Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (9): 1957-1968.DOI: 10.3969/j.issn.1004-1524.20240340
• Crop Seience • Previous Articles Next Articles
WU Haofeng1(
), LIN Zhaoyang1,2, SHEN Zhicheng1,*(
)
Received:2024-04-12
Online:2024-09-25
Published:2024-09-30
CLC Number:
WU Haofeng, LIN Zhaoyang, SHEN Zhicheng. A transgenic rice resistant to glyphosate and flazasulfuron[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1957-1968.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240340
| 除草剂浓度 Herbicide concentration | 41%草甘膦异丙胺盐水剂用量 41% Glyphosate isopropylamine aqueous solution dosage | 25%啶嘧磺隆水分散粒剂用量 25% Flazasulfuron water dispersible granules dosage |
|---|---|---|
| 0(清水Water control) | 0 | 0 |
| 1倍浓度Single concentration | 5 mL·L-1(900 g·hm-2) | 0.1 g·L-1(15 g·hm-2) |
| 2倍浓度Double concentration | 10 mL·L-1(1 800 g·hm-2) | 0.2 g·L-1(30 g·hm-2) |
| 4倍浓度Quadruple concentration | 20 mL·L-1(3 600 g·hm-2) | 0.4 g·L-1(60 g·hm-2) |
Table 1 List of compound herbicide ingredients
| 除草剂浓度 Herbicide concentration | 41%草甘膦异丙胺盐水剂用量 41% Glyphosate isopropylamine aqueous solution dosage | 25%啶嘧磺隆水分散粒剂用量 25% Flazasulfuron water dispersible granules dosage |
|---|---|---|
| 0(清水Water control) | 0 | 0 |
| 1倍浓度Single concentration | 5 mL·L-1(900 g·hm-2) | 0.1 g·L-1(15 g·hm-2) |
| 2倍浓度Double concentration | 10 mL·L-1(1 800 g·hm-2) | 0.2 g·L-1(30 g·hm-2) |
| 4倍浓度Quadruple concentration | 20 mL·L-1(3 600 g·hm-2) | 0.4 g·L-1(60 g·hm-2) |
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| CP4-F | ATGGCGGCGACCATGGCGTCCAACG |
| CP4-R | TCAAGCGGCCTTCGTGTCAGACAGTTC |
| N-Z1-F | ATGGATAAGGCCTACGTGGCCCTCC |
| N-Z1-R | TCAGAGCTCCTGCAAAACCTCACGC |
Table 2 PCR primer sequences for the foreign genes
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| CP4-F | ATGGCGGCGACCATGGCGTCCAACG |
| CP4-R | TCAAGCGGCCTTCGTGTCAGACAGTTC |
| N-Z1-F | ATGGATAAGGCCTACGTGGCCCTCC |
| N-Z1-R | TCAGAGCTCCTGCAAAACCTCACGC |
| 引物Primer | 引物序列Primer sequences(5'→3') |
|---|---|
| LB-SPI | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
| LB-SP2a | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCATATAAGAAACCCTTAG |
| LB-SPIII | CTAAAACCAAAATCCAGTACTAAAATCC |
| RB-0b | CGTGACTGGGAAAACCCTGGCGTT |
| RB-1b | ACGATGGACTCCAGTCCGGCCCAACTTAATCGCCTTGCAGCACATC |
| RB-2b | GAAGAGGCCCGCACCGATCGCCCTT |
| LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
| LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
| LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
| LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
| AC1 | ACGATGGACTCCAGAG |
Table 3 Primers sequences for high-efficiency thermal asymmetric interlaced PCR
| 引物Primer | 引物序列Primer sequences(5'→3') |
|---|---|
| LB-SPI | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
| LB-SP2a | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCATATAAGAAACCCTTAG |
| LB-SPIII | CTAAAACCAAAATCCAGTACTAAAATCC |
| RB-0b | CGTGACTGGGAAAACCCTGGCGTT |
| RB-1b | ACGATGGACTCCAGTCCGGCCCAACTTAATCGCCTTGCAGCACATC |
