Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 748-759.DOI: 10.3969/j.issn.1004-1524.20230489
Previous Articles Next Articles
XUE Xianbin1(), JIA Qiong1, CHEN Zhengfeng1, LI Ruiyuan2, CHEN Qingfu1, SHI Taoxiong1,*(
)
Received:
2023-04-13
Online:
2024-04-25
Published:
2024-04-29
Contact:
SHI Taoxiong
CLC Number:
XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230489
试验材料 Test material | 在各年的高产纪录High yield record in different years | 试验材料 Test material | 在各年的高产纪录High yield record in different years | ||||||
---|---|---|---|---|---|---|---|---|---|
2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | 2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | ||
R101 | — | — | 1 803.17 | — | R204 | 2 381.19 | — | — | — |
R103 | — | — | 1 825.99 | — | R206 | — | — | — | 2 138.85 |
R104 | — | — | — | 2 306.10 | R207 | — | — | — | 2 010.36 |
R110 | 1 819.26 | — | — | — | R208 | 2 608.68 | — | 1 956.08 | 2 268.76 |
R125 | 2 289.10 | — | — | — | R210 | — | — | — | 1 884.34 |
R128 | — | — | — | 2 276.34 | R211 | — | — | 1 858.98 | 1 840.30 |
R130 | 2 436.44 | — | — | — | R212 | — | — | 1 818.56 | — |
R136 | — | — | 2 108.17 | 1 986.09 | R213 | — | — | — | 2 314.36 |
R137 | — | — | 1 961.89 | — | R214 | 2 504.64 | 2 328.34 | 1 816.40 | — |
R141 | — | — | — | 2 491.65 | R217 | 2 290.79 | — | — | — |
R143 | — | — | — | 2 052.93 | R52 | — | 2 383.77 | — | — |
R149 | 2 530.12 | — | — | — | R56 | — | — | 1 887.13 | — |
R153 | 2 358.64 | — | 2 049.31 | 2 031.82 | R61 | 2 430.69 | — | — | — |
R158 | — | — | 1 658.56 | — | R64 | 1 810.30 | — | — | 2 116.11 |
R163 | — | — | — | 1 840.86 | R65 | — | — | — | 1 849.78 |
R164 | 1 959.83 | 2 505.70 | — | — | R68 | — | — | 2 164.59 | — |
R167 | 2 393.32 | — | — | — | R72 | — | — | — | 2 290.54 |
R174 | — | — | — | 1 972.84 | R73 | — | — | 2 269.32 | — |
R175 | — | — | — | 2 398.59 | R75 | — | — | 1 903.48 | — |
R177 | — | — | — | 1 905.03 | R81 | 2 666.13 | — | — | — |
R178 | — | — | — | 2 375.01 | R82 | 2 384.90 | — | — | — |
R182 | — | — | — | 2 111.80 | R83 | — | — | 1 747.69 | — |
R187 | 2 266.30 | — | 1 985.34 | — | R84 | — | — | — | 2 448.53 |
R188 | — | — | — | 2 388.37 | R85 | 1 993.66 | — | — | — |
R189 | — | — | — | 1 877.02 | R87 | 2 212.75 | — | — | — |
R19 | — | — | 1 832.66 | — | R90 | — | — | — | 2 113.82 |
R191 | — | — | 2 464.99 | — | R93 | — | — | — | 2 289.28 |
R192 | — | — | 2 245.04 | 1 658.64 | R98 | 2 347.07 | — | — | 2 271.64 |
R198 | — | — | 2 013.13 | — | 小米荞 Xiaomiqiao | 1 032.40 | 1 645.30 | 979.10 | 1 349.50 |
R203 | — | — | 1 939.38 | 1 945.70 | 晋荞麦2号 Jinqiaomai2 | 1 345.96 | 1 910.70 | 1 262.30 | 1 897.10 |
Table 1 High yield performance of the tested recombinant inbred lines (RILs) and the yield of their parents in different environments kg·hm-2
试验材料 Test material | 在各年的高产纪录High yield record in different years | 试验材料 Test material | 在各年的高产纪录High yield record in different years | ||||||
---|---|---|---|---|---|---|---|---|---|
2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | 2017年秋季 Autumn in 2017 | 2018年春季 Spring in 2018 | 2018年秋季 Autumn in 2018 | 2019年秋季 Autumn in 2019 | ||
R101 | — | — | 1 803.17 | — | R204 | 2 381.19 | — | — | — |
R103 | — | — | 1 825.99 | — | R206 | — | — | — | 2 138.85 |
R104 | — | — | — | 2 306.10 | R207 | — | — | — | 2 010.36 |
R110 | 1 819.26 | — | — | — | R208 | 2 608.68 | — | 1 956.08 | 2 268.76 |
R125 | 2 289.10 | — | — | — | R210 | — | — | — | 1 884.34 |
R128 | — | — | — | 2 276.34 | R211 | — | — | 1 858.98 | 1 840.30 |
R130 | 2 436.44 | — | — | — | R212 | — | — | 1 818.56 | — |
R136 | — | — | 2 108.17 | 1 986.09 | R213 | — | — | — | 2 314.36 |
R137 | — | — | 1 961.89 | — | R214 | 2 504.64 | 2 328.34 | 1 816.40 | — |
