Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (6): 1217-1231.DOI: 10.3969/j.issn.1004-1524.20230861
• Crop Science • Previous Articles Next Articles
WU Guojiang(), ZHOU Wei, LI Yanxiao, HOU Jie, YANG Zhiqiang, ZHOU Yaxing*(
)
Received:
2023-07-13
Online:
2024-06-25
Published:
2024-07-02
CLC Number:
WU Guojiang, ZHOU Wei, LI Yanxiao, HOU Jie, YANG Zhiqiang, ZHOU Yaxing. Identification and expression analysis under saline-alkali stress of ZF-HD gene family in sorghum[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1217-1231.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230861
基因名称 Gene name | 序列ID Sequence ID | 氨基酸 数量 Amino acid number | 分子量 Molecular weight/ ku | 等电点 pI | 不稳定 系数 Instability index | 脂肪 系数 Aliphatic index | 亲水性指数 Grand average of hydropathicity | 亚细胞定位 Subcellular localization | α-螺旋 α-Helix/ % | 延伸链 Extended strand/% | β-折叠 β-Sheet/ % | 无规则 卷曲 Random coil/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SbZF-HD1 | Sobic. 001G112500.1 | 234 | 24.35 | 8.14 | 56.01 | 42.22 | -0.585 | 线粒体 Mitochondria | 26.50 | 5.56 | 7.26 | 60.68 |
SbZF-HD2 | Sobic. 002G201100.2 | 110 | 12.46 | 8.81 | 55.42 | 54.18 | -0.545 | 细胞核 Nucleus | 38.18 | 20.91 | 4.55 | 36.36 |
SbZF-HD3 | Sobic. 002G201400.1 | 381 | 39.39 | 7.75 | 69.35 | 55.28 | -0.504 | 细胞核 Nucleus | 22.05 | 11.29 | 5.25 | 61.42 |
SbZF-HD4 | Sobic. 002G231100.1 | 302 | 31.47 | 7.38 | 52.79 | 50.86 | -0.579 | 细胞核 Nucleus | 20.53 | 8.61 | 6.62 | 64.24 |
SbZF-HD5 | Sobic. 003G135101.1 | 265 | 29.29 | 11.69 | 84.56 | 54.34 | -0.817 | 细胞核 Nucleus | 38.49 | 9.43 | 2.64 | 49.43 |
SbZF-HD6 | Sobic. 004G266800.1 | 406 | 43.48 | 6.55 | 93.15 | 54.73 | -0.791 | 细胞核 Nucleus | 26.35 | 9.36 | 3.45 | 60.84 |
SbZF-HD7 | Sobic. 005G019800.1 | 98 | 10.14 | 6.49 | 59.24 | 33.16 | -0.661 | 细胞核 Nucleus | 20.41 | 13.27 | 9.18 | 57.14 |
SbZF-HD8 | Sobic. 005G086700.1 | 394 | 40.83 | 7.76 | 68.95 | 57.36 | -0.538 | 细胞核 Nucleus | 26.90 | 10.66 | 5.58 | 56.85 |
SbZF-HD9 | Sobic. 007G139000.1 | 127 | 13.31 | 7.92 | 73.21 | 49.37 | -0.156 | 叶绿体 Chloroplast | 31.50 | 16.54 | 7.87 | 44.09 |
SbZF-HD10 | Sobic. 007G139200.1 | 390 | 40.29 | 6.52 | 71.13 | 61.05 | -0.373 | 细胞质 Cytoplasm | 30.26 | 8.46 | 6.41 | 54.87 |
SbZF-HD11 | Sobic. 007G160400.1 | 311 | 31.80 | 6.80 | 46.00 | 55.02 | -0.430 | 细胞核 Nucleus | 19.61 | 11.90 | 6.75 | 61.74 |
SbZF-HD12 | Sobic. 008G020700.1 | 92 | 9.75 | 7.67 | 58.20 | 38.48 | -0.651 | 细胞核 Nucleus | 26.09 | 13.04 | 5.43 | 55.43 |
SbZF-HD13 | Sobic. 008G073200.1 | 328 | 34.72 | 9.15 | 70.83 | 54.27 | -0.789 | 细胞核 Nucleus | 16.77 | 9.76 | 6.10 | 67.38 |
SbZF-HD14 | Sobic. 009G244200.2 | 373 | 39.71 | 8.82 | 91.63 | 47.77 | -0.819 | 叶绿体 Chloroplast | 24.93 | 8.58 | 5.90 | 60.59 |
