Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (7): 1583-1590.DOI: 10.3969/j.issn.1004-1524.20231020
• Horticultural Science • Previous Articles Next Articles
ZHU Yan1(), DING Lan2, CHEN Yiqian1, HUANG Xiujing1, JIANG Weiwei1, CHEN Donghong1,*(
)
Received:
2023-08-28
Online:
2024-07-25
Published:
2024-08-05
CLC Number:
ZHU Yan, DING Lan, CHEN Yiqian, HUANG Xiujing, JIANG Weiwei, CHEN Donghong. Identification and functional analysis of CLE gene family in Dendrobium officinale Kimura et Migo[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1583-1590.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231020
基因名称 Gene name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') | 基因ID Gene ID | 产物长度 Product length/bp |
---|---|---|---|---|
CLE109525 | CTCTTACAGTACCTGATCATACAC | TTATGCCTGTCCAGGCAA | LOC110109525 | 525 |
CLE01792 | ATGTCTCTCCAATTGCTCTTG | TTAATGGTGGAGTGGGTTGG | PKU85961 | 372 |
CLE02038 | GACTTCATGAGGAAGAATAGAA | TCAGTTATGAAGAGGATTAGGTC | PKU86207 | 228 |
CLE04631 | ATGGCTAAACTAAAAGAGATAGG | TCATCTGTTATGCAGAGGATTAG | PKU65016 | 267 |
CLE05351 | ATGGCTTCTGCTGAAGTCTC | CTACCTATTGGAGTCTGGGTT | PKU82346 | 267 |
CLE11641 | ATGGCATTCTCTTCAAGAGC | TCAATGGTGTTGAGGGTCTG | PKU78021 | 231 |
CLE5097 | ATGGCAAGAGAAGTAGTGAGG | TCAATTGTGTAGCGGGTTTG | PKU64567 | 171 |
CLE15729 | ATGGTTGGGCAAAGAGAGATG | TCAGTTGTGCAAAGGATTAGG | PKU75207 | 264 |
CLE18468 | ATGGACACTGAGCTGATCAG | TCACCTATTTGAATCAGGATTC | PKU83835 | 336 |
CLE19635 | ATGCTGCCCACTCTGCCG | CTAGTGATGGAGGGGATTCG | PKU59933 | 177 |
CLE20689 | ATGCAAGGAATTAGAAGGACT | TCAGTTGTGAAGTGGATTGG | PKU74917 | 249 |
CLE22175 | ATGGGGAGAATCAATATTCT | TTAATGGTGTTCAGGATCTG | PKU68119 | 210 |
CLE22943 | ATGGTTGGGCTAAGAGAGA | CTATCTGTTGTGCAAAGGATT | PKU86730 | 267 |
CLE29071 | ATGCTTCCCACTCTGCCG | CTAGTGATGGAGGGGATTCGC | PKU62687 | 177 |
CLE79016 | ATGGCGTTCACATACTCAAGAG | TCAATGGTGTTGGGGGTCTG | PKU79016 | 231 |
CLE82107 | ATGCCAACTTCAACGAGGC | TTACCGGTTGTGAAGGCGG | PKU82107 | 234 |
CLE66413 | ATGGGGCTGCGTAAAAGAG | TCACAGCTCTTTTACGCAGC | PKU66413 | 237 |
DcACTIN1 | GATTTGCTGGTGACGATGC | AGGATACCTCTTTTGGACTGG | LOC110111141 | 136 |
Table 1 Semi-quantitative RT-PCR primers for CLE gene family in Dendrobium officinale
基因名称 Gene name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') | 基因ID Gene ID | 产物长度 Product length/bp |
---|---|---|---|---|
CLE109525 | CTCTTACAGTACCTGATCATACAC | TTATGCCTGTCCAGGCAA | LOC110109525 | 525 |
CLE01792 | ATGTCTCTCCAATTGCTCTTG | TTAATGGTGGAGTGGGTTGG | PKU85961 | 372 |
CLE02038 | GACTTCATGAGGAAGAATAGAA | TCAGTTATGAAGAGGATTAGGTC | PKU86207 | 228 |
CLE04631 | ATGGCTAAACTAAAAGAGATAGG | TCATCTGTTATGCAGAGGATTAG | PKU65016 | 267 |
CLE05351 | ATGGCTTCTGCTGAAGTCTC | CTACCTATTGGAGTCTGGGTT | PKU82346 | 267 |
