 abcBC | 25.54 abB | 28.17 aC | 23.28 bcA | |
MD | 21.04 cA | 27.93 bA | 27.15 bAB | 25.90 bB | 32.80 aB | 25.22 bA | |
SD | 24.36 dA | 27.94 cdA | 29.14 cA | 33.69 bA | 38.15 aA | 27.72 cdA |
Table 4 Relative conductivity of four species of Ormosia under drought stress %
物种 Species | 处理组 Treatment | 不同时间(d)的相对电导率Relative conductivity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 21.68 aA | 21.99 aB | 22.71 aB | 23.95 aC | 20.54 aD | 23.31 aB |
LD | 22.80 cA | 26.86 bcA | 29.55 abA | 34.16 aB | 28.4 bC | 27.03 bcAB | |
MD | 23.63 cA | 27.60 cA | 32.47 bA | 35.24 abB | 38.33 aB | 25.78 cAB | |
SD | 23.05 cA | 28.56 bcA | 32.55 bA | 50.38 aA | 50.73 aA | 29.05 bA | |
HLM | CK | 22.29 bA | 26.63 aAB | 24.3 abC | 19.2 cC | 23.53 bD | 23.54 bC |
LD | 25.23 bA | 24.25 bBC | 26.47 bC | 32.48 aB | 34.74 aC | 26.92 bB | |
MD | 24.54 dA | 20.82 dC | 31.57 bcB | 34.58 bB | 39.95 aB | 29.81 cAB | |
SD | 23.29 eA | 29.46 dA | 35.13 cA | 40.42 bA | 45.63 aA | 30.85 dA | |
MJ | CK | 23.01 aA | 22.7 aC | 24.09 aC | 22.66 aD | 22.9 aC | 25.78 aB |
LD | 20.87 bA | 26.37 aB | 24.29 abC | 27.27 aC | 27.1 aC | 25.24 aB | |
MD | 21.20 dA | 26.36 cB | 30.79 bB | 38.1 aB | 40.85 aB | 28.83 bcB | |
SD | 23.64 dA | 33.25 cA | 38.92 bA | 43.23 bA | 51.94 aA | 38.29 bcA | |
EX | CK | 22.52 abA | 24.45 aAB | 21.69 abC | 22.63 abC | 19.91 bD | 23.66 aA |
LD | 23.22 bcA | 21.26 cB | 24.72 abcBC | 25.54 abB | 28.17 aC | 23.28 bcA | |
MD | 21.04 cA | 27.93 bA | 27.15 bAB | 25.90 bB | 32.80 aB | 25.22 bA | |
SD | 24.36 dA | 27.94 cdA | 29.14 cA | 33.69 bA | 38.15 aA | 27.72 cdA |
物种 Species | 处理组 Treatment | 不同时间(d)的可溶性蛋白含量Soluble protein content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 4.21 aA | 4.18 aA | 3.77 abB | 3.75 abAB | 4.19 aA | 3.62 bA |
LD | 3.84 bA | 4.18 abA | 4.22 abAB | 4.30 abA | 4.48 aA | 3.71 bA | |
MD | 3.79 bA | 4.26 abA | 4.28 abA | 4.10 abAB | 4.37 aA | 3.04 cB | |
SD | 4.10 aA | 4.27 aA | 4.57 aA | 3.50 bB | 2.95 bB | 3.37 bAB | |
HLM | CK | 12.57 aA | 13.08 aA | 12.36 aA | 11.71 aC | 12.42 aAB | 12.50 aA |
LD | 11.87 aA | 13.21 aA | 13.17 aA | 12.94 aB | 12.70 aAB | 12.65 aA | |
MD | 13.42 aA | 13.43 aA | 13.58 aA | 14.07 aA | 14.09 aA | 13.94 aA | |
SD | 12.11 bcA | 12.62 bcA | 13.69 abA | 14.88 aA | 11.46 cB | 12.60 bcA | |
MJ | CK | 11.68 aA | 11.52 aA | 11.40 aC | 10.91 aA | 11.06 aA | 11.24 aA |
LD | 12.15 aA | 12.18 aA | 12.08 aBC | 12.68 aA | 12.64 aA | 10.55 bA | |
MD | 12.15 aA | 12.47 aA | 12.94 aB | 13.25 aA | 12.47 aA | 12.45 aA | |
SD | 11.89 bA | 12.4 bA | 14.75 aA | 11.35 bA | 8.70 cB | 10.90 bA | |
EX | CK | 15.26 aA | 14.60 aB | 14.85 aB | 15.01 aAB | 14.91 aAB | 15.09 aA |
LD | 15.15 aAB | 14.49 aB | 14.97 aB | 15.38 aA | 14.58 aB | 14.60 aA | |
MD | 14.96 bB | 15.00 bAB | 15.44 abB | 15.97 aA | 15.54 abA | 14.12 cA | |
SD | 15.23 bcA | 15.48 bA | 16.73 aA | 14.10 cdB | 12.38 eC | 13.79 dA |
Table 5 Soluble protein content of four species of Ormosia under drought stress mg·g-1
物种 Species | 处理组 Treatment | 不同时间(d)的可溶性蛋白含量Soluble protein content at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 4.21 aA | 4.18 aA | 3.77 abB | 3.75 abAB | 4.19 aA | 3.62 bA |
LD | 3.84 bA | 4.18 abA | 4.22 abAB | 4.30 abA | 4.48 aA | 3.71 bA | |