R141 | — | — | — | 2 491.65 | R217 | 2 290.79 | — | — | — |
R143 | — | — | — | 2 052.93 | R52 | — | 2 383.77 | — | — |
R149 | 2 530.12 | — | — | — | R56 | — | — | 1 887.13 | — |
R153 | 2 358.64 | — | 2 049.31 | 2 031.82 | R61 | 2 430.69 | — | — | — |
R158 | — | — | 1 658.56 | — | R64 | 1 810.30 | — | — | 2 116.11 |
R163 | — | — | — | 1 840.86 | R65 | — | — | — | 1 849.78 |
R164 | 1 959.83 | 2 505.70 | — | — | R68 | — | — | 2 164.59 | — |
R167 | 2 393.32 | — | — | — | R72 | — | — | — | 2 290.54 |
R174 | — | — | — | 1 972.84 | R73 | — | — | 2 269.32 | — |
R175 | — | — | — | 2 398.59 | R75 | — | — | 1 903.48 | — |
R177 | — | — | — | 1 905.03 | R81 | 2 666.13 | — | — | — |
R178 | — | — | — | 2 375.01 | R82 | 2 384.90 | — | — | — |
R182 | — | — | — | 2 111.80 | R83 | — | — | 1 747.69 | — |
R187 | 2 266.30 | — | 1 985.34 | — | R84 | — | — | — | 2 448.53 |
R188 | — | — | — | 2 388.37 | R85 | 1 993.66 | — | — | — |
R189 | — | — | — | 1 877.02 | R87 | 2 212.75 | — | — | — |
R19 | — | — | 1 832.66 | — | R90 | — | — | — | 2 113.82 |
R191 | — | — | 2 464.99 | — | R93 | — | — | — | 2 289.28 |
R192 | — | — | 2 245.04 | 1 658.64 | R98 | 2 347.07 | — | — | 2 271.64 |
R198 | — | — | 2 013.13 | — | 小米荞 Xiaomiqiao | 1 032.40 | 1 645.30 | 979.10 | 1 349.50 |
R203 | — | — | 1 939.38 | 1 945.70 | 晋荞麦2号 Jinqiaomai2 | 1 345.96 | 1 910.70 | 1 262.30 | 1 897.10 |
性状 Trait | 亲本Parents | 高产RILs High-yield RILs | |||||
---|---|---|---|---|---|---|---|
小米荞 Xiaomiqiao | 晋荞麦2号 Jinqiaomai2 | 平均值 Mean | 范围 Range | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation/% | |
SL/mm | 3.90±0.06 | 5.00±0.02** | 4.43 | 3.74~5.12 | -0.18 | -1.33 | 8.30 |
SW/mm | 2.81±0.02 | 2.96±0.03 | 2.94 | 2.57~3.32 | 0.11 | -0.47 | 5.71 |
SLWR | 1.39±0.01 | 1.70±0.02** | 1.52 | 1.23~1.76 | -0.18 | -1.62 | 11.41 |
SA/mm2 | 7.96±0.14 | 10.63±0.13** | 9.35 | 7.72~10.77 | -0.40 | 0.19 | 7.16 |
SP/mm | 10.89±0.15 | 13.25±0.08** | 12.22 | 10.47~14.25 | -0.12 | 0.56 | 5.75 |
GP | 3.00±0.00 | 2.00±0.00** | 3.13 | 1.50~4.33 | -0.32 | 0.27 | 18.88 |
BN | 3.20±0.69 | 3.80±0.72 | 4.53 | 3.15~6.37 | 0.52 | -0.10 | 15.82 |
PH/cm | 126.70±3.99 | 115.97±10.69 | 133.72 | 117.75~155.43 | 0.13 | 0.01 | 6.05 |
TSW/g | 11.76±0.41 | 18.89±0.51** | 15.85 | 11.00~20.51 | -0.33 | 0.14 | 13.85 |
SY/(kg·hm-2) | 668.40±53.75 | 1 054.65±51.16** | 1 070.38 | 470.88~1 874.11 | 0.22 | -0.60 | 31.55 |
Table 2 Phenotypic variations in major agronomic traits of the tested recombinant inbred lines (RILs) and their parents
性状 Trait | 亲本Parents | 高产RILs High-yield RILs | |||||
---|---|---|---|---|---|---|---|
小米荞 Xiaomiqiao | 晋荞麦2号 Jinqiaomai2 | 平均值 Mean | 范围 Range | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation/% | |
SL/mm | 3.90±0.06 | 5.00±0.02** | 4.43 | 3.74~5.12 | -0.18 | -1.33 | 8.30 |
SW/mm | 2.81±0.02 | 2.96±0.03 | 2.94 | 2.57~3.32 | 0.11 | -0.47 | 5.71 |
SLWR | 1.39±0.01 | 1.70±0.02** | 1.52 | 1.23~1.76 | -0.18 | -1.62 | 11.41 |
SA/mm2 | 7.96±0.14 | 10.63±0.13** | 9.35 | 7.72~10.77 | -0.40 | 0.19 | 7.16 |
SP/mm | 10.89±0.15 | 13.25±0.08** | 12.22 | 10.47~14.25 | -0.12 | 0.56 | 5.75 |
GP | 3.00±0.00 | 2.00±0.00** | 3.13 | 1.50~4.33 | -0.32 | 0.27 | 18.88 |
BN | 3.20±0.69 | 3.80±0.72 | 4.53 | 3.15~6.37 | 0.52 | -0.10 | 15.82 |
PH/cm | 126.70±3.99 | 115.97±10.69 | 133.72 | 117.75~155.43 | 0.13 | 0.01 | 6.05 |
TSW/g | 11.76±0.41 | 18.89±0.51** | 15.85 | 11.00~20.51 | -0.33 | 0.14 | 13.85 |
SY/(kg·hm-2) | 668.40±53.75 | 1 054.65±51.16** | 1 070.38 | 470.88~1 874.11 | 0.22 | -0.60 | 31.55 |
Fig.1 Frequency distribution of major agronomic traits of the tested recombinant inbred lines (RILs) X, Xiaomiqiao; J, Jinqiaomai2. The same as below.