CLE11641 | ATGGCATTCTCTTCAAGAGC | TCAATGGTGTTGAGGGTCTG | PKU78021 | 231 |
CLE5097 | ATGGCAAGAGAAGTAGTGAGG | TCAATTGTGTAGCGGGTTTG | PKU64567 | 171 |
CLE15729 | ATGGTTGGGCAAAGAGAGATG | TCAGTTGTGCAAAGGATTAGG | PKU75207 | 264 |
CLE18468 | ATGGACACTGAGCTGATCAG | TCACCTATTTGAATCAGGATTC | PKU83835 | 336 |
CLE19635 | ATGCTGCCCACTCTGCCG | CTAGTGATGGAGGGGATTCG | PKU59933 | 177 |
CLE20689 | ATGCAAGGAATTAGAAGGACT | TCAGTTGTGAAGTGGATTGG | PKU74917 | 249 |
CLE22175 | ATGGGGAGAATCAATATTCT | TTAATGGTGTTCAGGATCTG | PKU68119 | 210 |
CLE22943 | ATGGTTGGGCTAAGAGAGA | CTATCTGTTGTGCAAAGGATT | PKU86730 | 267 |
CLE29071 | ATGCTTCCCACTCTGCCG | CTAGTGATGGAGGGGATTCGC | PKU62687 | 177 |
CLE79016 | ATGGCGTTCACATACTCAAGAG | TCAATGGTGTTGGGGGTCTG | PKU79016 | 231 |
CLE82107 | ATGCCAACTTCAACGAGGC | TTACCGGTTGTGAAGGCGG | PKU82107 | 234 |
CLE66413 | ATGGGGCTGCGTAAAAGAG | TCACAGCTCTTTTACGCAGC | PKU66413 | 237 |
DcACTIN1 | GATTTGCTGGTGACGATGC | AGGATACCTCTTTTGGACTGG | LOC110111141 | 136 |
基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence |
---|---|---|---|---|---|
CLE66413 (PKU66413) | RKVPNASDPLHN | CLE05351 (PKU82346) | HEVPNGPNPDSN | CLE82107 (PKU82107) | RPVPSCPDRLHN |
CLE109525 (LOC110109525) | RKVPKGPDPIHN | CLE18468 (PKU83835) | HEVPSGPNPDSN | CLE19635 | RLVPSGANPLHH |
(PKU59933/PKU62687) | |||||
CLE79016 (PKU79016) | RLSPGGSDPQHH | CLE04631 (PKU65016) | RNVYTGPNPLHN | CLE20689 (PKU74917) | RLVPSGPNPLHN |
CLE22175 (PKU68119) | RLSPGGPDPEHH | CLE15729 | RTVYTGPNPLHN | CLE01792 (PKU85961) | RFVPCGPNPLHH |
(PKU75207/PKU86730) | |||||
CLE11641 (PKU78021) | RLSPGGPDPQHH | CLE02038 (PKU86207) | RIIYAGPNPLHN | CLE5097 (PKU64567) | RFVPQGPNPLHN |
Table 2 Conserved motif sequences of CLE peptides in Dendrobium officinale
基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence | 基因名(CLE多肽名称) Gene name (Name of CLE peptide) | 保守区段基序 Motif sequence |
---|---|---|---|---|---|
CLE66413 (PKU66413) | RKVPNASDPLHN | CLE05351 (PKU82346) | HEVPNGPNPDSN | CLE82107 (PKU82107) | RPVPSCPDRLHN |
CLE109525 (LOC110109525) | RKVPKGPDPIHN | CLE18468 (PKU83835) | HEVPSGPNPDSN | CLE19635 | RLVPSGANPLHH |
(PKU59933/PKU62687) | |||||
CLE79016 (PKU79016) | RLSPGGSDPQHH | CLE04631 (PKU65016) | RNVYTGPNPLHN | CLE20689 (PKU74917) | RLVPSGPNPLHN |
CLE22175 (PKU68119) | RLSPGGPDPEHH | CLE15729 | RTVYTGPNPLHN | CLE01792 (PKU85961) | RFVPCGPNPLHH |
(PKU75207/PKU86730) | |||||
CLE11641 (PKU78021) | RLSPGGPDPQHH | CLE02038 (PKU86207) | RIIYAGPNPLHN | CLE5097 (PKU64567) | RFVPQGPNPLHN |
Fig.1 Evolutionary analysis of CLE protein sequences in Dendrobium officinale A, Evolutionary analysis and conserved 12 aa motifs of CLE proteins in D. officinale; B, Logo representation for motif sequence.