MD | 3.79 bA | 4.26 abA | 4.28 abA | 4.10 abAB | 4.37 aA | 3.04 cB | |
SD | 4.10 aA | 4.27 aA | 4.57 aA | 3.50 bB | 2.95 bB | 3.37 bAB | |
HLM | CK | 12.57 aA | 13.08 aA | 12.36 aA | 11.71 aC | 12.42 aAB | 12.50 aA |
LD | 11.87 aA | 13.21 aA | 13.17 aA | 12.94 aB | 12.70 aAB | 12.65 aA | |
MD | 13.42 aA | 13.43 aA | 13.58 aA | 14.07 aA | 14.09 aA | 13.94 aA | |
SD | 12.11 bcA | 12.62 bcA | 13.69 abA | 14.88 aA | 11.46 cB | 12.60 bcA | |
MJ | CK | 11.68 aA | 11.52 aA | 11.40 aC | 10.91 aA | 11.06 aA | 11.24 aA |
LD | 12.15 aA | 12.18 aA | 12.08 aBC | 12.68 aA | 12.64 aA | 10.55 bA | |
MD | 12.15 aA | 12.47 aA | 12.94 aB | 13.25 aA | 12.47 aA | 12.45 aA | |
SD | 11.89 bA | 12.4 bA | 14.75 aA | 11.35 bA | 8.70 cB | 10.90 bA | |
EX | CK | 15.26 aA | 14.60 aB | 14.85 aB | 15.01 aAB | 14.91 aAB | 15.09 aA |
LD | 15.15 aAB | 14.49 aB | 14.97 aB | 15.38 aA | 14.58 aB | 14.60 aA | |
MD | 14.96 bB | 15.00 bAB | 15.44 abB | 15.97 aA | 15.54 abA | 14.12 cA | |
SD | 15.23 bcA | 15.48 bA | 16.73 aA | 14.10 cdB | 12.38 eC | 13.79 dA |
物种 Species | 处理组 Treatment | 不同时间(d)的SOD活性 SOD activity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 1 883.16 aA | 1 962.42 aA | 1 831.66 aB | 1 871.25 aB | 2 016.22 aB | 2 080.92 aA |
LD | 1 906.07 aA | 1 915.09 aA | 2 063.32 aB | 2 006.37 aB | 2 117.12 aB | 2 039.83 aA | |
MD | 1 988.54 aA | 2 360.35 aA | 2 006.21 aB | 2 131.87 aB | 2 576.58 aA | 2 152.90 aA | |
SD | 1 859.56 bA | 2 355.83 abA | 2 413.41 abA | 2 753.98 aA | 1 888.29 bB | 2 074.08 bA | |
HLM | CK | 551.09 cA | 627.10 bcB | 752.76 abcB | 842.38 abcC | 911.71 abB | 935.57 aA |
LD | 591.06 cA | 731.98 cAB | 1 251.40 abAB | 1 572.98 aB | 1 675.67 aA | 1 011.53 bcA | |
MD | 630.24 dA | 861.25 dAB | 1 755.43 bA | 2 212.87 aA | 1 655.59 bA | 1 262.47 cA | |
SD | 653.95 cA | 1 000.36 cA | 1 551.83 bA | 2 207.78 aA | 940.54 cB | 1 065.06 cA | |
MJ | CK | 1 161.28 aA | 1 308.31 aA | 1 453.14 aB | 1 416.00 aB | 1 486.49 aA | 1 399.11 aA |
LD | 1 008.48 cA | 1 205.15 bcA | 1 608.94 abB | 1 608.35 abB | 1 875.06 aA | 1 556.30 abA | |
MD | 998.85 dA | 1 187.62 cdA | 2 026.07 abAB | 2146.02 aA | 1 659.46 abcA | 1 553.73 bcA | |
SD | 1 079.27 cA | 1 297.11 bcA | 2 574.18 aA | 1 688.15 bB | 1 318.92 bcA | 1 413.60 bcA | |
EX | CK | 1 040.09 aA | 1 039.48 aA | 1 200.00 aB | 1 079.73 aB | 905.24 aB | 1 093.18 aA |
LD | 888.89 bA | 1 159.17 aA | 1 316.70 aAB | 1 145.06 aB | 1 214.60 aA | 1 106.82 abA | |
MD | 1 082.13 bA | 1 344.99 abA | 1 350.71 abAB | 1 732.32 aA | 1 033.89 bAB | 1 090.99 bA | |
SD | 1 001.38 bA | 1 456.82 aA | 1 698.33 aA | 1 083.49 bB | 630.66 cC | 895.75 bcA |
Table 6 SOD activity of four species of Ormosia under drought stress U·g-1
物种 Species | 处理组 Treatment | 不同时间(d)的SOD活性 SOD activity at different time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 42 | ||
RJ | CK | 1 883.16 aA | 1 962.42 aA | 1 831.66 aB | 1 871.25 aB | 2 016.22 aB | 2 080.92 aA |
LD | 1 906.07 aA | 1 915.09 aA | 2 063.32 aB | 2 006.37 aB | 2 117.12 aB | 2 039.83 aA | |
MD | 1 988.54 aA | 2 360.35 aA | 2 006.21 aB | 2 131.87 aB | 2 576.58 aA | 2 152.90 aA | |
SD | 1 859.56 bA | 2 355.83 abA | 2 413.41 abA | 2 753.98 aA | 1 888.29 bB | 2 074.08 bA | |
HLM | CK | 551.09 cA | 627.10 bcB | 752.76 abcB | 842.38 abcC | 911.71 abB | 935.57 aA |