性状Trait | SL | SW | SLWR | SA | SP | GP | BN | PH | TSW |
---|---|---|---|---|---|---|---|---|---|
SW | -0.314* | ||||||||
SLWR | 0.888** | -0.713** | |||||||
SA | 0.784** | 0.299* | 0.432** | ||||||
SP | 0.885** | 0.085 | 0.611** | 0.929** | |||||
GP | -0.195 | -0.110 | -0.089 | -0.315* | -0.252 | ||||
BN | -0.005 | -0.086 | 0.048 | -0.110 | -0.063 | 0.241 | |||
PH | 0.073 | 0.033 | 0.038 | 0.132 | 0.180 | -0.031 | -0.032 | ||
TSW | 0.270* | 0.576** | -0.073 | 0.646** | 0.555** | -0.459** | -0.106 | 0.266* | |
SY | 0.264* | 0.273* | 0.060 | 0.490** | 0.416** | -0.450** | -0.220 | 0.550** | 0.611** |
Table 3 Pearson correlation coefficients among agronomic traits of recombinant inbred lines (RILs) and their parents
性状Trait | SL | SW | SLWR | SA | SP | GP | BN | PH | TSW |
---|---|---|---|---|---|---|---|---|---|
SW | -0.314* | ||||||||
SLWR | 0.888** | -0.713** | |||||||
SA | 0.784** | 0.299* | 0.432** | ||||||
SP | 0.885** | 0.085 | 0.611** | 0.929** | |||||
GP | -0.195 | -0.110 | -0.089 | -0.315* | -0.252 | ||||
BN | -0.005 | -0.086 | 0.048 | -0.110 | -0.063 | 0.241 | |||
PH | 0.073 | 0.033 | 0.038 | 0.132 | 0.180 | -0.031 | -0.032 | ||
TSW | 0.270* | 0.576** | -0.073 | 0.646** | 0.555** | -0.459** | -0.106 | 0.266* | |
SY | 0.264* | 0.273* | 0.060 | 0.490** | 0.416** | -0.450** | -0.220 | 0.550** | 0.611** |
性状Trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
SL | 0.828 | -0.542 | 0.095 | 0.006 |
SW | 0.120 | 0.866 | 0.414 | 0.124 |
SLWR | 0.552 | -0.818 | -0.126 | -0.048 |
SA | 0.925 | 0.031 | 0.293 | 0.045 |
SP | 0.930 | -0.174 | 0.206 | 0.089 |
GP | -0.473 | -0.279 | 0.134 | 0.530 |
BN | -0.164 | -0.232 | 0.289 | 0.731 |
PH | 0.315 | 0.236 | -0.727 | 0.486 |
TSW | 0.697 | 0.567 | 0.151 | 0.076 |
SY | 0.659 | 0.442 | -0.435 | 0.070 |
特征值Eigenvalue | 3.994 | 2.448 | 1.167 | 1.089 |
贡献率 | 39.940 | 24.478 | 11.667 | 10.893 |
Contribution rate/% | ||||
累计贡献率 | 39.940 | 64.418 | 76.085 | 86.978 |
Cumulative contribution rate/% |
Table 4 Principle component analysis of the tested recombinant inbred lines (RILs) and their parents
性状Trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
SL | 0.828 | -0.542 | 0.095 | 0.006 |
SW | 0.120 | 0.866 | 0.414 | 0.124 |
SLWR | 0.552 | -0.818 | -0.126 | -0.048 |
SA | 0.925 | 0.031 | 0.293 | 0.045 |
SP | 0.930 | -0.174 | 0.206 | 0.089 |
GP | -0.473 | -0.279 | 0.134 | 0.530 |
BN | -0.164 | -0.232 | 0.289 | 0.731 |
PH | 0.315 | 0.236 | -0.727 | 0.486 |
TSW | 0.697 | 0.567 | 0.151 | 0.076 |
SY | 0.659 | 0.442 | -0.435 | 0.070 |
特征值Eigenvalue | 3.994 | 2.448 | 1.167 | 1.089 |
贡献率 | 39.940 | 24.478 | 11.667 | 10.893 |
Contribution rate/% | ||||
累计贡献率 | 39.940 | 64.418 | 76.085 | 86.978 |
Cumulative contribution rate/% |
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R61 | 627.10±74.28 | 0.31 | 0.63 | 1.00 | 0.61 | 0.53 | 19 |
R72 | 1 253.29±142.90 | 0.39 | 0.70 | 0.52 | 0.59 | 0.52 | 21 |
R73 | 1 056.56±63.66 | 0.40 | 0.62 | 0.42 | 0.56 | 0.48 | 27 |
R75 | 470.88±71.49 | 0.29 | 0.59 | 0.93 | 0.55 | 0.49 | 26 |
R82 | 968.67±83.83 | 0.53 | 0.23 | 0.61 | 0.62 | 0.47 | 34 |
R83 | 1 190.27±104.46 | 0.34 | 0.72 | 0.37 | 0.59 | 0.48 | 30 |
R85 | 1 031.54±103.57 | 0.22 | 0.62 | 0.33 | 0.75 | 0.42 | 45 |
R87 | 508.60±85.29 | 0.14 | 0.49 | 0.52 | 0.32 | 0.31 | 55 |
R90 | 1 262.48±124.85 | 0.48 | 0.78 | 0.53 | 0.63 | 0.59 | 8 |
R93 | 768.75±53.56 | 0.26 | 0.59 | 0.42 | 0.11 | 0.36 | 52 |
R104 | 1 070.62±81.16 | 0.60 | 0.24 | 0.55 | 0.82 | 0.52 | 20 |
R110 | 499.79±71.35 | 0.53 | 0.08 | 0.69 | 0.07 | 0.37 | 49 |
R125 | 701.62±131.51 | 0.43 | 0.26 | 0.65 | 0.78 | 0.46 | 37 |
R128 | 1 101.98±102.92 | 0.33 | 0.64 | 0.58 | 0.34 | 0.45 | 38 |
R130 | 969.95±90.18 | 0.37 | 0.81 | 0.62 | 0.54 | 0.55 | 15 |
R137 | 751.14±23.30 | 0.39 | 0 | 0.71 | 0.71 | 0.36 | 50 |
R141 | 694.17±88.01 | 0.17 | 0.36 | 0.65 | 0.75 | 0.36 | 51 |
R143 | 1 071.56±164.59 | 0.65 | 0.15 | 0.74 | 0.33 | 0.48 | 29 |
R149 | 1 254.30±114.96 | 0.64 | 0.21 | 0.40 | 0.35 | 0.45 | 39 |
