Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (7): 1595-1604.DOI: 10.3969/j.issn.1004-1524.20240870
• Review • Previous Articles
ZHAO Hongyu1,2(), ZHOU Yujie3, LI Jianzhong4, ZHENG Han1,2, BI Ji’an5, YU Chulang6, ZHOU Yuhang2,6, HOU Fan7, DAI Binfeng8, ZHONG Liequan8, YAN Chengqi5, ZHANG Haipeng1, YANG Yong2, CHEN Jianping6,*(
), WANG Chengyu1,*(
)
Received:
2024-10-15
Online:
2025-07-25
Published:
2025-08-20
CLC Number:
ZHAO Hongyu, ZHOU Yujie, LI Jianzhong, ZHENG Han, BI Ji’an, YU Chulang, ZHOU Yuhang, HOU Fan, DAI Binfeng, ZHONG Liequan, YAN Chengqi, ZHANG Haipeng, YANG Yong, CHEN Jianping, WANG Chengyu. Current research status and future perspectives on the effects of microplastics on plants and the molecular biological mechanisms of plant hormones in resistance to microplastics[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1595-1604.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240870
Fig.1 Mechanism of microplastics affecting plant growth and development Red is the part that is directly affected by microplastics.MP,Microplastic; NP, Nanoplastic.
对植物的影响 The impact on plants | 分子机制 Molecular mechanism | 相关基因 Related gene | 参考文献 Reference |
---|---|---|---|
抑制有丝分裂,影响根系生长 Inhibit mitosis and affect root growth | 下调细胞周期调节因子(CDC2);延长细胞周期时间 Down-regulate the cell cycle regulatory factor (CDC2); prolong the cell cycle time | CDC2 | [ |
抗氧化系统作出响应 The antioxidant system responds | 抑制CAT基因的表达 Inhibit the expression of the CAT gene | CAT | [ |
抑制三羧酸循环循环 Inhibit the tricarboxylic acid cycle | 抑制参与三羧酸循环的蛋白质编码基因的表达 Inhibit the expression of protein-coding genes involved in the tricarboxylic acid cycle | GDT1、GDH2、 GAD | [ |
抑制光合作用 Inhibit photosynthesis | 阻碍电子传递和NADPH的还原,并抑制ATP合成酶的活性 Hinder electron transfer and the reduction of NADPH, and inhibit the activity of ATP synthase | [ |
Table 1 Molecular mechanisms of microplastics affecting plants
对植物的影响 The impact on plants | 分子机制 Molecular mechanism | 相关基因 Related gene | 参考文献 Reference |
---|---|---|---|
抑制有丝分裂,影响根系生长 Inhibit mitosis and affect root growth | 下调细胞周期调节因子(CDC2);延长细胞周期时间 Down-regulate the cell cycle regulatory factor (CDC2); prolong the cell cycle time | CDC2 | [ |
抗氧化系统作出响应 The antioxidant system responds | 抑制CAT基因的表达 Inhibit the expression of the CAT gene | CAT | [ |
抑制三羧酸循环循环 Inhibit the tricarboxylic acid cycle | 抑制参与三羧酸循环的蛋白质编码基因的表达 Inhibit the expression of protein-coding genes involved in the tricarboxylic acid cycle | GDT1、GDH2、 GAD | [ |
抑制光合作用 Inhibit photosynthesis | 阻碍电子传递和NADPH的还原,并抑制ATP合成酶的活性 Hinder electron transfer and the reduction of NADPH, and inhibit the activity of ATP synthase | [ |
[1] | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic[J]. Science, 2004, 304(5672): 838. |
[2] | ZHANG Z Q, CUI Q L, CHEN L, et al. A critical review of microplastics in the soil-plant system: distribution, uptake, phytotoxicity and prevention[J]. Journal of Hazardous Materials, 2022, 424: 127750. |
[3] | LETT Z, HALL A, SKIDMORE S, et al. Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system[J]. Environmental Pollution, 2021, 291: 118190. |
[4] | ZHANG L S, XIE Y S, LIU J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7): 4248-4255. |
[5] | HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. |
[6] | ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344. |
[7] | ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909. |
[8] | 蒲生彦, 张颖, 吕雪. 微塑料在土壤-地下水中的环境行为及其生态毒性研究进展[J]. 生态毒理学报, 2020, 15(1): 44-55. |
PU S Y, ZHANG Y, LV X. Review on the environmental behavior and ecotoxicity of microplastics in soil-groundwater[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 44-55. (in Chinese with English abstract) | |
[9] | LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9): 928-934. |
[10] | LIAN J P, LIU W T, MENG L Z, et al. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.)[J]. Environmental Pollution, 2021, 280: 116978. |
[11] | SUN H F, LEI C L, XU J H, et al. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants[J]. Journal of Hazardous Materials, 2021, 416: 125854. |
[12] | LIU Y Q, BEN Y, CHE R J, et al. Uptake, transport and accumulation of micro-and nano-plastics in terrestrial plants and health risk associated with their transfer to food chain-A mini review[J]. Science of The Total Environment, 2023, 902: 166045. |
[13] | BANDMANN V, HOMANN U. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts[J]. The Plant Journal, 2012, 70(4): 578-584. |
[14] | AZEEM I, ADEEL M, AHMAD M A, et al. Uptake and accumulation of nano/microplastics in plants: a critical review[J]. Nanomaterials, 2021, 11(11): 2935. |
[15] | YU Z F, XU X L, GUO L, et al. Uptake and transport of micro/nanoplastics in terrestrial plants: detection, mechanisms, and influencing factors[J]. Science of The Total Environment, 2024, 907: 168155. |