| RB-2b | GAAGAGGCCCGCACCGATCGCCCTT |
| LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
| LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
| LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
| LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
| AC1 | ACGATGGACTCCAGAG |
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| L1 | CTCCCCCATTCTGGCTTGGAA |
| L2 | CATTGTGAAGCCCTCGAGTAATTGG |
| L3 | ACCGGAGACATATAGTGCTGGTTT |
| R1 | TGGGCGCTCTTCGACGGATT |
| R2 | GGCCATCGCAGCCATTAAATCG |
| R3 | TCCTCTGTGGGGCTTTGGAC |
Table 4 Boundary validation primer sequence
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| L1 | CTCCCCCATTCTGGCTTGGAA |
| L2 | CATTGTGAAGCCCTCGAGTAATTGG |
| L3 | ACCGGAGACATATAGTGCTGGTTT |
| R1 | TGGGCGCTCTTCGACGGATT |
| R2 | GGCCATCGCAGCCATTAAATCG |
| R3 | TCCTCTGTGGGGCTTTGGAC |
Fig.2 Glyphosate tolerance test results of transgenic rice events in greenhouse Water, Water control; Glyphosate, Spary glyphosate at a rate of 900 g·hm-2 (based on acid equivalent); TG, GF series transgenic rice events; NT, Non-transgenic control.
Fig.3 Flazasulfuron tolerance test results of transgenic rice events in greenhouse Water, Water control; Flazasulfuron, Spary flazasulfuron at a rate of 15 g·hm-2 (based on active ingredient); TG, GF series transgenic rice events; NT, Non-transgenic control.
Fig.4 Images of weed control effects in paddy fields using compound herbicides A, Occurrence of weeds in rice fields 7 days after application of a mixed herbicide;B, Occurrence of weeds in rice fields 28 days after application of a mixed herbicide; TG, GF series transgenic rice events; NT, Non-transgenic control; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
Fig.5 The damage situation of GF-9 after 28 days of treatment with different concentrations of herbicide TG, GF series transgenic rice events; NT, Non-transgenic control; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
| 除草剂浓度 Herbicide concentration | GF-9 | 秀水134 XS-134 |
|---|---|---|
| 0(清水Water control) | 83.57±2.44 Aa | 86.16±3.67 A |
| 1倍浓度Single concentration | 82.03±2.38 a | — |
| 2倍浓度Double concentration | 78.50±2.36 b | 00.00±0.00 |
| 4倍浓度 | 78.20±2.57 b | — |
| Quadruple concentration |
Table 5 Plant height for GF-9 under different herbicide concentrations
| 除草剂浓度 Herbicide concentration | GF-9 | 秀水134 XS-134 |
|---|---|---|
| 0(清水Water control) | 83.57±2.44 Aa | 86.16±3.67 A |
| 1倍浓度Single concentration | 82.03±2.38 a | — |
| 2倍浓度Double concentration | 78.50±2.36 b | 00.00±0.00 |
| 4倍浓度 | 78.20±2.57 b | — |
| Quadruple concentration |
| 试验材料 Material | 除草剂浓度 Herbicide concentration | 穗长 Panicle length/cm | 分蘖数 Tiller number | 百粒重 Hundred-grain weight/g | 结实率 Setting rate% |
|---|---|---|---|---|---|
| GF-9 | 0(清水Water control) | 14.82±0.72 Aa | 9.00±1.18 Aa | 2.536±0.027 Aa | 68.29±4.60 Aa |
| 1倍浓度Single concentration | 15.84±0.81 a | 10.20±2.35 a | 2.575±0.025 a | 71.01±7.52 a | |
| 2倍浓度Double concentration | 15.72±1.05 a | 10.20±2.30 a | 2.519±0.048 a | 69.12±5.49 a | |