Fig.3 Influence of CLE peptides on the growth of Arabidopsis thaliana roots A, The seventh day after CLE peptides treatment; B, Root length of A. thaliana treated with different CLE peptides ; C, Cell pattern of A. thaliana RAM. Col was wild type A. thaliana.
Fig.4 Phenotype of CLE02038 overexpressing Arabidopsis thaliana A, Phenotype of CLE02038 overexpressing A. thaliana; B, Phenotype of 7-day-old CLE02038 overexpressing A. thaliana; C, Root length of CLE02038 overexpressing A. thaliana lines. Col was wild type A. thaliana; L1-L4 were four CLE02038 overexpressing A. thaliana lines.
[1] | 斯金平, 王琦, 刘仲健, 等. 铁皮石斛产业化关键科学与技术的突破[J]. 中国中药杂志, 2017, 42(12): 2223-2227. |
SI J P, WANG Q, LIU Z J, et al. Breakthrough in key science and technologies in Dendrobium catenatum industry[J]. China Journal of Chinese Materia Medica, 2017, 42(12): 2223-2227.(in Chinese with English abstract) | |
[2] | 斯金平, 张媛, 罗毅波, 等. 石斛与铁皮石斛关系的本草考证[J]. 中国中药杂志, 2017, 42(10): 2001-2005. |
SI J P, ZHANG Y, LUO Y B, et al. Herbal textual research on relationship between Chinese medicine“Shihu” (Dendrobium spp.) and “Tiepi Shihu” (D. catenatum)[J]. China Journal of Chinese Materia Medica, 2017, 42(10): 2001-2005.(in Chinese with English abstract) | |
[3] | STAHL Y, SIMON R. Peptides and receptors controlling root development[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2012, 367(1595): 1453-1460. |
[4] | KINOSHITA A, NAKAMURA Y, SASAKI E, et al. Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa[J]. Plant & Cell Physiology, 2007, 48(12): 1821-1825. |
[5] | HOBE M, MÜLLER R, GRÜNEWALD M, et al. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis[J]. Development Genes and Evolution, 2003, 213(8): 371-381. |
[6] | STAHL Y, WINK R H, INGRAM G C, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Current Biology, 2009, 19(11): 909-914. |
[7] | RICHARDS S, WINK R H, SIMON R. Mathematical modelling of WOX5-and CLE40-mediated columella stem cell homeostasis in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(17): 5375-5384. |
[8] | CASAMITJANA-MARTı’NEZ E, HOFHUIS H F, XU J, et al. Root-specific CLE19 overexpression and the Sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance[J]. Current Biology, 2003, 13(16): 1435-1441. |
[9] | FIERS M, HAUSE G, BOUTILIER K, et al. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem[J]. Gene, 2004, 327(1): 37-49. |
[10] | CHU H W, LIANG W Q, LI J, et al. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice[J]. Journal of Experimental Botany, 2013, 64(17): 5359-5369. |
[11] | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. |
[12] | ROGERS S O, BENDICH A J. Extraction of DNA from plant tissues[M]// Plant Molecular Biology Manual. Dordrecht: Springer Netherlands, 1989: 73-83. |
[13] | TRUERNIT E, BAUBY H, DUBREUCQ B, et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis[J]. The Plant Cell, 2008, 20(6): 1494-1503. |
[14] | ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646. |
[15] | MÜLLER R, BLECKMANN A, SIMON R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1[J]. The Plant Cell, 2008, 20(4): 934-946. |
[16] | DEPUYDT S, RODRIGUEZ-VILLALON A, SANTUARI L, et al. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7074-7079. |
[17] | SHIMIZU N, ISHIDA T, YAMADA M, et al. BAM 1 and receptor-like protein kinase 2 constitute a signaling pathway and modulate cle peptide-triggered growth inhibition in Arabidopsis root[J]. The New Phytologist, 2015, 208(4): 1104-1113. |
[18] | HAZAK O, BRANDT B, CATTANEO P, et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature[J]. EMBO Reports, 2017,18: 1367-1381. |
[19] | HIRAKAWA Y, KONDO Y, FUKUDA H. Establishment and maintenance of vascular cell communities through local signaling[J]. Current Opinion in Plant Biology, 2011, 14(1):17-23. |