[16] | LIU Y, HU W, HUANG Q, et al. Plastic mulch debris in rhizosphere: interactions with soil-microbe-plant systems[J]. Science of The Total Environment, 2022, 807: 151435. |
[17] | SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11: 2372. |
[18] | MATEOS-CÁRDENAS A, VAN PELT F N A M, O’HALLORAN J, et al. Adsorption, uptake and toxicity of micro-and nanoplastics: effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284: 117183. |
[19] | LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities[J]. Environmental Science & Technology, 2020, 54(10): 6166-6173. |
[20] | WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of The Total Environment, 2019, 654: 576-582. |
[21] | GAO M L, LIU Y, DONG Y M, et al. Effect of polyethylene particles on dibutyl phthalate toxicity in lettuce (Lactuca sativa L.)[J]. Journal of Hazardous Materials, 2021, 401: 123422. |
[22] | ZHANG Y Y, CAI C, GU Y F, et al. Microplastics in plant-soil ecosystems: a meta-analysis[J]. Environmental Pollution, 2022, 308: 119718. |
[23] | LI H X, LU X Q, WANG S Y, et al. Vertical migration of microplastics along soil profile under different crop root systems[J]. Environmental Pollution, 2021, 278: 116833. |
[24] | BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781. |
[25] | KALČÍKOVÁ G, ŽGAJNAR GOTVAJN A, KLADNIK A, et al. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor[J]. Environmental Pollution, 2017, 230: 1108-1115. |
[26] | YUAN W K, ZHOU Y F, LIU X N, et al. New perspective on the nanoplastics disrupting the reproduction of an endangered fern in artificial freshwater[J]. Environmental Science & Technology, 2019, 53(21): 12715-12724. |
[27] | LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. |
[28] | SILVA Y, RAJAGOPALAN U, KADONO H. Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems[J]. Global Journal of Environmental Science and Management, 2021(7): 347-368. |
[29] | KOELMANS A A, REDONDO-HASSELERHARM P E, NOR N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138-152. |
[30] | CALDANA C, DEGENKOLBE T, CUADROS-INOSTROZA A, et al. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions[J]. The Plant Journal, 2011, 67(5): 869-884. |
[31] | DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259: 113892. |
[32] | WANG Z H, SEDIGHI M, LEA-LANGTON A. Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms[J]. Water Research, 2020, 184: 116165. |
[33] | LI J, YU S G, YU Y F, et al. Effects of microplastics on higher plants: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(2): 241-265. |
[34] | MAITY S, CHATTERJEE A, GUCHHAIT R, et al. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L[J]. Journal of Hazardous Materials, 2020, 385: 121560. |
[35] | ZHANG Q G, ZHAO M S, MENG F S, et al. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity[J]. Toxics, 2021, 9(8): 179. |
[36] | LI Z X, LI R J, LI Q F, et al. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 2020, 255: 127041. |
[37] | QU Q, ZHANG Z Y, LI Y, et al. Comparative molecular and metabolic responses of wheat seedlings (Triticum aestivum L.) to the imazethapyr enantiomers S-IM and R-IM[J]. Science of The Total Environment, 2019, 692: 723-731. |
[38] | ZHAO L J, HUANG Y X, KELLER A A. Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6628-6636. |
[39] | WU X, HOU H J, LIU Y, et al. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study[J]. Journal of Hazardous Materials, 2022, 422: 126834. |
[40] | DU W C, GARDEA-TORRESDEY J L, JI R, et al. Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study[J]. Environmental Science & Technology, 2015, 49(19): 11884-11893. |
[41] | YU H W, ZHANG X L, HU J W, et al. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems[J]. Environmental Pollution, 2020, 265: 114830. |
[42] | ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211. |
[43] | LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385: 121620. |
[44] | REDDY A R, CHAITANYA K V, VIVEKANANDAN M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202. |
[45] | MURRAY J W, DUNCAN J, BARBER J. CP43-like chlorophyll binding proteins: structural and evolutionary implications[J]. Trends in Plant Science, 2006, 11(3): 152-158. |
[46] | KIMATA-ARIGA Y, CHIKUMA Y, SAITOH T, et al. NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin-NADP+ reductase[J]. FEBS Open Bio, 2019, 9(12):2126-2136. |
[47] | IINO R, HASEGAWA R, TABATA K V, et al. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase[J]. Journal of Biological Chemistry, 2009, 284(26): 17457-17464. |
[48] | ZHUANG H R, QIN M R, LIU B, et al. Combination of transcriptomics, metabolomics and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.)[J]. Plant Physiology and Biochemistry, 2023, 205: 108201. |