R158 | 1 147.60±93.93 | 0.52 | 0.16 | 0.31 | 0.36 | 0.37 | 48 |
R174 | 1 032.00±97.06 | 0.73 | 0.30 | 0.51 | 0.35 | 0.53 | 18 |
R177 | 1 089.67±130.44 | 0.58 | 0.35 | 0.37 | 0.75 | 0.51 | 22 |
R178 | 1 199.62±97.37 | 0.63 | 0.42 | 0.21 | 0.81 | 0.53 | 17 |
R182 | 497.90±67.66 | 0.44 | 0.10 | 0.69 | 0.13 | 0.34 | 53 |
R189 | 805.62±68.35 | 0.23 | 0.50 | 0.54 | 0.94 | 0.44 | 41 |
R191 | 1 025.33±69.27 | 0.51 | 0.12 | 0.30 | 0.88 | 0.42 | 44 |
R206 | 726.68±2.05 | 0.58 | 0.15 | 0.60 | 0.89 | 0.50 | 24 |
R207 | 952.52±133.26 | 0.64 | 0.25 | 0.49 | 0.36 | 0.47 | 31 |
R210 | 913.87±87.95 | 0.47 | 0.28 | 0.44 | 0.66 | 0.44 | 43 |
R212 | 678.95±33.54 | 0.47 | 0.14 | 0.54 | 0.57 | 0.40 | 46 |
R213 | 887.24±140.61 | 0.44 | 0.22 | 0.73 | 0.81 | 0.46 | 35 |
R217 | 1 120.32±212.63 | 0.56 | 0.17 | 0.17 | 0.47 | 0.39 | 47 |
R56 | 1 343.30±47.03** | 0.61 | 0.26 | 0.27 | 0.55 | 0.46 | 36 |
R65 | 1 405.40±191.45* | 0.43 | 0.77 | 0.54 | 0.63 | 0.57 | 11 |
R81 | 1 463.60±203.26* | 0.45 | 0.81 | 0.21 | 0.30 | 0.50 | 25 |
R84 | 1 442.83±79.84** | 0.57 | 1.00 | 0.63 | 0.46 | 0.69 | 4 |
R103 | 1 619.57±149.19** | 0.77 | 0.95 | 0.35 | 0.51 | 0.73 | 2 |
R163 | 1 236.57±64.78* | 0.44 | 0.61 | 0.58 | 0.80 | 0.55 | 13 |
R167 | 1 423.67±1.95** | 0.69 | 0.18 | 0.34 | 1.00 | 0.54 | 16 |
R175 | 1 515.29±77.51** | 0.70 | 0.54 | 0.05 | 0.03 | 0.48 | 28 |
R188 | 1 676.37±155.07** | 0.74 | 0.51 | 0.23 | 0.64 | 0.59 | 7 |
R204 | 1 389.97±112.87** | 0.73 | 0.43 | 0.34 | 0.61 | 0.58 | 9 |
R98 | 730.11±140.96 | 0.27 | 0.62 | 0.58 | 0.77 | 0.47 | 33 |
R136 | 1 041.68±66.29 | 0.49 | 0.27 | 0.57 | 0.53 | 0.45 | 40 |
R187 | 781.55±73.64 | 0.64 | 0.20 | 0.78 | 0.42 | 0.51 | 23 |
R211 | 730.35±72.12 | 0.40 | 0.07 | 0.34 | 0.69 | 0.33 | 54 |
R64 | 1 874.11±207.15** | 1.00 | 0.79 | 0.23 | 0.72 | 0.80 | 1 |
R164 | 1 705.31±122.67** | 0.84 | 0.66 | 0.44 | 0.71 | 0.72 | 3 |
R192 | 1 435.73±95.97** | 0.78 | 0.42 | 0.56 | 0.52 | 0.61 | 5 |
R203 | 1 352.17±33.73** | 0.58 | 0.42 | 0.44 | 0.26 | 0.47 | 32 |
R208 | 1 190.41±117.93 | 0.33 | 0.63 | 0.28 | 0.58 | 0.44 | 42 |
R153 | 1 537.46±158.54** | 0.58 | 0.69 | 0.41 | 0.30 | 0.55 | 14 |
R214 | 1 543.92±87.01** | 0.77 | 0.30 | 0.47 | 0.44 | 0.56 | 12 |
晋荞麦2号Jinqiaomai2 | 1 054.65±51.16 | 0.81 | 0.35 | 0.84 | 0 | 0.58 | 10 |
Table 5 Analysis of yield and comprehensive evaluation of non-rice type recombinant inbred lines (RILs) and the parent Jinqiaomai2 in 2022
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R61 | 627.10±74.28 | 0.31 | 0.63 | 1.00 | 0.61 | 0.53 | 19 |
R72 | 1 253.29±142.90 | 0.39 | 0.70 | 0.52 | 0.59 | 0.52 | 21 |
R73 | 1 056.56±63.66 | 0.40 | 0.62 | 0.42 | 0.56 | 0.48 | 27 |
R75 | 470.88±71.49 | 0.29 | 0.59 | 0.93 | 0.55 | 0.49 | 26 |
R82 | 968.67±83.83 | 0.53 | 0.23 | 0.61 | 0.62 | 0.47 | 34 |
R83 | 1 190.27±104.46 | 0.34 | 0.72 | 0.37 | 0.59 | 0.48 | 30 |
R85 | 1 031.54±103.57 | 0.22 | 0.62 | 0.33 | 0.75 | 0.42 | 45 |
R87 | 508.60±85.29 | 0.14 | 0.49 | 0.52 | 0.32 | 0.31 | 55 |
R90 | 1 262.48±124.85 | 0.48 | 0.78 | 0.53 | 0.63 | 0.59 | 8 |
R93 | 768.75±53.56 | 0.26 | 0.59 | 0.42 | 0.11 | 0.36 | 52 |
R104 | 1 070.62±81.16 | 0.60 | 0.24 | 0.55 | 0.82 | 0.52 | 20 |
R110 | 499.79±71.35 | 0.53 | 0.08 | 0.69 | 0.07 | 0.37 | 49 |
R125 | 701.62±131.51 | 0.43 | 0.26 | 0.65 | 0.78 | 0.46 | 37 |
R128 | 1 101.98±102.92 | 0.33 | 0.64 | 0.58 | 0.34 | 0.45 | 38 |
R130 | 969.95±90.18 | 0.37 | 0.81 | 0.62 | 0.54 | 0.55 | 15 |
R137 | 751.14±23.30 | 0.39 | 0 | 0.71 | 0.71 | 0.36 | 50 |
R141 | 694.17±88.01 | 0.17 | 0.36 | 0.65 | 0.75 | 0.36 | 51 |
R143 | 1 071.56±164.59 | 0.65 | 0.15 | 0.74 | 0.33 | 0.48 | 29 |
R149 | 1 254.30±114.96 | 0.64 | 0.21 | 0.40 | 0.35 | 0.45 | 39 |
R158 | 1 147.60±93.93 | 0.52 | 0.16 | 0.31 | 0.36 | 0.37 | 48 |
R174 | 1 032.00±97.06 | 0.73 | 0.30 | 0.51 | 0.35 | 0.53 | 18 |
R177 | 1 089.67±130.44 | 0.58 | 0.35 | 0.37 | 0.75 | 0.51 | 22 |
R178 | 1 199.62±97.37 | 0.63 | 0.42 | 0.21 | 0.81 | 0.53 | 17 |
R182 | 497.90±67.66 | 0.44 | 0.10 | 0.69 | 0.13 | 0.34 | 53 |
R189 | 805.62±68.35 | 0.23 | 0.50 | 0.54 | 0.94 | 0.44 | 41 |