[20] | OELKERS K, GOFFARD N, WEILLER G F, et al. Bioinformatic analysis of the CLE signaling peptide family[J]. BMC Plant Biology, 2008, 8: 1. |
[21] | KANG J K, WANG X N, ISHIDA T, et al. A group of CLE peptides regulates de novo shoot regeneration in Arabidopsis thaliana[J]. The New Phytologist, 2022, 235(6): 2300-2312. |
[22] | ZHANG Y, TAN S Y, GAO Y H, et al. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis[J]. The New Phytologist, 2022, 235(2): 550-562. |
[23] | ZHANG Z L, LIU C, LI K, et al. CLE14 functions as a “brake signal” to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis[J]. Molecular Plant, 2022, 15(1): 179-188. |
[24] | TAKAHASHI F, SUZUKI T, OSAKABE Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238. |
[25] | 石岩, 张天恩, 朱百慧, 等. 苹果多肽编码基因MhCLE8调控花青苷积累的功能研究[J]. 园艺学报, 2023, 50(12): 2541-2550. |
SHI Y, ZHANG T E, ZHU B H, et al. Function study of peptide coding gene MhCLE8 in regulating anthocyanin accumulation in apple(Malus×domestica)[J]. Acta Horticulturae Sinica, 2023, 50(12): 2541-2550.(in Chinese with English abstract) | |
[26] | 程梦雨, 李小强, 王鹏, 等. 蔷薇科果树CLE多肽家族的鉴定及梨PbrCLE31调控花粉管生长功能分析[J]. 南京农业大学学报, 2021, 44(5): 850-861. |
CHENG M Y, LI X Q, WANG P, et al. Identification of CLE peptide family in Rosaceae fruit trees and regulation of pollen tube growth by PbrCLE31 in pear[J]. Journal of Nanjing Agricultural University, 2021, 44(5): 850-861.(in Chinese with English abstract) | |
[27] | MIYAWAKI K, TABATA R, SAWA S. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism[J]. Current Opinion in Plant Biology, 2013, 16(5): 598-606. |
[1] | WANG Xiaomei, LUO Yuqin, ZHAO Xueping, LU Lanfei, FANG Nan, WANG Xiangyun, JIANG Jinhua, HE Hongmei, ZHANG Changpeng, WANG Qiang. Residues and dietary risk assessment of fluopyram in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1666-1676. |
[2] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
[3] | LI Jingrui, TAO Wenyang, YANG Ying, ZHOU Wanyi, LU Shengmin, WANG Yangguang. Comparative studies of polysaccharides of three Dendrobium species from Zhejiang Province and exploration of their physiological functions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1888-1895. |
[4] | LU Lanfei, ZHAO Xueping, MA Zheng, FANG Nan, LUO Yuqin, WANG Xiaomei, YE Hui, LEI Yuan, WANG Qiang, ZHANG Changpeng. Determination of 2, 4-epibrassinolide residues in Dendrobium officinale by solid phase extraction-high performance liquid chromatography-mass spectrometry [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1896-1903. |
[5] | SUN Fengting, XU Zhenlan, ZHU Zuoyi, ZHANG Chunrong, TANG Tao, ZHAO Xueping, SHENG Qing, WANG Qiang. Determination of flavonoids in Dendrobium officinale Kimura et Migo and study on its bioavailability [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2710-2719. |
[6] | FENG Jinlin, XI Xiaoyu, ZHAO Shifeng. Arabidopsis N-terminal acetyltransferase Naa50 is involved in regulation of root cell mitosis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2603-2609. |
[7] | LIN Yuqing, LU Shengmin, ZHOU Wanyi, XING Jianrong, YANG Ying. Preliminary investigation about structure and probiotic properties of polysaccharides from Dendrobium officinale leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2504-2511. |
[8] | LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008. |
[9] | CHEN Wenqiang, WANG Xiaofu, CHEN Xiaoyun, PENG Cheng, XU Junfeng, CAI Jian. Preliminary study on identification of Dendrobium officinale from Zhejiang based on ITS2 and SNP technology [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 69-76. |
[10] | YIN Dandan;XUE Zeyun;XYU Yingchun;*;LI Yongrong;ZHAI Min;ZHOU Jie. Effect of exogenous nitric oxide and GGR6 on cormel development of several plants of Lycoris [J]. , 2012, 24(6): 0-997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||