Table 1 Information of sorghum ZF-HD gene family members and physicochemical properties and secondary structure of their encoded proteins
基因名称 Gene name | 序列ID Sequence ID | 氨基酸 数量 Amino acid number | 分子量 Molecular weight/ ku | 等电点 pI | 不稳定 系数 Instability index | 脂肪 系数 Aliphatic index | 亲水性指数 Grand average of hydropathicity | 亚细胞定位 Subcellular localization | α-螺旋 α-Helix/ % | 延伸链 Extended strand/% | β-折叠 β-Sheet/ % | 无规则 卷曲 Random coil/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SbZF-HD1 | Sobic. 001G112500.1 | 234 | 24.35 | 8.14 | 56.01 | 42.22 | -0.585 | 线粒体 Mitochondria | 26.50 | 5.56 | 7.26 | 60.68 |
SbZF-HD2 | Sobic. 002G201100.2 | 110 | 12.46 | 8.81 | 55.42 | 54.18 | -0.545 | 细胞核 Nucleus | 38.18 | 20.91 | 4.55 | 36.36 |
SbZF-HD3 | Sobic. 002G201400.1 | 381 | 39.39 | 7.75 | 69.35 | 55.28 | -0.504 | 细胞核 Nucleus | 22.05 | 11.29 | 5.25 | 61.42 |
SbZF-HD4 | Sobic. 002G231100.1 | 302 | 31.47 | 7.38 | 52.79 | 50.86 | -0.579 | 细胞核 Nucleus | 20.53 | 8.61 | 6.62 | 64.24 |
SbZF-HD5 | Sobic. 003G135101.1 | 265 | 29.29 | 11.69 | 84.56 | 54.34 | -0.817 | 细胞核 Nucleus | 38.49 | 9.43 | 2.64 | 49.43 |
SbZF-HD6 | Sobic. 004G266800.1 | 406 | 43.48 | 6.55 | 93.15 | 54.73 | -0.791 | 细胞核 Nucleus | 26.35 | 9.36 | 3.45 | 60.84 |
SbZF-HD7 | Sobic. 005G019800.1 | 98 | 10.14 | 6.49 | 59.24 | 33.16 | -0.661 | 细胞核 Nucleus | 20.41 | 13.27 | 9.18 | 57.14 |
SbZF-HD8 | Sobic. 005G086700.1 | 394 | 40.83 | 7.76 | 68.95 | 57.36 | -0.538 | 细胞核 Nucleus | 26.90 | 10.66 | 5.58 | 56.85 |
SbZF-HD9 | Sobic. 007G139000.1 | 127 | 13.31 | 7.92 | 73.21 | 49.37 | -0.156 | 叶绿体 Chloroplast | 31.50 | 16.54 | 7.87 | 44.09 |
SbZF-HD10 | Sobic. 007G139200.1 | 390 | 40.29 | 6.52 | 71.13 | 61.05 | -0.373 | 细胞质 Cytoplasm | 30.26 | 8.46 | 6.41 | 54.87 |
SbZF-HD11 | Sobic. 007G160400.1 | 311 | 31.80 | 6.80 | 46.00 | 55.02 | -0.430 | 细胞核 Nucleus | 19.61 | 11.90 | 6.75 | 61.74 |
SbZF-HD12 | Sobic. 008G020700.1 | 92 | 9.75 | 7.67 | 58.20 | 38.48 | -0.651 | 细胞核 Nucleus | 26.09 | 13.04 | 5.43 | 55.43 |
SbZF-HD13 | Sobic. 008G073200.1 | 328 | 34.72 | 9.15 | 70.83 | 54.27 | -0.789 | 细胞核 Nucleus | 16.77 | 9.76 | 6.10 | 67.38 |
SbZF-HD14 | Sobic. 009G244200.2 | 373 | 39.71 | 8.82 | 91.63 | 47.77 | -0.819 | 叶绿体 Chloroplast | 24.93 | 8.58 | 5.90 | 60.59 |
Fig.4 Phylogenetic tree of ZF-HD protein in sorghum, Arabidopsis, rice, maize and millet Sb, Sorghum; AT, Arabidopsis; LOC Os, Rice; GRMZM, Maize; Seita., Millet.
Fig.8 Expression level of ZF-HD gene family members in different tissues of Sorghum 1, Root bottom.juvenile; 2, Root top.juvenile; 3, Root top.vegetative; 4, Root bottom.vegetative; 5, Stem ; 6, Leaf blade.juvenile; 7, Shoot; 8, Panicle.floral initiation; 9, Peduncle.floral initiation; 10, Seed.