R191 | 1 025.33±69.27 | 0.51 | 0.12 | 0.30 | 0.88 | 0.42 | 44 |
R206 | 726.68±2.05 | 0.58 | 0.15 | 0.60 | 0.89 | 0.50 | 24 |
R207 | 952.52±133.26 | 0.64 | 0.25 | 0.49 | 0.36 | 0.47 | 31 |
R210 | 913.87±87.95 | 0.47 | 0.28 | 0.44 | 0.66 | 0.44 | 43 |
R212 | 678.95±33.54 | 0.47 | 0.14 | 0.54 | 0.57 | 0.40 | 46 |
R213 | 887.24±140.61 | 0.44 | 0.22 | 0.73 | 0.81 | 0.46 | 35 |
R217 | 1 120.32±212.63 | 0.56 | 0.17 | 0.17 | 0.47 | 0.39 | 47 |
R56 | 1 343.30±47.03** | 0.61 | 0.26 | 0.27 | 0.55 | 0.46 | 36 |
R65 | 1 405.40±191.45* | 0.43 | 0.77 | 0.54 | 0.63 | 0.57 | 11 |
R81 | 1 463.60±203.26* | 0.45 | 0.81 | 0.21 | 0.30 | 0.50 | 25 |
R84 | 1 442.83±79.84** | 0.57 | 1.00 | 0.63 | 0.46 | 0.69 | 4 |
R103 | 1 619.57±149.19** | 0.77 | 0.95 | 0.35 | 0.51 | 0.73 | 2 |
R163 | 1 236.57±64.78* | 0.44 | 0.61 | 0.58 | 0.80 | 0.55 | 13 |
R167 | 1 423.67±1.95** | 0.69 | 0.18 | 0.34 | 1.00 | 0.54 | 16 |
R175 | 1 515.29±77.51** | 0.70 | 0.54 | 0.05 | 0.03 | 0.48 | 28 |
R188 | 1 676.37±155.07** | 0.74 | 0.51 | 0.23 | 0.64 | 0.59 | 7 |
R204 | 1 389.97±112.87** | 0.73 | 0.43 | 0.34 | 0.61 | 0.58 | 9 |
R98 | 730.11±140.96 | 0.27 | 0.62 | 0.58 | 0.77 | 0.47 | 33 |
R136 | 1 041.68±66.29 | 0.49 | 0.27 | 0.57 | 0.53 | 0.45 | 40 |
R187 | 781.55±73.64 | 0.64 | 0.20 | 0.78 | 0.42 | 0.51 | 23 |
R211 | 730.35±72.12 | 0.40 | 0.07 | 0.34 | 0.69 | 0.33 | 54 |
R64 | 1 874.11±207.15** | 1.00 | 0.79 | 0.23 | 0.72 | 0.80 | 1 |
R164 | 1 705.31±122.67** | 0.84 | 0.66 | 0.44 | 0.71 | 0.72 | 3 |
R192 | 1 435.73±95.97** | 0.78 | 0.42 | 0.56 | 0.52 | 0.61 | 5 |
R203 | 1 352.17±33.73** | 0.58 | 0.42 | 0.44 | 0.26 | 0.47 | 32 |
R208 | 1 190.41±117.93 | 0.33 | 0.63 | 0.28 | 0.58 | 0.44 | 42 |
R153 | 1 537.46±158.54** | 0.58 | 0.69 | 0.41 | 0.30 | 0.55 | 14 |
R214 | 1 543.92±87.01** | 0.77 | 0.30 | 0.47 | 0.44 | 0.56 | 12 |
晋荞麦2号Jinqiaomai2 | 1 054.65±51.16 | 0.81 | 0.35 | 0.84 | 0 | 0.58 | 10 |
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R19 | 638.86±69.27 | 0 | 0.25 | 0.09 | 0.22 | 0.11 | 60 |
R68 | 874.59±129.56 | 0.42 | 0.77 | 0.59 | 0.85 | 0.59 | 6 |
R52 | 986.13±49.81** | 0.15 | 0.32 | 0.30 | 0.54 | 0.27 | 56 |
R101 | 897.12±82.53* | 0.02 | 0.41 | 0.39 | 0.42 | 0.23 | 57 |
R198 | 915.27±25.14** | 0.19 | 0.03 | 0 | 0.88 | 0.21 | 58 |
小米荞Xiaomiqiao | 668.40±53.75 | 0.10 | 0.39 | 0.29 | 0.02 | 0.20 | 59 |
Table 6 Analysis of yield and comprehensive evaluation of rice type recombinant inbred lines (RILs) and the parent Jinqiaomai2 in 2022
试验材料 Test material | 产量 Yield/(kg·hm-2) | 隶属函数值Membership function value | D | 排名 Rank | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||||
R19 | 638.86±69.27 | 0 | 0.25 | 0.09 | 0.22 | 0.11 | 60 |
R68 | 874.59±129.56 | 0.42 | 0.77 | 0.59 | 0.85 | 0.59 | 6 |
R52 | 986.13±49.81** | 0.15 | 0.32 | 0.30 | 0.54 | 0.27 | 56 |
R101 | 897.12±82.53* | 0.02 | 0.41 | 0.39 | 0.42 | 0.23 | 57 |
R198 | 915.27±25.14** | 0.19 | 0.03 | 0 | 0.88 | 0.21 | 58 |
小米荞Xiaomiqiao | 668.40±53.75 | 0.10 | 0.39 | 0.29 | 0.02 | 0.20 | 59 |
类群 | 株系数 | SL/mm | SW/mm | SLWR | SA/mm2 | SP/mm | GP/d | BN | PH/mm | TSW/g | SY/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Number of lines | ||||||||||
C1 | 25 | 4.72± 0.13 a | 2.83± 0.09 b | 1.67± 0.06 a | 9.60± 0.41 b | 12.64± 0.31 a | 3.18± 0.59 a | 4.67± 0.69 a | 131.89± 8.85 b | 15.56± 1.54 b | 958.58± 241.06 b |
C2 | 12 | 4.59± 0.33 a | 3.03± 0.15 a | 1.52± 0.15 b | 9.95± 0.59 a | 12.69± 0.72 a | 2.50± 0.53 b | 4.01± 0.37 b | 138.66± 8.08 a | 18.21± 1.62 a | 1 546.36± 150.14 a |
C3 | 16 | 4.06± 0.10 b | 3.10± 0.09 a | 1.32± 0.04 d | 9.04± 0.40 c | 11.75 ±0.29 b | 3.35± 0.36 a | 4.76± 0.79 a | 132.48± 7.04 b | 16.15± 1.34 a | 993.81± 268.28 b |
C4 | 7 | 3.93± 0.17 b | 2.80± 0.15 b | 1.41± 0.12 c | 8.12± 0.39 d | 10.98± 0.33 c | 3.33± 0.54 a | 4.13± 0.79 b | 131.10± 7.21 b | 11.99± 1.47 b | 769.02± 173.12 c |
Table 7 Main agronomic traits among different groups
类群 | 株系数 | SL/mm | SW/mm | SLWR | SA/mm2 | SP/mm | GP/d | BN | PH/mm | TSW/g | SY/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Number of lines | ||||||||||