LD | 591.06 cA | 731.98 cAB | 1 251.40 abAB | 1 572.98 aB | 1 675.67 aA | 1 011.53 bcA | |
MD | 630.24 dA | 861.25 dAB | 1 755.43 bA | 2 212.87 aA | 1 655.59 bA | 1 262.47 cA | |
SD | 653.95 cA | 1 000.36 cA | 1 551.83 bA | 2 207.78 aA | 940.54 cB | 1 065.06 cA | |
MJ | CK | 1 161.28 aA | 1 308.31 aA | 1 453.14 aB | 1 416.00 aB | 1 486.49 aA | 1 399.11 aA |
LD | 1 008.48 cA | 1 205.15 bcA | 1 608.94 abB | 1 608.35 abB | 1 875.06 aA | 1 556.30 abA | |
MD | 998.85 dA | 1 187.62 cdA | 2 026.07 abAB | 2146.02 aA | 1 659.46 abcA | 1 553.73 bcA | |
SD | 1 079.27 cA | 1 297.11 bcA | 2 574.18 aA | 1 688.15 bB | 1 318.92 bcA | 1 413.60 bcA | |
EX | CK | 1 040.09 aA | 1 039.48 aA | 1 200.00 aB | 1 079.73 aB | 905.24 aB | 1 093.18 aA |
LD | 888.89 bA | 1 159.17 aA | 1 316.70 aAB | 1 145.06 aB | 1 214.60 aA | 1 106.82 abA | |
MD | 1 082.13 bA | 1 344.99 abA | 1 350.71 abAB | 1 732.32 aA | 1 033.89 bAB | 1 090.99 bA | |
SD | 1 001.38 bA | 1 456.82 aA | 1 698.33 aA | 1 083.49 bB | 630.66 cC | 895.75 bcA |
指标 Index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
MDA | -0.782 | -0.078 | 0.457 |
RWC | 0.785 | -0.334 | -0.385 |
REC | -0.914 | 0.142 | 0.220 |
SOD | -0.218 | -0.816 | -0.363 |
CHL | -0.086 | 0.698 | -0.596 |
SP | 0.311 | 0.818 | -0.103 |
Pn | 0.968 | -0.066 | 0.075 |
Gs | 0.949 | -0.034 | 0.264 |
Ci | 0.568 | 0.175 | 0.574 |
Tr | 0.908 | -0.049 | 0.125 |
贡献特征值Eigenvalue | 5.199 | 1.998 | 1.323 |
贡献率 | 51.989 | 19.979 | 13.232 |
Contribution rate/% | |||
累计贡献率 | 51.989 | 71.967 | 85.199 |
Cumulative contribution rate/% |
Table 7 Coefficient of each comprehensive index and contribution rate of each principal component
指标 Index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
MDA | -0.782 | -0.078 | 0.457 |
RWC | 0.785 | -0.334 | -0.385 |
REC | -0.914 | 0.142 | 0.220 |
SOD | -0.218 | -0.816 | -0.363 |
CHL | -0.086 | 0.698 | -0.596 |
SP | 0.311 | 0.818 | -0.103 |
Pn | 0.968 | -0.066 | 0.075 |
Gs | 0.949 | -0.034 | 0.264 |
Ci | 0.568 | 0.175 | 0.574 |
Tr | 0.908 | -0.049 | 0.125 |
贡献特征值Eigenvalue | 5.199 | 1.998 | 1.323 |
贡献率 | 51.989 | 19.979 | 13.232 |
Contribution rate/% | |||
累计贡献率 | 51.989 | 71.967 | 85.199 |
Cumulative contribution rate/% |
名称Name | 处理Treatment | X1 | X2 | X3 | U(X1) | U(X2) | U(X3) | D | 排名Rank |
---|---|---|---|---|---|---|---|---|---|
RJ | CK | 2.229 | -2.045 | -0.421 | 0.673 | 0.046 | 0.307 | 0.469 | 7 |
LD | 0.401 | -2.013 | -0.709 | 0.456 | 0.054 | 0.230 | 0.326 | 13 | |
MD | -1.642 | -2.236 | -0.991 | 0.213 | 0.000 | 0.154 | 0.154 | 15 | |
SD | -3.440 | -1.448 | 0.958 | 0.000 | 0.189 | 0.677 | 0.150 | 16 | |
HLM | CK | 2.571 | 0.776 | 0.410 | 0.713 | 0.724 | 0.530 | 0.687 | 2 |
LD | 0.326 | 0.509 | -1.314 | 0.447 | 0.660 | 0.067 | 0.438 | 8 | |
MD | -1.297 | 1.315 | -1.565 | 0.254 | 0.853 | 0.000 | 0.355 | 10 | |
SD | -2.038 | 1.893 | 0.289 | 0.166 | 0.992 | 0.498 | 0.411 | 9 | |
MJ | CK | 2.853 | -0.896 | 1.512 | 0.747 | 0.322 | 0.826 | 0.659 | 3 |
LD | -0.294 | -0.807 | -0.549 | 0.373 | 0.343 | 0.273 | 0.351 | 11 | |
MD | -1.449 | -0.133 | 0.327 | 0.236 | 0.505 | 0.508 | 0.342 | 12 | |
SD | -3.220 | 0.052 | 2.160 | 0.026 | 0.550 | 1.000 | 0.300 | 14 | |
EX | CK | 4.988 | 0.526 | 0.916 | 1.000 | 0.664 | 0.666 | 0.869 | 1 |
LD | 1.148 | 1.091 | -0.958 | 0.544 | 0.800 | 0.163 | 0.545 | 4 | |
