浙江农业学报 ›› 2023, Vol. 35 ›› Issue (10): 2408-2414.DOI: 10.3969/j.issn.1004-1524.20221568
收稿日期:
2022-11-04
出版日期:
2023-10-25
发布日期:
2023-10-31
作者简介:
李家玺(1999—),男,辽宁锦州人,硕士研究生,主要从事蔬菜遗传育种研究。E-mail:lijiaxi2019@126.com
通讯作者:
*张耀伟,E-mail:基金资助:
LI Jiaxi(), GU Ran, LIU Yan, ZHANG Yaowei(
)
Received:
2022-11-04
Online:
2023-10-25
Published:
2023-10-31
摘要:
2015年以来在哈尔滨市大白菜生产中发现一种新型软腐病,此病害逐年加重,经鉴定病原为成团泛菌(Pantoea agglomerans)。本研究以成团泛菌为接种病原,设置接种温度单因素试验,设置接种苗龄、接种湿度和接种方法L9(34)正交试验;以田间表现抗性有差异的3个品种为接种材料进行接种菌液浓度单因素试验,以期建立大白菜苗期对P. agglomerans抗性鉴定方法,并据此进行种质抗性评价。结果表明,最佳接种条件为温度25~30 ℃,苗龄7~8叶期,相对湿度90%~100%;接种方法为在中肋基部用刀片轻划“品”字形小伤口,并滴30 μL 1×1012 CFU·mL-1的菌液。按此方法在20份种质中鉴定出2份高抗和4份抗病大白菜种质,研究结果可以为大白菜抗病育种提供参考。
中图分类号:
李家玺, 顾冉, 刘焱, 张耀伟. 大白菜苗期对Pantoea agglomerans抗性鉴定方法的建立与应用[J]. 浙江农业学报, 2023, 35(10): 2408-2414.
LI Jiaxi, GU Ran, LIU Yan, ZHANG Yaowei. Establishment and application of the resistance identification method of Pantoea agglomerans during the seedling stage of Chinese cabbage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2408-2414.
图1 成团泛菌引起的大白菜软腐病田间发病症状与苗期病情分级示意图 a,成团泛菌引起的大白菜软腐病的田间发病症状。b~f,苗期病情分级示意图;b,0级;c,1级;d,3级;e,5级;f,7级。
Fig.1 Symptom of soft rot caused by P. agglomerans on Chinese cabbage in filed and diagram of disease grades of seeding a, Symptom of soft rot caused by P. agglomerans on Chinese cabbage. b-f, Diagram of 0, 1, 3, 5 and 7 grade of disease seeding, respectively.
水平 Level | 因素Factor | ||
---|---|---|---|
A接种苗龄 Inoculation seeding stage | B接种湿度 Inoculation humidity/% | C接种方法 Inoculation method | |
1 | 3~4叶期Seedling age of 3-4 leaves | 50~60 | 用刀片纵切5 mm Using knife to cut 5 mm longitudinally |
2 | 5~6叶期Seedling age of 5-6 leaves | 70~80 | 用针轻刺“品”字形小伤口 |
Using needle to stab three small wounds like‘品’shape | |||
3 | 7~8叶期Seedling age of 7-8 leaves | 90~100 | 用刀片轻划“品”字形小伤口 |
Using knife to scratch three small wounds like‘品’shape |
表1 试验因素与水平
Table 1 Factors and levels for testing
水平 Level | 因素Factor | ||
---|---|---|---|
A接种苗龄 Inoculation seeding stage | B接种湿度 Inoculation humidity/% | C接种方法 Inoculation method | |
1 | 3~4叶期Seedling age of 3-4 leaves | 50~60 | 用刀片纵切5 mm Using knife to cut 5 mm longitudinally |
2 | 5~6叶期Seedling age of 5-6 leaves | 70~80 | 用针轻刺“品”字形小伤口 |
Using needle to stab three small wounds like‘品’shape | |||
3 | 7~8叶期Seedling age of 7-8 leaves | 90~100 | 用刀片轻划“品”字形小伤口 |
Using knife to scratch three small wounds like‘品’shape |
试验号 Test No. | 试验设计 Experimental design | 发病率 Incidence rate/% | 病情指数 Disease index | ||
---|---|---|---|---|---|
A | B | C | |||
1 | 1 | 1 | 1 | 9.33 | 8.56 |
2 | 2 | 2 | 2 | 63.00 | 38.63 |
3 | 3 | 3 | 3 | 91.00 | 50.67 |
4 | 1 | 2 | 3 | 19.67 | 18.78 |
5 | 2 | 3 | 1 | 23.33 | 17.30 |
6 | 3 | 1 | 2 | 77.00 | 32.82 |