C1 | 25 | 4.72± 0.13 a | 2.83± 0.09 b | 1.67± 0.06 a | 9.60± 0.41 b | 12.64± 0.31 a | 3.18± 0.59 a | 4.67± 0.69 a | 131.89± 8.85 b | 15.56± 1.54 b | 958.58± 241.06 b |
C2 | 12 | 4.59± 0.33 a | 3.03± 0.15 a | 1.52± 0.15 b | 9.95± 0.59 a | 12.69± 0.72 a | 2.50± 0.53 b | 4.01± 0.37 b | 138.66± 8.08 a | 18.21± 1.62 a | 1 546.36± 150.14 a |
C3 | 16 | 4.06± 0.10 b | 3.10± 0.09 a | 1.32± 0.04 d | 9.04± 0.40 c | 11.75 ±0.29 b | 3.35± 0.36 a | 4.76± 0.79 a | 132.48± 7.04 b | 16.15± 1.34 a | 993.81± 268.28 b |
C4 | 7 | 3.93± 0.17 b | 2.80± 0.15 b | 1.41± 0.12 c | 8.12± 0.39 d | 10.98± 0.33 c | 3.33± 0.54 a | 4.13± 0.79 b | 131.10± 7.21 b | 11.99± 1.47 b | 769.02± 173.12 c |
[1] | 范昱, 丁梦琦, 张凯旋, 等. 中国野生荞麦种质资源概况与利用进展[J]. 植物遗传资源学报, 2020, 21(6): 1395-1406. |
FAN Y, DING M Q, ZHANG K X, et al. Overview and utilization of wild germplasm resources of the genus Fagopyrum Mill in China[J]. Journal of Plant Genetic Resources, 2020, 21(6): 1395-1406. (in Chinese with English abstract) | |
[2] | 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订[J]. 植物遗传资源学报, 2019, 20(3): 646-653. |
TANG Y, SHAO J R, ZHOU M L. A taxonomic revision of Fagopyrum Mill from China[J]. Journal of Plant Genetic Resources, 2019, 20(3): 646-653. (in Chinese with English abstract) | |
[3] | 鲍涛. 云南高寒山区苦荞黄酮抗氧化和降血糖活性研究[D]. 杭州: 浙江大学, 2017. |
BAO T. Anti-oxidant and anti-diabetes activitv of Tartary buckwheat flavonoids derived from alpine mountain of Yunnan Province[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
[4] | ZHU F. Chemical composition and health effects of Tartary buckwheat[J]. Food Chemistry, 2016, 203: 231-245. |
[5] | 李玉英, 赵淑娟, 白崇智, 等. 苦荞异槲皮苷对人胃癌细胞SGC-7901增殖及凋亡的影响[J]. 食品科学, 2014, 35(3): 193-197. |
LI Y Y, ZHAO S J, BAI C Z, et al. Effect of isoquercetin from Fagopyrum tataricum on the proliferation and apoptosis of human gastric carcinoma cell line SGC-7901[J]. Food Science, 2014, 35(3): 193-197. (in Chinese with English abstract) | |
[6] | HOU Z X, HU Y Y, YANG X B, et al. Antihypertensive effects of Tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats[J]. Food & Function, 2017, 8(11): 4217-4228. |
[7] | QIU J, LI Z G, QIN Y C, et al. Protective effect of Tartary buckwheat on renal function in type 2 diabetics: a randomized controlled trial[J]. Therapeutics and Clinical Risk Management, 2016, 12: 1721-1727. |
[8] | QIN P Y, WEI A C, ZHAO D G, et al. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of Tartary buckwheat sprouts[J]. Food Chemistry, 2017, 224: 124-130. |
[9] | 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(3): 1-7. |
CHEN Q F. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat[J]. Journal of Guizhou Normal University (Natural Sciences), 2018, 36(3): 1-7. (in Chinese with English abstract) | |
[10] | 李月, 石桃雄, 黄凯丰, 等. 苦荞生态因子及农艺性状与产量的相关分析[J]. 西南农业学报, 2013, 26(1): 35-41. |
LI Y, SHI T X, HUANG K F, et al. Correlation analysis of Tartary buckwheat seed yield with ecological factors and agronomic traits[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 35-41. (in Chinese with English abstract) | |
[11] | 时政, 黄凯丰, 陈庆富. 贵州不同生态区苦荞产量性状形成的初步分析[J]. 四川大学学报(自然科学版), 2011, 48(5): 1221-1226. |
SHI Z, HUANG K F, CHEN Q F. Preliminarily analysis on the yields of Tartary buckwheat of different ecological regions in Guizhou Province[J]. Journal of Sichuan University (Natural Science Edition), 2011, 48(5): 1221-1226. (in Chinese with English abstract) | |
[12] | 吕丹, 黎瑞源, 郑冉, 等. 213份苦荞种质资源主要农艺性状分析及高产种质筛选[J]. 南方农业学报, 2020, 51(10): 2429-2439. |
LYU D, LI R Y, ZHENG R, et al. Main agronomic traits and selection of high seed yield germplasms in 213 Tartary buckwheat materials[J]. Journal of Southern Agriculture, 2020, 51(10): 2429-2439. (in Chinese with English abstract) | |
[13] | 郑冉, 黎瑞源, 吕丹, 等. 苦荞重组自交系群体籽粒性状遗传变异分析[J]. 安徽农业大学学报, 2020, 47(5): 818-825. |