Fig.9 Expression of ZF-HD family genes in sorghum under saline-alkali stress A shows the expression patterns of ZF-HD family genes in salt-tolerant brewing sorghum ‘924’ under 1/2 Hoagland nutrient solution (NYCK), 100 mmol·L-1 saline-alkaline (NYA) and 200 mmol·L-1 saline-alkaline (NYB) stress; B shows the expression pattern of ZF-HD family genes in saline-alkali sensitive brewing sorghum ‘661’ under the stress of 1/2Hoagland nutrient solution (MYCK), 100 mmol·L-1 saline-alkali (MYA), 200 mmol·L-1 saline-alkali (MYB).
[1] | 王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J]. 中国科学: 生命科学, 2021, 51(10): 1424-1434. |
WANG L, GUO Y, YANG S H. Designed breeding for adaptation of crops to environmental abiotic stresses[J]. Scientia Sinica(Vitae), 2021, 51(10): 1424-1434.(in Chinese with English abstract) | |
[2] | LONG L, ZHAO J R, GUO D D, et al. Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance[J]. BMC Plant Biology, 2020, 20(1): 147. |
[3] | TAN Q K G, IRISH V F. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development[J]. Plant Physiology, 2006, 140(3): 1095-1108. |
[4] | TAKATSUJI H. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science[J]. Plant Molecular Biology, 1999, 39(6): 1073-1078. |
[5] | MACKAY J P, CROSSLEY M. Zinc fingers are sticking together[J]. Trends in Biochemical Sciences, 1998, 23(1): 1-4. |
[6] | ARIEL F D, MANAVELLA P A, DEZAR C A, et al. The true story of the HD-Zip family[J]. Trends in Plant Science, 2007, 12(9): 419-426. |
[7] | HU W, DEPAMPHILIS C W, MA H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families[J]. Journal of Integrative Plant Biology, 2008, 50(8): 1031-1045. |
[8] | MA J J, ZHENG L W, ZHAO C D, et al. Genome-wide identification and expression analysis of half-size ABCG genes in Malus×domestica[J]. Horticultural Plant Journal, 2018, 4(2): 45-54. |
[9] | KHATUN K, NATH U K, ROBIN A H K, et al. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato[J]. BMC Genomics, 2017, 18(1): 695. |
[10] | WANG W L, WU P, LI Y, et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage[J]. Molecular Genetics and Genomics, 2016, 291(3): 1451-1464. |
[11] | ABDULLAH M, CHENG X, CAO Y P, et al. Zinc finger-homeodomain transcriptional factors (ZHDs) in upland cotton (Gossypium hirsutum): genome-wide identification and expression analysis in fiber development[J]. Frontiers in Genetics, 2018, 9: 357. |
[12] | WINDHÖVEL A, HEIN I, DABROWA R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia[J]. Plant Molecular Biology, 2001, 45(2): 201-214. |
[13] | BARTH O, VOGT S, UHLEMANN R, et al. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29[J]. Plant Molecular Biology, 2009, 69(1/2): 213-226. |
[14] | TRAN L S P, NAKASHIMA K, SAKUMA Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis[J]. The Plant Journal, 2007, 49(1): 46-63. |
[15] | PERRELLA G, DAVIDSON M L H, O’DONNELL L, et al. ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): E4503-E4511. |
[16] | FIGUEIREDO D D, BARROS P M, CORDEIRO A M, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B[J]. Journal of Experimental Botany, 2012, 63(10): 3643-3656. |
[17] | SHI Y, PANG X Q, LIU W J, et al. SlZHD17 is involved in the control of chlorophyll and carotenoid metabolism in tomato fruit[J]. Horticulture Research, 2021, 8(1): 259. |
[18] | PARK H C, KIM M L, LEE S M, et al. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter[J]. Nucleic Acids Research, 2007, 35(11): 3612-3623. |
[19] | ESPITIA-HERNÁNDEZ P, CHÁVEZ GONZÁLEZ M L, ASCACIO-VALDÉS J A, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(8): 2269-2280. |
[20] | 王自力, 张北举, 李魁印, 等. 高粱种质资源表型性状多样性分析及综合评价[J]. 江苏农业科学, 2022, 50(18): 115-121. |
WANG Z L, ZHANG B J, LI K Y, et al. Diversity analysis and comprehensive evaluation of phenotypic traits of sorghum germplasm resources[J]. Jiangsu Agricultural Sciences, 2022, 50(18): 115-121. (in Chinese with English abstract) | |
[21] | WENDORF F, CLOSE A E, SCHILD R, et al. Saharan exploitation of plants 8, 000 years BP[J]. Nature, 1992, 359(6397): 721-724. |