| 4倍浓度Quadruple concentration | 15.47±1.21 a | 8.58±2.50 a | 2.254±0.042 b | 55.20±2.60 b | |
| 秀水134 XS-134 | 0(清水Water control) | 14.32±1.57 A | 8.50±1.35 A | 2.543±0.051 A | 65.00±5.70 A |
Table 6 Agronomic performance of GF-9 under different concentrations of herbicide
| 试验材料 Material | 除草剂浓度 Herbicide concentration | 穗长 Panicle length/cm | 分蘖数 Tiller number | 百粒重 Hundred-grain weight/g | 结实率 Setting rate% |
|---|---|---|---|---|---|
| GF-9 | 0(清水Water control) | 14.82±0.72 Aa | 9.00±1.18 Aa | 2.536±0.027 Aa | 68.29±4.60 Aa |
| 1倍浓度Single concentration | 15.84±0.81 a | 10.20±2.35 a | 2.575±0.025 a | 71.01±7.52 a | |
| 2倍浓度Double concentration | 15.72±1.05 a | 10.20±2.30 a | 2.519±0.048 a | 69.12±5.49 a | |
| 4倍浓度Quadruple concentration | 15.47±1.21 a | 8.58±2.50 a | 2.254±0.042 b | 55.20±2.60 b | |
| 秀水134 XS-134 | 0(清水Water control) | 14.32±1.57 A | 8.50±1.35 A | 2.543±0.051 A | 65.00±5.70 A |
Fig.6 Panicle length and fruiting rate of GF-9 under different concentrations of herbicide NT, Non-transgenic control under water treatment; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
Fig.7 PCR detection results of the transgenes in GF-9 A, PCR results of CP4-EPSPS gene; B, PCR results of P450-N-Z1 gene; M, DNA Marker; +, Positive plasmid; -, Non-transgenic control; 1, GF-9 T0 generation sample genome; 2-4, GF-9 T1 generation sample genome; 3-7, GF-9 T2 generation sample genome.
Fig.8 Boundary verification results of the event GF-9 A, PCR validation results of the left border of GF-9; B, PCR validation results of the right border of GF-9. M, DNA Marker; L1-L3, PCR results of the verification primers for three different distances outside the left border of T-DNA, respectively with LB-SPI; R1-R3, PCR results of the verification primers for three different distances outside the right border of T-DNA, respectively with RB-0b; -, Negative rice control.
Fig.9 Integration model of the foreign T-DNA in GF-9 and verification results of the boundary sequencing L1-L3, Primers for validating the left border of T-DNA.; R1-R3, Primers for validating the right border of T-DNA.
Fig.10 Schematic diagram of GF-9 restriction enzyme and CP4 probe location and expected hybridization signal band size Probe, Gene sequence used to make probe.
Fig.12 Western blot results of CP4-EPSPS protein M, Protein pageruler; +, CP4-EPSPS protein expressed in prokaryotes; -, Non-transgenic rice control group; 1-7, Seven independent plants of T1 generation transgenic line GF-9.
| [1] | AKBAR N, EHSANULLAH, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
| [2] |
DUKE S O, POWLES S B. Glyphosate: a once-in-a-century herbicide[J]. Pest Management Science, 2008, 64(4): 319-325.
DOI PMID |
| [3] | BENTLEY R. The shikimate pathway: a metabolic tree with many branches[J]. Critical Reviews in Biochemistry and Molecular Biology, 1990, 25(5): 307-384. |
| [4] |
DILL G M. Glyphosate-resistant crops: history, status and future[J]. Pest Management Science, 2005, 61(3): 219-224.