7 | 1 | 3 | 2 | 27.33 | 15.07 |
8 | 2 | 1 | 3 | 49.67 | 23.70 |
9 | 3 | 2 | 1 | 50.67 | 20.81 |
表2 L9(34)正交试验设计与结果
Table 2 Implementation scheme of orthogonal experiment and results of range analysis of disease index
试验号 Test No. | 试验设计 Experimental design | 发病率 Incidence rate/% | 病情指数 Disease index | ||
---|---|---|---|---|---|
A | B | C | |||
1 | 1 | 1 | 1 | 9.33 | 8.56 |
2 | 2 | 2 | 2 | 63.00 | 38.63 |
3 | 3 | 3 | 3 | 91.00 | 50.67 |
4 | 1 | 2 | 3 | 19.67 | 18.78 |
5 | 2 | 3 | 1 | 23.33 | 17.30 |
6 | 3 | 1 | 2 | 77.00 | 32.82 |
7 | 1 | 3 | 2 | 27.33 | 15.07 |
8 | 2 | 1 | 3 | 49.67 | 23.70 |
9 | 3 | 2 | 1 | 50.67 | 20.81 |
因素 Factor | 发病率Incidence rate/% | ||||
---|---|---|---|---|---|
K1 | K2 | K3 | R | 优水平 Optimal level | |
A | 42.41 | 79.63 | 104.3 | 61.89 | 3 |
B | 65.08 | 78.22 | 83.04 | 17.96 | 3 |
C | 46.67 | 86.52 | 93.15 | 46.48 | 3 |
表3 极差分析结果
Table 3 Results of range analysis
因素 Factor | 发病率Incidence rate/% | ||||
---|---|---|---|---|---|
K1 | K2 | K3 | R | 优水平 Optimal level | |
A | 42.41 | 79.63 | 104.3 | 61.89 | 3 |
B | 65.08 | 78.22 | 83.04 | 17.96 | 3 |
C | 46.67 | 86.52 | 93.15 | 46.48 | 3 |
变异来源 Variation source | 自由度 Degree of freedom | 偏差平方和 Sum of squares of deviation from mean | 方差 Variance | F | F0.05 | F0.01 |
---|---|---|---|---|---|---|
重复Repeat | 2 | 0.13 | 0.07 | 0.21 | 3.55 | 6.01 |
A | 2 | 17.46 | 8.73 | 27.21** | ||
B | 2 | 2.43 | 1.22 | 3.79* | ||
C | 2 | 10.87 | 5.44 | 16.94** | ||
误差Error | 18 | 5.77 | 0.32 | |||
总变异Total variation | 26 | 36.67 |
表4 L9(34)正交试验病情指数方差分析结果
Table 4 Results of variance analysis of disease index in orthogonal experiment
变异来源 Variation source | 自由度 Degree of freedom | 偏差平方和 Sum of squares of deviation from mean | 方差 Variance | F | F0.05 | F0.01 |
---|---|---|---|---|---|---|
重复Repeat | 2 | 0.13 | 0.07 | 0.21 | 3.55 | 6.01 |
A | 2 | 17.46 | 8.73 | 27.21** | ||
B | 2 | 2.43 | 1.22 | 3.79* | ||
C | 2 | 10.87 | 5.44 | 16.94** | ||
误差Error | 18 | 5.77 | 0.32 | |||
总变异Total variation | 26 | 36.67 |
菌液浓度 Concentration of bacterial suspension/ (CFU·mL-1) | 不同时间的病情指数与(抗病等级) Disease index (resistance level) at different time | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 d | 7 d | 9 d | |||||||
黄心冠军 Yellow heart champion | 凯丰2号 Kaifeng No.2 | 珍亮 Zhenliang | 黄心冠军 Yellow heart champion | 凯丰2号 Kaifeng No.2 | 珍亮 Zhenliang | 黄心冠军 Yellow heart champion | 凯丰2号 Kaifeng No.2 | 珍亮 Zhenliang | |
108 | 11.78 (R) | 13.36 (R) | 9.16 (HR) | 23.93 (R) | 23.22 (R) | 19.90 (R) | 35.21 (MR) | 27.13 (R) | 28.63 (R) |
1010 | 20.26 (R) | 22.87 (R) | 20.05 (R) | 48.67 (MR) | 35.26 (MR) | 23.33 (R) | 53.07 (MR) | 45.56 (MR) | 27.33 (R) |
1012 | 37.89 (MR) | 30.04 (R) | 23.11 (R) | 62.78 (S) | 47.21 (MR) | 29.14 (R) | 70.02 (S) | 53.22 (MR) | 32.05 (R) |