MD | -0.149 | 1.926 | -0.860 | 0.391 | 1.000 | 0.189 | 0.502 | 5 | |
SD | -0.987 | 1.489 | 0.798 | 0.291 | 0.895 | 0.634 | 0.486 | 6 | |
权重Weight | 0.610 | 0.234 | 0.155 |
Table 8 The comprehensive index value, subordinate value, D value and ranking of each treatment of four plants
名称Name | 处理Treatment | X1 | X2 | X3 | U(X1) | U(X2) | U(X3) | D | 排名Rank |
---|---|---|---|---|---|---|---|---|---|
RJ | CK | 2.229 | -2.045 | -0.421 | 0.673 | 0.046 | 0.307 | 0.469 | 7 |
LD | 0.401 | -2.013 | -0.709 | 0.456 | 0.054 | 0.230 | 0.326 | 13 | |
MD | -1.642 | -2.236 | -0.991 | 0.213 | 0.000 | 0.154 | 0.154 | 15 | |
SD | -3.440 | -1.448 | 0.958 | 0.000 | 0.189 | 0.677 | 0.150 | 16 | |
HLM | CK | 2.571 | 0.776 | 0.410 | 0.713 | 0.724 | 0.530 | 0.687 | 2 |
LD | 0.326 | 0.509 | -1.314 | 0.447 | 0.660 | 0.067 | 0.438 | 8 | |
MD | -1.297 | 1.315 | -1.565 | 0.254 | 0.853 | 0.000 | 0.355 | 10 | |
SD | -2.038 | 1.893 | 0.289 | 0.166 | 0.992 | 0.498 | 0.411 | 9 | |
MJ | CK | 2.853 | -0.896 | 1.512 | 0.747 | 0.322 | 0.826 | 0.659 | 3 |
LD | -0.294 | -0.807 | -0.549 | 0.373 | 0.343 | 0.273 | 0.351 | 11 | |
MD | -1.449 | -0.133 | 0.327 | 0.236 | 0.505 | 0.508 | 0.342 | 12 | |
SD | -3.220 | 0.052 | 2.160 | 0.026 | 0.550 | 1.000 | 0.300 | 14 | |
EX | CK | 4.988 | 0.526 | 0.916 | 1.000 | 0.664 | 0.666 | 0.869 | 1 |
LD | 1.148 | 1.091 | -0.958 | 0.544 | 0.800 | 0.163 | 0.545 | 4 | |
MD | -0.149 | 1.926 | -0.860 | 0.391 | 1.000 | 0.189 | 0.502 | 5 | |
SD | -0.987 | 1.489 | 0.798 | 0.291 | 0.895 | 0.634 | 0.486 | 6 | |
权重Weight | 0.610 | 0.234 | 0.155 |
[1] | ABDELGAWAD H, FARFAN-VIGNOLO E R, VOS D D, et al. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes[J]. Plant Science, 2015, 231: 1-10. |
[2] | VURUKONDA S S, VARDHARAJULA S, SHRIVASTAVA M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research, 2016, 184: 13-24. |
[3] | 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价[J]. 生态学杂志, 2020, 39(12): 3924-3933. |
XIONG S F, WU L W, CHEN Y C, et al. Response of leaf of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation[J]. Chinese Journal of Ecology, 2020, 39(12): 3924-3933. (in Chinese with English abstract) | |
[4] | 刘涛, 陈海荣, 汪成忠, 等. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681. |
LIU T, CHEN H R, WANG C Z, et al. Physiology of stress resistance of Agapanthus praecox under drought and salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. (in Chinese with English abstract) | |
[5] | 郭丽, 梁俊林, 赵永辉, 等. 四川省3种乡土树种幼苗对干旱胁迫的光合生理响应[J]. 四川农业大学学报, 2017, 35(4): 516-522. |
GUO L, LIANG J L, ZHAO Y H, et al. Photosynthetic physiological response to drought stress of three native tree species seedlings in Sichuan[J]. Journal of Sichuan Agricultural University, 2017, 35(4): 516-522. (in Chinese with English abstract) | |
[6] | 薛鑫, 张芊, 吴金霞. 植物体内活性氧的研究及其在植物抗逆方面的应用[J]. 生物技术通报, 2013(10): 6-11. |
XUE X, ZHANG Q, WU J X. Research of reactive oxygen species in plants and its application on stress tolerance[J]. Biotechnology Bulletin, 2013(10): 6-11. (in Chinese with English abstract) | |
[7] | BLUM A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant, Cell & Environment, 2017, 40(1): 4-10. |
[8] | 芮雯奕, 田云录, 张纪林, 等. 干旱胁迫对6个树种叶片光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 68-72. |