ZHENG R, LI R Y, LYU D, et al. Genetic variation analysis of seed traits in recombinant inbred lines population of Tartary buckwheat[J]. Journal of Anhui Agricultural University, 2020, 47(5): 818-825. (in Chinese with English abstract) | |
[14] | 李春花, 加央多拉, 陈蕤坤, 等. 苦荞种质资源性状评价及优异资源筛选[J]. 干旱地区农业研究, 2021, 39(6): 19-27. |
LI C H, JIAYANGDUOLA, CHEN R K, et al. Evaluation and selection of Tartary buckwheat germplasm resources based on agronomic traits[J]. Agricultural Research in the Arid Areas, 2021, 39(6): 19-27. (in Chinese with English abstract) | |
[15] | 杨明君, 杨媛, 郭忠贤, 等. 旱作苦荞麦籽粒产量与主要性状的相关分析[J]. 内蒙古农业科技, 2010, 38(2): 49-50. |
YANG M J, YANG Y, GUO Z X, et al. Correlation analysis between grain yield and main character of Tartary buckwheat in dry land[J]. Inner Mongolia Agricultural Science and Technology, 2010, 38(2): 49-50. (in Chinese with English abstract) | |
[16] | 石桃雄, 黎瑞源, 梁龙兵, 等. 苦荞重组自交系群体农艺性状分析[J]. 华南农业大学学报, 2018, 39(1): 18-24. |
SHI T X, LI R Y, LIANG L B, et al. Analysis of agronomic traits in recombinant inbred line population of Tartary buckwheat (Fagopyrm tataricum)[J]. Journal of South China Agricultural University, 2018, 39(1): 18-24. (in Chinese with English abstract) | |
[17] | 孙晓靖, 杜文亮, 赵士杰, 等. 苦荞麦脱壳方法的试验[J]. 农业机械学报, 2007, 38(12): 220-222. |
SUN X J, DU W L, ZHAO S J, et al. Experiment on hulling method of Tartary buckwheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12): 220-222. (in Chinese) | |
[18] | LIU Y X, CAI C Z, YAO Y L, et al. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and Tartary buckwheat produced in China upon thermal processing[J]. Journal of the Science of Food and Agriculture, 2019, 99(12): 5565-5576. |
[19] | KLEPACKA J, NAJDA A, KLIMEK K. Effect of buckwheat groats processing on the content and bioaccessibility of selected minerals[J]. Foods, 2020, 9(6): 832. |
[20] | 郑冉. 苦荞重组自交系群体籽粒黄酮含量与农艺性状的QTL定位[D]. 贵阳: 贵州师范大学, 2020. |
ZHENG R. QTLs mapping for flavonoids content in seeds and agriculture traits on recombinant inbred lines population of Tartary buckwheat[D]. Guiyang: Guizhou Normal University, 2020. (in Chinese with English abstract) | |
[21] | SHI T X, LI R Y, ZHENG R, et al. Mapping QTLs for 1 000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum)[J]. BMC Genomics, 2021, 22(1): 142. |
[22] | 石桃雄, 郑俊青, 郑冉, 等. 苦荞重组自交系群体淀粉组分含量和产量的变异分析[J]. 贵州师范大学学报(自然科学版), 2021, 39(5): 1-6. |
SHI T X, ZHENG J Q, ZHENG R, et al. Variation analysis of starch components content and yield in recombinant inbred lines of Tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(5): 1-6. (in Chinese with English abstract) | |
[23] | 陈越, 张敦宇, 丁明亮, 等. 多个省份水稻资源的表型多样性与优异资源的筛选[J]. 浙江农业学报, 2019, 31(11): 1779-1789. |
CHEN Y, ZHANG D Y, DING M L, et al. Phenotypic diversity of rice resources in multiple provinces and screening of excellent resources[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11): 1779-1789. (in Chinese with English abstract) | |
[24] | 胡标林, 万勇, 李霞, 等. 水稻核心种质表型性状遗传多样性分析及综合评价[J]. 作物学报, 2012, 38(5): 829-839. |
HU B L, WAN Y, LI X, et al. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment[J]. Acta Agronomica Sinica, 2012, 38(5): 829-839. (in Chinese with English abstract) | |
[25] | 杨学乐, 张璐, 李志清, 等. 苦荞种质资源表型性状的遗传多样性分析[J]. 作物杂志, 2020(5): 53-58. |
YANG X L, ZHANG L, LI Z Q, et al. Diversity analysis of Tartary buckwheat germplasms based on phenotypic traits[J]. Crops, 2020(5): 53-58. (in Chinese with English abstract) | |
[26] | 贾琼, 石桃雄, 薛贤滨, 等. 苦荞重组自交系群体果壳率及产量相关性状变异分析[J]. 东北农业大学学报, 2023, 54(3): 8-16. |
JIA Q, SHI T X, XUE X B, et al. Variation analysis of seed shell rate and yield-related traits of recombinant inbred lines population in Tartary buckwheat[J]. Journal of Northeast Agricultural University, 2023, 54(3): 8-16. (in Chinese with English abstract) | |
[27] | 李春花, 黄金亮, 尹桂芳, 等. 苦荞粒形相关性状的遗传分析[J]. 作物杂志, 2020(3): 42-46. |
LI C H, HUANG J L, YIN G F, et al. Genetic analysis of grain shape related traits in Tartary buckwheat[J]. Crops, 2020(3): 42-46. (in Chinese with English abstract) | |
[28] | 赵鑫, 陈少锋, 王慧, 等. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018(5): 27-32. |