表5 最佳接种浓度的确定
Table 5 Confirmation of optimal concentration of bacterial suspension
菌液浓度 Concentration of bacterial suspension/ (CFU·mL-1) | 不同时间的病情指数与(抗病等级) Disease index (resistance level) at different time | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 d | 7 d | 9 d | |||||||
黄心冠军 Yellow heart champion | 凯丰2号 Kaifeng No.2 | 珍亮 Zhenliang | 黄心冠军 Yellow heart champion | 凯丰2号 Kaifeng No.2 | 珍亮 Zhenliang | 黄心冠军 Yellow heart champion | 凯丰2号 Kaifeng No.2 | 珍亮 Zhenliang | |
108 | 11.78 (R) | 13.36 (R) | 9.16 (HR) | 23.93 (R) | 23.22 (R) | 19.90 (R) | 35.21 (MR) | 27.13 (R) | 28.63 (R) |
1010 | 20.26 (R) | 22.87 (R) | 20.05 (R) | 48.67 (MR) | 35.26 (MR) | 23.33 (R) | 53.07 (MR) | 45.56 (MR) | 27.33 (R) |
1012 | 37.89 (MR) | 30.04 (R) | 23.11 (R) | 62.78 (S) | 47.21 (MR) | 29.14 (R) | 70.02 (S) | 53.22 (MR) | 32.05 (R) |
[1] | 李晓颖, 田宇, 赵亮, 等. 京郊快菜细菌性软腐病病原鉴定[J]. 华北农学报, 2018, 33(3): 63-70. |
LI X Y, TIAN Y, ZHAO L, et al. Identification of the bacterial soft rot pathogens on Chinese cabbage in Beijing[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 63-70. (in Chinese with English abstract) | |
[2] | 李晓颖, 田宇, 张瑾, 等. 大白菜软腐病新病原菌Pectobacterium aroidearum的鉴定及其生物学特性[J]. 植物病理学报, 2018, 48(4): 455-465. |
LI X Y, TIAN Y, ZHANG J, et al. Identification and characterization of a Pectobacterium aroidearum strain causing bacterial soft rot on Chinese cabbage (Brassica rapa L.ssp.pekinensis)[J]. Acta Phytopathologica Sinica, 2018, 48(4): 455-465. (in Chinese with English abstract) | |
[3] | OSKIERA M, KAŁU ŻNA M, KOWALSKA B, et al. Pectobacterium carotovorum subsp. odoriferum on cabbage and Chinese cabbage: identification, characterization and taxonomic relatedness of bacterial soft rot causal agents[J]. Journal of Plant Pathology, 2017, 99(1): 149-160. |
[4] | CHEN C L, LI X Y, BO Z J, et al. Occurrence, characteristics, and PCR-based detection of Pectobacterium polaris causing soft rot of Chinese cabbage in China[J]. Plant Disease, 2021, 105(10): 2880-2887. |
[5] | LI J X, ZHANG Y W. Biological characteristics and isolation of Pythium ultimum causing rot of Chinese cabbage[J]. Australasian Plant Pathology, 2020, 49(2): 201-207. |
[6] | GUO M, LIU Y, LIU S N, et al. First report of bacterial soft rot caused by Pantoea agglomerans on Chinese cabbage in China[J]. Plant Disease, 2020, 104(1): 277. |
[7] | 保善存, 夏吾拉太, 殷光晶, 等. 杨树枝干病害病原物分离与鉴定[J]. 分子植物育种, 2021, 19(23): 7900-7904. |
BAO S C, XIAWULATAI, YIN G J, et al. Isolation and identification of pathogens of poplar stem diseases[J]. Molecular Plant Breeding, 2021, 19(23): 7900-7904. (in Chinese with English abstract) | |