RUI W Y, TIAN Y L, ZHANG J L, et al. Effect of drought stress on photosynthetic characteristic of six tree species[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(1): 68-72. (in Chinese with English abstract) | |
[9] | SIO-SE MARDEH A, AHMADI A, POUSTINI K, et al. Evaluation of drought resistance indices under various environmental conditions[J]. Field Crops Research, 2006, 98(2/3): 222-229. |
[10] | 王小东, 刘鹏, 刘美娟, 等. 中国红豆属植物生物与生态学特征研究现状[J]. 植物科学学报, 2018, 36(3): 440-451. |
WANG X D, LIU P, LIU M J, et al. Biology and ecology research status of Ormosia species in China[J]. Plant Science Journal, 2018, 36(3): 440-451. (in Chinese with English abstract) | |
[11] | 孟宪帅, 韦小丽. 不同水分环境对花榈木幼苗生理生化的影响[J]. 山地农业生物学报, 2011, 30(3): 215-220. |
MENG X S, WEI X L. Effects of water conditions on the physiological and biochemical characters of young Ormosia henryi seedlings[J]. Journal of Mountain Agriculture and Biology, 2011, 30(3): 215-220. (in Chinese with English abstract) | |
[12] | 葛萌, 安常蓉, 韦小丽. 光照强度和水分对花榈木幼苗结瘤及生理特性的影响[J]. 中南林业科技大学学报, 2022, 42(2): 27-35. |
GE M, AN C R, WEI X L. Influence of light intensity and water content on nodulation and physiological characteristics of Ormosia henryi seedlings[J]. Journal of Central South University of Forestry & Technology, 2022, 42(2): 27-35. (in Chinese with English abstract) | |
[13] | 蔡永萍. 植物生理学实验指导[M]. 北京: 中国农业大学出版社, 2014. |
[14] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[15] | 徐新娟, 李勇超. 2种植物相对电导率测定方法比较[J]. 江苏农业科学, 2014, 42(7): 311-312. |
XU X J, LI Y C. Comparison of two methods for measuring relative conductivity of plants[J]. Jiangsu Agricultural Sciences, 2014, 42(7): 311-312. (in Chinese) | |
[16] | 郑钢, 顾翠花, 王杰, 等. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659. |
ZHENG G, GU C H, WANG J, et al. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham. et Schlechtend[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650-1659. (in Chinese with English abstract) | |
[17] | 蔺豆豆, 赵桂琴, 琚泽亮, 等. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
LIN D D, ZHAO G Q, JU Z L, et al. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage[J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. (in Chinese with English abstract) | |
[18] | 王竞红, 陈鹏, 陈艾, 等. 3种观赏草苗期对干旱胁迫的响应及抗旱性评价[J]. 草业科学, 2019, 36(5): 1266-1274. |
WANG J H, CHEN P, CHEN A, et al. Effects of drought stress on physiological and growth characteristics of the seedlings of three ornamental grasses[J]. Pratacultural Science, 2019, 36(5): 1266-1274. (in Chinese with English abstract) | |
[19] | 李欢, 陈雷, 王晨静, 等. 4个观赏甘薯品种的抗旱性比较[J]. 浙江农业学报, 2015, 27(11): 1945-1952. |
LI H, CHEN L, WANG C J, et al. Evaluation of the drought tolerance of four ornamental sweetpotato cultivars[J]. Acta Agriculturae Zhejiangensis, 2015, 27(11): 1945-1952. (in Chinese with English abstract) | |
[20] | 倪川, 王智苑, 郑雯, 等. 干旱胁迫对马银花形态和生理指标的影响[J]. 福建林业科技, 2021, 48(2): 19-24. |
NI C, WANG Z Y, ZHENG W, et al. The influence of drought stress on Rhododendron ovatum on morphology and physiological indexes[J]. Journal of Fujian Forestry Science and Technology, 2021, 48(2): 19-24. (in Chinese with English abstract) | |
[21] | 冯芳芳, 魏清江, 苏受婷, 等. 干旱胁迫对2种柑橘幼苗生长形态、渗透调节物质含量和抗氧化酶活性的影响[J]. 浙江农业学报, 2017, 29(9): 1515-1523. |