[22] | HUANG R D. Research progress on plant tolerance to soil salinity and alkalinity in sorghum[J]. Journal of Integrative Agriculture, 2018, 17(4): 739-746. |
[23] | 吴国江, 周伟, 余忠浩, 等. 基于主成分、灰色关联和DTOPSIS分析的176份糯高粱种质资源综合评价[J]. 河南农业科学, 2023, 52(5): 40-51. |
WU G J, ZHOU W, YU Z H, et al. Comprehensive evaluation of 176 waxy Sorghum germplasm resources based on principal component, grey correlation and DTOPSIS analyses[J]. Journal of Henan Agricultural Sciences, 2023, 52(5): 40-51. (in Chinese with English abstract) | |
[24] | 崔江慧, 杨溥原, 常金华. 高粱GRF基因家族鉴定及在非生物胁迫下的表达分析[J]. 中国农业科技导报, 2021, 23(4): 37-46. |
CUI J H, YANG P Y, CHANG J H. Identification and expression analysis under abiotic stress of GRF gene family in Sorghum[J]. Journal of Agricultural Science and Technology, 2021, 23(4): 37-46. (in Chinese with English abstract) | |
[25] | PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556. |
[26] | ZHENG H X, GAO Y P, DANG Y Y, et al. Characterization of the m6A gene family in sorghum and its function in growth, development and stress resistance[J]. Industrial Crops and Products, 2023, 198: 116625. |
[27] | DU Q L, FANG Y P, JIANG J M, et al. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. Journal of Integrative Agriculture, 2022, 21(12): 3540-3555. |
[28] | XIAO Q L, LIU T T, LING M, et al. Genome-wide identification of DOF gene family and the mechanism dissection of SbDof21 regulating starch biosynthesis in sorghum[J]. International Journal of Molecular Sciences, 2022, 23(20): 12152. |
[29] | GE H Q, XU J J, HUA M Z, et al. Genome-wide identification and analysis of ACP gene family in Sorghum bicolor(L.) Moench[J]. BMC Genomics, 2022, 23(1): 538. |
[30] | ZHANG A X, XU J J, XU X, et al. Genome-wide identification and characterization of the KCS gene family in sorghum [Sorghum bicolor(L.) Moench][J]. PeerJ, 2022, 10: e14156. |
[31] | LI Y Y, BAI B C, WEN F, et al. Genome-wide identification and expression analysis of HD-ZIP I gene subfamily in Nicotiana tabacum[J]. Genes, 2019, 10(8): 575. |
[32] | JAIN M, TYAGI A K, KHURANA J P. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa)[J]. Genomics, 2006, 88(3): 360-371. |
[33] | 李珊, 刘永琪, 朱垠豪, 等. 谷子ZF-HD基因家族的鉴定及生物信息学分析[J]. 山西农业大学学报(自然科学版), 2021, 41(5): 13-25. |
LI S, LIU Y Q, ZHU Y H, et al. Identification and bioinformatics analysis of ZF-HD gene family in Setaria italica[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2021, 41(5): 13-25. (in Chinese with English abstract) | |
[34] | NIU H L, XIA P L, HU Y F, et al. Genome-wide identification of ZF-HD gene family in Triticum aestivum: molecular evolution mechanism and function analysis[J]. PLoS One, 2021, 16(9): e0256579. |
[35] | ZHOU C Z, ZHU C, XIE S Y, et al. Genome-wide analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes and their expression profiles under abiotic stresses and phytohormones stimuli in tea plants (Camellia sinensis)[J]. Scientia Horticulturae, 2021, 281: 109976. |
[36] | JAIN M, KHURANA P, TYAGI A K, et al. Genome-wide analysis of intronless genes in rice and Arabidopsis[J]. Functional & Integrative Genomics, 2008, 8(1): 69-78. |
[37] | HE K, LI C X, ZHANG Z Y, et al. Genome-wide investigation of the ZF-HD gene family in two varieties of alfalfa (Medicago sativa L.) and its expression pattern under alkaline stress[J]. BMC Genomics, 2022, 23(1): 150. |
[38] | 张莉, 荐红举, 杨博, 等. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析[J]. 作物学报, 2018, 44(2): 197-207. |
ZHANG L, JIAN H J, YANG B, et al. Genome-wide analysis and expression profiling of SPS gene family in Brassica nupus L[J]. Acta Agronomica Sinica, 2018, 44(2): 197-207. (in Chinese with English abstract) | |
[39] | REN R, WANG H F, GUO C C, et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms[J]. Molecular Plant, 2018, 11(3): 414-428. |
[40] | 陈凤琼, 陈秋森, 林佳昕, 等. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3824. |