[8] | 佘小漫, 于琳, 蓝国兵, 等. 广东省冬枣叶枯病病原菌的分离与鉴定[J]. 植物病理学报, 2021, 51(3): 317-324. |
SHE X M, YU L, LAN G B, et al. Identification of the pathogen causing Ziziphus jujuba Mill. cv. Dongzao leaf necrotic disease in Guangdong Province[J]. Acta Phytopathologica Sinica, 2021, 51(3): 317-324. (in Chinese with English abstract) | |
[9] | 童亚萍, 杨丙烨, 田茜, 等. 桃李细菌性穿孔病新病原的分离鉴定[J]. 福建农林大学学报(自然科学版), 2020, 49(3): 300-306. |
TONG Y P, YANG B Y, TIAN Q, et al. Isolation and identification of a new pathogen causing bacterial leaf shot hole disease on peach and plum[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2020, 49(3): 300-306. (in Chinese with English abstract) | |
[10] | 严婉荣, 肖敏, 肖彤斌, 等. 海南火龙果细菌性腐烂病的病原鉴定及田间药剂筛选[J]. 基因组学与应用生物学, 2020, 39(3): 1185-1190. |
YAN W R, XIAO M, XIAO T B, et al. Pathogen identification and screening of field agents on dragon fruit bacterial rot disease in Hainan[J]. Genomics and Applied Biology, 2020, 39(3): 1185-1190. (in Chinese with English abstract) | |
[11] | 肖波, 卢世栋, 杨斌, 等. 云南核桃细菌性黑斑病病原菌的分离与鉴定[J]. 贵州农业科学, 2017, 45(12): 55-58. |
XIAO B, LU S D, YANG B, et al. Isolation and identification of walnut bacterial black spot pathogen in Yunnan[J]. Guizhou Agricultural Sciences, 2017, 45(12): 55-58. (in Chinese with English abstract) | |
[12] | 闫仁洁. 北京蔬菜学会推广大白菜优良品种[J]. 学会, 1997(6): 32. |
YAN R J. Beijing Vegetable Society promotes fine varieties of Chinese cabbage[J]. Society, 1997(6): 32. (in Chinese) | |
[13] | 丁海凤. 大白菜优良品种北京新三号[J]. 农业知识, 2007(20): 7. |
DING H F. Beijing Xin No.3, an excellent Chinese cabbage variety[J]. Agriculture Knowlege, 2007(20): 7. (in Chinese) | |
[14] | 王效睦, 白静, 谢坤, 等. 我国大白菜种质资源的研究与利用[J]. 山东农业科学, 2016, 48(3): 143-149. |
WANG X M, BAI J, XIE K, et al. Research and utilization of Chinese cabbage germplasm resources in China[J]. Shandong Agricultural Sciences, 2016, 48(3): 143-149. (in Chinese with English abstract) | |
[15] | 朱琳, 孙素丽, 孙菲菲, 等. 绿豆尖镰孢枯萎病抗性鉴定方法[J]. 植物遗传资源学报, 2017, 18(4): 696-703. |
ZHU L, SUN S L, SUN F F, et al. The method for evaluation of mung bean resistance to Fusarium wilt[J]. Journal of Plant Genetic Resources, 2017, 18(4): 696-703. (in Chinese with English abstract) | |
[16] | 孙叶烁, 郝玲玉, 张杰, 等. 大白菜菌核病抗性鉴定方法研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(12): 123-129. |
SUN Y S, HAO L Y, ZHANG J, et al. Identification method of resistance to Sclerotinia in Chinese cabbage[J]. Journal of Northwest A & F University(Natural Science Edition), 2019, 47(12): 123-129. (in Chinese with English abstract) | |
[17] | 张鑫鑫, 张恩慧, 吴云锋, 等. 甘蓝黑腐病苗期抗性鉴定方法研究[J]. 中国瓜菜, 2021, 34(6): 39-46. |
ZHANG X X, ZHANG E H, WU Y F, et al. Study on the method of identification of resistance to black rot in cabbage at seedling stage[J]. China Cucurbits and Vegetables, 2021, 34(6): 39-46. (in Chinese with English abstract) | |