FENG F F, WEI Q J, SU S T, et al. Effect of drought on growth morphology, osmolyte content and antioxidant enzyme activity of two citrus seedlings[J]. Acta Agriculturae Zhejiangensis, 2017, 29(9): 1515-1523. (in Chinese with English abstract) | |
[22] | 赵英, 吴敏, 邓平, 等. 干旱与复水对2种蟛蜞菊生长及生理生化特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(4): 113-122. |
ZHAO Y, WU M, DENG P, et al. Effects of drought and rewatering on growth and physiology characteristics of Wedelia chinensis and Wedelia trilobata[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 113-122. (in Chinese with English abstract) | |
[23] | 赵珍妮, 童再康, 赖江. 4种高山杜鹃容器苗对持续干旱胁迫和复水的生理响应研究[J]. 江苏林业科技, 2021, 48(5): 13-19. |
ZHAO Z N, TONG Z K, LAI J. Physiological response of four azalea seedlings after drought stress and rewatering[J]. Journal of Jiangsu Forestry Science & Technology, 2021, 48(5): 13-19. (in Chinese with English abstract) | |
[24] | 赵洁, 郎莹, 吴畏, 等. 土壤极端干旱对金银花光合生理生化特性的影响[J]. 西北植物学报, 2017, 37(12): 2444-2451. |
ZHAO J, LANG Y, WU W, et al. Effects of soil extreme drought on photo-physiological and photo-biochemical characteristics of Lonicera japonica thunb[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(12): 2444-2451. (in Chinese with English abstract) | |
[25] | 毛永成, 刘璐, 王小德. 干旱胁迫对3种槭树科植物生理特性的影响[J]. 浙江农林大学学报, 2016, 33(1): 60-64. |
MAO Y C, LIU L, WANG X D. Effect of drought stress on physiological characteristics of three plants of Aceraceae[J]. Journal of Zhejiang A & F University, 2016, 33(1): 60-64. (in Chinese with English abstract) | |
[26] | 刘洋, 王娟, 白婷玉, 等. 4种园林植物幼苗对干旱胁迫的生长和生理响应[J]. 干旱区资源与环境, 2021, 35(4): 173-179. |
LIU Y, WANG J, BAI T Y, et al. Growth and physiological responses of seedlings of four garden plants to drought stress[J]. Journal of Arid Land Resources and Environment, 2021, 35(4): 173-179. (in Chinese with English abstract) | |
[27] | 王德信, 杨晓莹. 玉米幼苗对干旱胁迫的生理响应[J]. 贵州农业科学, 2018, 46(4): 26-29. |
WANG D X, YANG X Y. Physiological response of maize seedlings under drought stress[J]. Guizhou Agricultural Sciences, 2018, 46(4): 26-29. (in Chinese with English abstract) | |
[28] | 刘球, 李志辉, 吴际友, 等. 红椿幼苗对干旱胁迫及复水生理响应的典型相关分析[J]. 西北农林科技大学学报(自然科学版), 2015, 43(10): 35-44. |
LIU Q, LI Z H, WU J Y, et al. Canonical correlation analysis on leaf physiological responses of Toona cilliate Roem.seedlings to drought stress and rewatering[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(10): 35-44. (in Chinese with English abstract) | |
[29] | APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399. |
[30] | 许令明, 曹昀, 汤思文, 等. 干旱胁迫及复水对花叶芦竹生理特性的影响[J]. 中国水土保持科学, 2020, 18(3): 59-66. |
XU L M, CAO Y, TANG S W, et al. Effects of drought stress and rewatering on physiological characteristics of Arundo donax var. versicolor[J]. Science of Soil and Water Conservation, 2020, 18(3): 59-66. (in Chinese with English abstract) | |
[31] | NAYYAR H, SINGH S, KAUR S, et al. Differential sensitivity of Macrocarpa and microcarpa types of chickpea (Cicer arietinum L.) to water stress: association of contrasting stress response with oxidative injury[J]. Journal of Integrative Plant Biology, 2006, 48(11): 1318-1329. |
[32] | 孙娅楠, 赵杨, 赵渊祥, 等. 棕榈幼苗光合和叶绿素荧光对干旱胁迫及复水的响应[J]. 中南林业科技大学学报, 2021, 41(9): 45-52. |