CHEN F Q, CHEN Q S, LIN J X, et al. Genome-wide identification of DIR family genes in tomato and response to abiotic stress[J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3824. (in Chinese with English abstract) | |
[41] | XING L X, PENG K, XUE S, et al. Genome-wide analysis of zinc finger-homeodomain (ZF-HD) transcription factors in diploid and tetraploid cotton[J]. Functional & Integrative Genomics, 2022, 22(6): 1269-1281. |
[42] | XIAO J, HU R, GU T, et al. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat[J]. BMC Genomics, 2019, 20(1): 287. |
[43] | BERG J M, SHI Y. The galvanization of biology: a growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252): 1081-1085. |
[44] | ABU-ROMMAN S. Molecular cloning and expression analysis of zinc finger-homeodomain transcription factor TaZFHD1 in wheat[J]. South African Journal of Botany, 2014, 91: 32-36. |
[45] | JING X J, LI C Y, LUO C J, et al. Identification and characterization of ZF-HD genes in response to abscisic acid and abiotic stresses in maize[J]. Phyton, 2023, 92(3): 707-723. |
[1] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
[2] | LIU Yiping, ZHANG Yiqi, SU Shaowen, LIU Hongli, HE Dan, KONG Dezheng. Evaluation of salt-alkali tolerance of different lotus varieties and screening of identification indexes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 103-111. |
[3] | ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects on photochemical fluorescence properties under salt-alkaline stresses about Sinocalycanthus chinensis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1416-1425. |
[4] | LIU Xiuhui, ZOU Guihua, ZHAI Guowei, LIU Heqin, ZHENG Xueqiang, CHEN Heyun. Association analysis between SSR markers and germination-related traits in sorghum germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 965-973. |
[5] | SHI Zhaoyong, LI Ke, WANG Fayuan, WANG Xugang, XU Xiaofeng. Effects of nano-silver and exotic arbuscular mycorrhizal fungi on chlorophyll fluorescence kinetics of sweet sorghum [J]. , 2020, 32(2): 283-290. |
[6] | ZHONG Jing, TAN Fen, ZHANG Hongquan, XIONG Xiaoqin, HUANG Lixia. Expression pattern and protein structure analysis of maize XYLPs gene family [J]. , 2020, 32(10): 1741-1747. |
[7] | DU Junli, WU Degong, ZHAN Qiuwen, HUANG Baohong, NI He. Effects of different photoperiod conditions on the nutritional contents and related enzyme activities of sorghum leaves and Melanaphis sacchari [J]. , 2019, 31(7): 1119-1127. |
[8] | ZHAO Wenjie, XU Wei, ZHANG Jinglong, CHENG Shuang, ZHENG Jiacheng, LIU Yanlong, YIN Shixia, LI Jieqin, ZHAN Qiuwen. Genetic diversity of sweet sorghum as revealed by biological characters and SSR markers [J]. , 2019, 31(12): 1945-1954. |
[9] | ZHOU Yaohua, LI Weiqing, ZHANG Miao, PAN Rongguang, ZOU Jianqiu. Analysis of China's sorghum trade and production cost of sorghum in the United States [J]. , 2017, 29(9): 1589-1594. |
[10] | ZHANG Qing, MIAO Lixiang, ZHANG Yuchao, YANG Xiaofang, JIANG Guihua. Cloning and expression analysis of FabHLH3 gene from cultivated strawberry and construction of overexpression and silencing vector [J]. , 2017, 29(2): 220-227. |
[11] | YU Chenliang, ZHANG Chenghao, ZHAN Yihua, DONG Wenqi. Identification, evolution and expression analysis of Pht1 gene family in Sorghum bicolor [J]. , 2017, 29(1): 16-22. |
[12] | FENG Chen, WANG Ling, TANG Haoru*, XIAO Jie. Cloning and expression analysis of MYB transcription factor FaMYB5 gene from strawberry [J]. , 2016, 28(8): 1351-. |
[13] | XING Jin-yi, WANG Xiao-pei, SONG Qi. Molecular cloning and expression patterns of MTHFR gene in broiler [J]. , 2016, 28(12): 2033-2039. |
[14] | HUANG Shou\|chenga, LIU Ai\|ronga, YE Mei\|ronga, CONG Ruo\|lina, ZHAN Qiu\|wenb,*. Morphological and physiological responses of sorghum BTx623 seedlings to aluminum toxicity [J]. , 2015, 27(12): 2129-. |
[15] | ZHAO Hui1,ZHAI Guo\|wei2,ZOU Gui\|hua2,TAO Yue\|zhi2,*. Comparation of matter accumulation and distribution between sweet sorghum and grain sorghum [J]. , 2015, 27(1): 7-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||