[18] | 史国立, 崔崇士, 张耀伟. 大白菜对软腐病抗性的快速鉴定方法研究[J]. 植物保护, 2006, 32(6): 135-138. |
SHI G L, CUI C S, ZHANG Y W. Study on rapid identification method of Chinese cabbage resistance to soft rot[J]. Plant Protection, 2006, 32(6): 135-138. (in Chinese) | |
[19] | 田宇, 李晓颖, 石妙涵, 等. 生菜细菌性软腐病抗性鉴定方法及其资源评价[J]. 华北农学报, 2019, 34(S1): 309-317. |
TIAN Y, LI X Y, SHI M H, et al. Assessment of identification method of lettuce bacterial soft rot resistance and evaluation of cultivar resistance[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1): 309-317. (in Chinese with English abstract) | |
[20] | 张耀伟. 大白菜抗软腐病生理生化指标研究[D]. 哈尔滨: 东北农业大学, 2002. |
ZHANG Y W. Study on physiological and biochemical indexes of Chinese cabbage resistance to soft rot[D]. Harbin: Northeast Agricultural University, 2002. (in Chinese with English abstract) | |
[21] | 马燕勤, 李勤菲, 司军, 等. 甘蓝抗软腐病离体鉴定方法探究[J]. 植物保护, 2018, 44(6): 136-140. |
MA Y Q, LI Q F, SI J, et al. Assessment of inoculation method for identifying resistance to soft rot in cabbage[J]. Plant Protection, 2018, 44(6): 136-140. (in Chinese with English abstract) |
[1] | 李必元, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 陶鹏. 大白菜番茄红素β-环化酶基因BrLCYB的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(9): 2090-2096. |
[2] | 杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614. |
[3] | 茹朝, 郁继华, 武玥, 冯致, 缑兆辉, 金宁, 王舒亚, 刘泽慈, 吕剑. 化肥减量配施生物有机肥对露地大白菜产量及品质的影响[J]. 浙江农业学报, 2022, 34(8): 1626-1637. |
[4] | 杨春, 孟泽洪, 李帅, 梁思慧, 乔大河, 陈正武. 十二个茶树品种对茶棍蓟马、茶小绿叶蝉抗性表现及抗性成分初步鉴定[J]. 浙江农业学报, 2022, 34(8): 1713-1724. |
[5] | 陆景伟, 陈国康, 周娜, 魏捷, 胡燕, 郑阳, 陶伟林. 六个丝瓜品种对南方根结线虫的抗性[J]. 浙江农业学报, 2022, 34(5): 959-965. |
[6] | 鲁艳辉, 郭嘉雯, 田俊策, 薛钊鸿, 郑许松, 吕仲贤. 基于COⅠ和Cytb基因的浙江不同抗性水平二化螟种群的遗传结构分析[J]. 浙江农业学报, 2022, 34(11): 2462-2470. |
[7] | 黄宣, 金林灿, 叶朝辉, 姜洁锋, 施贤波. 浙江近年育成粳稻新品种(系)部分抗病虫基因的分子检测与育种应用[J]. 浙江农业学报, 2021, 33(7): 1159-1169. |
[8] | 杨梅, 胡小兰, 申涛, 谭康, 刘代铃, 邱红波. 玉米第8染色体单片段代换系的构建与灰斑病抗性材料筛选[J]. 浙江农业学报, 2021, 33(3): 383-389. |
[9] | 陶鹏, 岳智臣, 赵彦婷, 雷娟利, 李必元. 大白菜BrSPS1Fb基因剪接受体位点变异及其对剪接的影响[J]. 浙江农业学报, 2021, 33(11): 2068-2074. |
[10] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
[11] | 武德功, 方文浩, 陈欢, 杜军利, 余海兵, 王长进. 普通玉米自交系对亚洲玉米螟抗性鉴定及其抗性机制初步研究[J]. 浙江农业学报, 2018, 30(5): 688-694. |
[12] | 徐志荣, 傅雁辉, 赵英杰, 王婷, 魏赛金. 链霉菌JD211发酵液对水稻防御稻瘟病菌诱导抗性的作用[J]. 浙江农业学报, 2017, 29(6): 971-976. |
[13] | 张云婷1,宋霞1,叶云天1,冯琛1,孙勃1,王小蓉2,汤浩茹1,*. 光质对低温胁迫下草莓叶片生理生化特性的影响[J]. 浙江农业学报, 2016, 28(5): 790-. |
[14] | 张衍干1,黄吉1,施伟迪1,王碧媛1,贾永超1, 2,禹田1,李强1,*. 不同玉米品种对玉米蚜的抗性及其与瓢虫的联合控害作用[J]. 浙江农业学报, 2016, 28(5): 815-. |
[15] | 韩丽娜, 丁哲利, 曾会才, 郑伟, 何应对, 葛宇. 功能性有机肥对大白菜生长的影响[J]. 浙江农业学报, 2016, 28(10): 1718-1723. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||