SUN Y N, ZHAO Y, ZHAO Y X, et al. Effects of drought and rewatering on photosynthetic characteristics and chlorophyll fluorescence of Trachycarpus fortunei seedlings[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 45-52. (in Chinese with English abstract) | |
[33] | 任迎虹, 尹福强, 刘松青, 等. 不同桑品种在干旱胁迫下叶绿素、水分饱和亏及丙二醛的变化规律研究[J]. 西南农业学报, 2016, 29(11): 2583-2587. |
REN Y H, YIN F Q, LIU S Q, et al. Effects of drought stress on mulberry varieties of chlorophyll, water saturation deficit and malondialdehyde[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2583-2587. (in Chinese with English abstract) | |
[34] | WANG N, CHEN H, WANG L. Physiological acclimation of Dicranostigma henanensis to soil drought stress and rewatering[J]. Acta Societatis Botanicorum Poloniae, 2021, 90: 1-11. |
[35] | 杨肖华, 郭圣茂, 冯美玲, 等. 干旱胁迫及复水对射干光合作用和叶绿素荧光特性的影响[J]. 江西农业大学学报, 2018, 40(3): 525-532. |
YANG X H, GUO S M, FENG M L, et al. Effects of drought stress and re-watering on the characteristics of photosynthesis and chlorophyll fluorescence of Blackberry lily[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 525-532. (in Chinese with English abstract) | |
[36] | 李伟成, 田新立, 盛海燕, 等. 干旱胁迫和复水对浙江楠光合与根系生长的影响[J]. 生态科学, 2019, 38(3): 182-188. |
LI W C, TIAN X L, SHENG H Y, et al. Effects of drought stress and re-watering on photosynthesis and root growth of Phoebe chekiangensis[J]. Ecological Science, 2019, 38(3): 182-188. (in Chinese with English abstract) | |
[37] | 胡莹冰, 胡筱璇, 张旻桓, 等. 干旱胁迫对3种蚊母树植物的生长及生理影响[J/OL]. 分子植物育种, (2022-11-18)[2023-01-31]. https://kns.cnki.net/kcms/detail/46.1068.s.20221117.1104.004.html. |
HU Y B, HU X X, ZHANG M H, et al. Effects of drought stress on the growth and physiology of three Distylium plants[J/OL]. Molecular Plant Breeding, (2022-11-18) [2023-01-31]. https://kns.cnki.net/kcms/detail/46.1068.s.20221117.1104.004.html. (in Chinese with English abstract) | |
[38] | 李海霞, 米银法, 陈双臣. 干旱胁迫下6种观赏牡丹生理响应及耐旱性评价[J]. 江苏农业科学, 2022, 50(7): 131-139. |
LI H X, MI Y F, CHEN S C. Physiological response and drought tolerance evaluation of six ornamental peony species under drought stress[J]. Jiangsu Agricultural Sciences, 2022, 50(7): 131-139. (in Chinese) | |
[39] | 任倩倩, 孙纪霞, 张德顺, 等. 干旱胁迫下不同绣球品种生理响应与抗旱性评价[J]. 浙江农业学报, 2021, 33(10): 1852-1860. |
REN Q Q, SUN J X, ZHANG D S, et al. Physiological response and drought resistance evaluation of different Hydrangea varieties under drought stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1852-1860. (in Chinese with English abstract) | |
[40] | 张军. 小麦骨干亲本小偃22抗旱耐寒适应性分析及对其衍生品种的遗传贡献[D]. 杨凌: 西北农林科技大学, 2014. |
ZHANG J. Analysis on drought and cold resistance of main parent Xiaoyan22 and its genetic contribution to derived lines[D]. Yangling: Northwest A & F University, 2014. (in Chinese with English abstract) | |
[41] | 贾民隆, 张晓纲, 梁峥, 等. 20个不同品系萱草的耐旱性筛选与评价[J]. 种子, 2021, 40(6): 90-95. |
JIA M L, ZHANG X G, LIANG Z, et al. Screening and evaluation of drought tolerance of 20 different Hemerocallis lines[J]. Seed, 2021, 40(6): 90-95. (in Chinese with English abstract) |
[1] | WANG Ying, WANG Jian, FENG Zishan, WANG Baogen, WU Xinyi, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xiaohua. Factor analysis and comprehensive evaluation of the fruit quality of bottle gourd (Lagenaria siceraria) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 334-343. |