[49] | PIGNATTELLI S, BROCCOLI A, RENZI M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 20(727):138609. |
[50] | WEI Y X, CHANG Y L, ZENG H Q, et al. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes[J]. Journal of Pineal Research, 2018, 64(1): e12454. |
[51] | ZHANG R M, SUN Y K, LIU Z Y, et al. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress[J]. Journal of Pineal Research, 2017, 62(4): e12403. |
[52] | LI X N, TAN D X, JIANG D, et al. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley[J]. Journal of Pineal Research, 2016, 61(3): 328-339. |
[53] | MANCHESTER L C, COTO-MONTES A, BOGA J A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable[J]. Journal of Pineal Research, 2015, 59(4): 403-419. |
[54] | KANWAR M K, YU J Q, ZHOU J. Phytomelatonin: recent advances and future prospects[J]. Journal of Pineal Research, 2018, 65(4): e12526. |
[55] | ZUO Z Y, SUN L Y, WANG T Y, et al. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress[J]. Molecules, 2017, 22(10): 1727. |
[56] | ZHOU C Q, LU C H, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412. |
[57] | ZHOU Q X, HU X G. Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets[J]. Environmental Science & Technology, 2017, 51(4): 2022-2030. |
[58] | WANG P, LOMBI E, SUN S K, et al. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants[J]. Environmental Science: Nano, 2017, 4(2): 448-460. |
[59] | QIAO Y J, REN J H, YIN L N, et al. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance[J]. BMC Plant Biology, 2020, 20(1): 218. |
[60] | TIWARI R K, LAL M K, KUMAR R, et al. Mechanistic insights on melatonin-mediated drought stress mitigation in plants[J]. Physiologia Plantarum, 2021, 172(2): 1212-1226. |
[61] | LI S X, GUO J H, WANG T Y, et al. Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat[J]. Journal of Pineal Research, 2021, 71(3): e12761. |
[1] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
[2] | XIA Si, FANG Xiangjun, WU Weijie, LIU Ruiling, CHEN Huizhi, NIU Ben, GAO Haiyan. Preparation of fermented Chinese bayberry (Myrica rubra) pulp and its functional activity and flavor quality [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 667-678. |
[3] | ZHENG Hang, FENG Haodong, XUE Xianglei, YE Yunxiang, YU Jianlin, YU Guohong. Study on navigation line extraction algorithm for leaf vegetable ridges based on instance segmentations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 701-711. |
[4] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
[5] | CHEN Feng, CHEN Hong, CHEN Bingquan, BAO Chunjie, ZHOU Haoliang, ZHAO Xin, GUO Laizhen. Analysis of endogenous hormone changes and gene expression related to walnut apomixis kernels formation [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 381-393. |
[6] | TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479. |
[7] | LIU Yuexuan, CHEN Yanling, ZHANG Peiqiang, YAN Peng. Research progress on soil acidification and its regulation in tea plantations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 245-254. |
[8] | BAI Jian, LUO Laicong, LI Aixin, LAI Xiaoqin, SHEN Zhan, LIU Liangying, GUO Shengmao, ZHANG Ling. Response of carbon emissions from invasive plant alligator weed (Alternanthera philoxeroides) to nitrogen and phosphorus input in different habitats [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2070-2078. |
[9] | ZHAN Mengqi, SU Aoxue, HOU Qian, ZHANG Haoyu, JIANG Xinrui, XU Yan. Uptake and accumulation of lindane in rice and its metabolomics [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2110-2121. |
[10] | JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843. |
[11] | ZHU Yan, DING Lan, CHEN Yiqian, HUANG Xiujing, JIANG Weiwei, CHEN Donghong. Identification and functional analysis of CLE gene family in Dendrobium officinale Kimura et Migo [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1583-1590. |
[12] | LI Hui, TAN Xiaoqin, TANG Qian, YANG Yang, CHEN Wei. Effects of flower thinning on yield and quality components of Zi Yan tea plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1602-1615. |
[13] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
[14] | ZHU Xuehui, XIE Hui, HAN Shouan, WANG Min, BAI Shijian, MA Yunlong, WANG Yanmeng, MAI Sile, PAN Mingqi, ZHANG Wen. Effect of two plant growth regulators on the fruit quality of ‘Centennial Seedless’ grapes [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1309-1319. |
[15] | ZHAO Liming, WANG Yaxin, JIANG Wenxin, DUAN Shaobiao, SHEN Xuefeng, ZHENG Dianfeng, FENG Naijie. Effects of plant growth regulators on yield, quality and photosynthetic characteristics of high-quality japonica rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1003-1014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||