ZHAO X, CHEN S F, WANG H, et al. Research on the yield and quality of different Tartaty buckwheat varieties in northern Shanxi area[J]. Crops, 2018(5): 27-32. (in Chinese with English abstract) | |
[29] | KAHLON C S, LI B, BOARD J, et al. Cluster and principle component analysis of soybean grown at various row spacings, planting dates and plant populations[J]. Open Agriculture, 2018, 3(1): 110-121. |
[30] | MENGISTU S, ASEFA M. Genetic diversity based on cluster and principal component analyses for agro-morphological traits of wheat germplasm[J]. International Journal of Genetics and Genomics, 2022, 10(3): 79-84. |
[31] | SHI S J, WANG E T, LI C X, et al. Comprehensive evaluation of 17 qualities of 84 types of rice based on principal component analysis[J]. Foods, 2021, 10(11): 2883. |
[32] | LI H Y, WU C X, LV Q Y, et al. Comparative cellular, physiological and transcriptome analyses reveal the potential easy dehulling mechanism of rice-Tartary buckwheat (Fagopyrum tararicum)[J]. BMC Plant Biology, 2020, 20(1): 505. |
[33] | LI C H, XIE Z M, WANG Y Q, et al. Correlation and genetic analysis of seed shell thickness and yield factors in Tartary buckwheat (Fagopyrum tataricum(L.) Gaertn.)[J]. Breeding Science, 2019, 69(3): 464-470. |
[1] | LI Xuelong, LI Chao, LI Yue, LIU Guoli, ZHANG Peng, ZHANG Min. Effects of different cultivation modes on agronomic characters and accumulation of active components of Ganoderma lucidum strains [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2045-2055. |
[2] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
[3] | YE Lei, ZHANG Bo, YANG Xuezhen, LI Xiaolin, ZHANG Xiaoping, TAN Wei. Feasibility of Auricularia cornea cultivation with bamboo sawdust instead of wood sawdust and comprehensive evaluation of quality [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1416-1426. |
[4] | TAN Shuxia, ZHAO Taodi, YANG Hao, NING Kejun, LIU Li, HE Qingyuan, HUANG Shoucheng, SHU Yingjie. Effects of shading on agronomic characters, yield and nitrogen metabolism of 10 vegetable soybean varieties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 729-735. |
[5] | LOU Qianqi, LIANG Yan. Quality analysis of five kinds of tomato germplasm resources with different fruit colors [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 582-589. |
[6] | DING Yi, ZHENG Xuxia, HUANG Haitao, MAO Yuxiao, ZHAO Yun. Analysis of agronomic traits and genetic diversity of four major tea populations in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 364-372. |
[7] | ZHANG Hongmei, WANG Baojun, SHEN Yaqiang, CHENG Wangda. Response of yield and quality of high-quality japonica rice with different grain shapes to regulation of sowing date in northern Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2751-2762. |
[8] | WANG Ruyue, LUO Shasha, ZHEN Ziyi, WU Jialong, XU Yeyong, SUN Yali, HU Xiaojing, HU Haifang. Study on the characteristics of different maturity of apricot plum Flavor Queen fruit [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2865-2877. |
[9] | ZHAI Yilan, ZHANG Chulei, CHU Aixiang, GAO Junge, XIA Qingqing, LU Zhichang. Phenotypic diversity in 27 Acer species [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2621-2635. |
[10] | PENG Dandan, CHEN Dagang, XU Kaiwei, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of coconut-bran compound substrate on the growth and root characteristics of kiwifruit rootstock seedlings [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2364-2377. |
[11] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[12] | LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598. |
[13] | JIANG Ruiping, ZHAO Chenhui, LI Wenjie, AN Qiuju, LI Jialun, ZHOU Jiayu, LI Suiyan, LIAO Hai. Codon bias of IPI gene in leguminous plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1114-1123. |
[14] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
[15] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||