DOI PMID |
| [5] | 陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展[J]. 植物保护, 2017, 43(2): 17-24. |
| CHEN S G, QIANG S, MAO C J. Mechanism of action of glyphosate and research advances in glyphosate resistance[J]. Plant Protection, 2017, 43(2): 17-24. (in Chinese with English abstract) | |
| [6] | 沈国辉, 杨烈, 钱振官, 等. 秀百宫: 暖季型草坪广谱性除草剂[J]. 草原与草坪, 2001, 21(3): 49-51. |
| SHEN G H, YANG L, QIAN Z G, et al. Shibagen: a broad spectrum herbicide for weed control in warm season turfgrass[J]. Grassland and Turf, 2001, 21(3): 49-51. (in Chinese with English abstract) | |
| [7] | 范文政. 啶嘧磺隆: 葡萄、柑橘、橄榄、甘蔗和非耕地的新型除草剂[J]. 世界农药, 2004, 26(1): 48-49. |
| FAN W Z. Flazasulfuron:the new herbicides for grapes, citrus, olives, sugarcane, and non-agricultural fields.[J]. World Pesticide, 2004, 26(1): 48-49. (in Chinese) | |
| [8] | ZHENG T, YU X X, SUN Y Z, et al. Expression of a cytochrome P450 gene from Bermuda grass Cynodon dactylon in soybean confers tolerance to multiple herbicides[J]. Plants, 2022, 11(7): 949. |
| [9] | HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1): 205-218. |
| [10] | HEALEY A, FURTADO A, COOPER T, et al. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species[J]. Plant Methods, 2014, 10(1): 21. |
| [11] | LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654. |
| [12] |
胡江博, 任正鹏, 丁翔, 等. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19.
DOI |
|
HU J B, REN Z P, DING X, et al. Application of herbicides in rice fields and research progress on herbicide-resistant rice varieties breeding[J]. China Rice, 2023, 29(4): 13-19. (in Chinese with English abstract)
DOI |
|
| [13] | 刘庆虎, 陈国奇, 张玉华, 等. 不同叶龄千金子、稗和马唐对氰氟草酯和五氟磺草胺的敏感性[J]. 南京农业大学学报, 2016, 39(5): 771-776. |
| LIU Q H, CHEN G Q, ZHANG Y H, et al. Sensitivities of Leptochloa chinensis, Echinochloa crusgalli and Digitaria sanguinalis at different leaf stages to cyhalofop-butyl and penoxsulam[J]. Journal of Nanjing Agricultural University, 2016, 39(5): 771-776. (in Chinese with English abstract) | |
| [14] | DAMALAS C A, KOUTROUBAS S D. Herbicide-resistant barnyardgrass (Echinochloa crusgalli) in global rice production[J]. Weed Biology and Management, 2023, 23(1): 23-33. |
| [15] |
KAWAHIGASHI H, HIROSE S, OHKAWA H, et al. Herbicide resistance of transgenic rice plants expressing human CYP1A1[J]. Biotechnology Advances, 2007, 25(1): 75-84.
PMID |
| [16] | HAN H P, YU Q, BEFFA R, et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides a cross at least five modes of action[J]. The Plant Journal, 2021, 105(1): 79-92. |
| [1] | PEI Huimin, WU Mingming, ZHAI Rongrong, YE Jing, JIN Yue, ZHU Yi, HOU Jianjun, ZHU Guofu, YE Shenghai. Research progress on gene function and breeding of low-cadmium rice cultivars [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2012-2020. |
| [2] | XIAN Ruotong, MIAO Qingmei, PENG Cheng, CHEN Xiaoyun, YANG Lei, XU Xiaoli, WEI Wei, XU Junfeng, LI Yueying, WANG Xiaofu. Establishment and application of event-specific real-time PCR detection method of transgenic maize WYN17132 [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1397-1406. |
| [3] | TAN Shiyi, YU Guohong, XUE Xianglei, ZHAO Yinglei, XU Baoyu, ZHANG Chenghao. Design and experiment of tray handling device for industrialized rice seedling raising [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1545-1555. |
| [4] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [5] | LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318. |
| [6] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [7] | ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158. |
| [8] | LIU Qihua, SUN Zhaowen, ZHENG Chongke. Effects of nitrogen management on absorption and allocation of microelements in above-ground parts of dry direct-sowing rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 987-997. |
| [9] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
| [10] | SONG Xinlu, FAN Shuhong, WU Guangqi, ZHAN Mengqi, HOU Qian, LI Mingyue, XU Yan. Effects of combined copper-phenanthrene pollution on physiological characteristics and pollutant accumulation of rice roots at tillering stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 521-529. |
| [11] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [12] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [13] | LI Guiping, XU Xiaomei, LU Lizhi. Rice-duck farming and its environmental effects [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 643-653. |
| [14] | WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744. |
| [15] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||