[2] | ZENG Xiaochun, LI Suicheng, SHI Guanqing, XING Zeyu. Comprehensive evaluation of China’s regional agricultural quality development level based on entropy weight TOPSIS under background of carbon peaking and carbon neutrality goals: from perspective of change speed [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 962-972. |
[3] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
[4] | WEI Xiya, LIANG Lamei, LIN Xinqi, QIN Zhongwei, LI Yingzhi. Effects of melatonin seed priming on growth and physiological characteristics of Capsicum annuum under drought stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2378-2388. |
[5] | LIU Yiping, ZHANG Yiqi, SU Shaowen, LIU Hongli, HE Dan, KONG Dezheng. Evaluation of salt-alkali tolerance of different lotus varieties and screening of identification indexes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 103-111. |
[6] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[7] | YANG Hailong, WANG Hui, LEI Jinchao, CAI Jinyang. Analysis and evaluation of phenotypic diversities of early indica rice germplasm resources in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1571-1581. |
[8] | YANG Lei, HONG Lin, LIU Zhaojun, YANG Haijian, WANG Wu. Comprehensive evaluation of fruit quality and nutrition of six kumquat varieties [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 534-547. |
[9] | MO Yanling, ZHANG Wenjing, LUO Yalan, ZENG Jing, CHEN Jingjing, LIU Yihua. Identification and evaluation of agronomic traits and nutritional quality traits in wide handle mustard germplam resources [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 317-328. |
[10] | LI Xinyan, WANG Fangling, ZHANG Mingyue, SHAO Zhihui, WANG Jun, YANG Weili, ZHAO Mingqin. Effects of water retaining agent on carbon-nitrogen metabolism and neutral aroma substances content in cigar tobacco leaves under drought stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2610-2621. |
[11] | LIU Tao, CHEN Hairong, WANG Chengzhong, REN Li, ZHANG Di. Physiology of stress resistance of Agapanthus praecox under drought and salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. |
[12] | FENG Caijun, SONG Ruijiao, SONG Lingyu, ZHANG Song, QI Juncang. Effects of soaking seeds with 2, 4-epbrassinolide on starch netabolism during germination of barley seeds under drought stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2112-2120. |
[13] | ZHENG Gang, GU Cuihua, WANG Jie, LIN Lin. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham.et Schlechtend. [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650-1659. |
[14] | HE Peng, ZHANG Tao, SONG Haiyun, ZHENG Shufang, QIN Zhenshi, TAN Qiujin, HUANG Xiyun, TANG Xiuhua, XU Peng, CHEN Haisheng, WANG Wenlin. Determination of suitable harvesting time of Macadamia integrifolia cv. HAES695 for processing of slotted nut [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1489-1496. |
[15] | ZHANG Faming, DING Feng, WANG Ping. Evaluation of high-quality agricultural development level in major grain producing areas in China and its spatial and temporal evolution [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 150-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||