浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1268-1276.DOI: 10.3969/j.issn.1004-1524.2022.06.17
李丽艳1,2(), 谭海霞3,*(
), 李婧1,2, 王连龙3, 杜迎辉1,2, 徐志文1
收稿日期:
2021-07-09
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
谭海霞
作者简介:
*谭海霞,E-mail: tanhaixia2001@126.com基金资助:
LI Liyan1,2(), TAN Haixia3,*(
), LI Jing1,2, WANG Lianlong3, DU Yinghui1,2, XU Zhiwen1
Received:
2021-07-09
Online:
2022-06-25
Published:
2022-06-30
Contact:
TAN Haixia
摘要:
从河北省秦皇岛滨海盐生植物根际土壤分离筛选耐盐促生芽孢杆菌,研究其在盐胁迫条件下对燕麦生长的促生效果,以期为研发耐盐促生菌剂和菌肥提供菌种资源。采用pH值9.0和NaCl质量分数分别为5%、10%、15%的LB培养基筛选、分离耐高盐的芽孢杆菌菌株,用功能培养基从中筛选具有促生能力的细菌菌株,用Salkowski比色法定性定量分析其产IAA的能力,采用盆栽试验研究其在盐胁迫条件下对燕麦生长的影响,运用16S rDNA序列分析法对促生效果好的菌株进行鉴定。结果显示,本研究共分离得到13株耐高盐的芽孢杆菌菌株,其中3株芽孢杆菌(YP2、YP4、SM12)可耐受10%(质量分数)的NaCl,且均有解磷、解钾、固氮能力,具有较强的产IAA能力。接种这3株菌株均能在盐胁迫条件下促进燕麦生长,提高其抗盐能力,其中菌株YP2的效果最优,与对照相比,其株高、茎粗、地上部鲜重、总根长、根系总表面积、根尖数分别显著(P<0.05)增加72.02%、42.58%、186.11%、392.35%、378.07%和518.85%,燕麦叶片中的丙二醛含量显著(P<0.05)降低43.34%,叶绿素含量、脯氨酸含量,及过氧化物酶、过氧化氢酶活性分别显著(P<0.05)提高了312.20%、124.10%、274.09%和198.60%。经16S rDNA序列分析,将菌株YP2初步鉴定为弯曲芽孢杆菌(Bacillus flexus)。该菌株作为盐碱地专用生物菌剂具有较大的开发应用潜力。
中图分类号:
李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276.
LI Liyan, TAN Haixia, LI Jing, WANG Lianlong, DU Yinghui, XU Zhiwen. Screening of salt-tolerant growth-promoting Bacillus strains and their effect on oat growth under salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1268-1276.
盐生植物 Halophyte | pH | 碱解氮 Alkaline N/ (mg·kg-1) | 有效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 有机质 Organic matter/ (g·kg-1) | 水溶性盐分 Water soluble salt/( g·kg-1) |
---|---|---|---|---|---|---|
盐地碱蓬 Suaeda salsa | 8.55 | 19 | 10.3 | 256 | 4.69 | 4.0 |
盐角草 Salicornia europaea | 8.57 | 47 | 18.4 | 286 | 7.20 | 5.0 |
芦苇 Phragmites australis | 8.69 | 30 | 15.7 | 197 | 7.04 | 4.1 |
水麦冬 Triglochin palustre | 8.03 | 27 | 7.7 | 274 | 5.10 | 4.5 |
表1 供试植物生长土壤的基本理化性状
Table 1 Basic physiochemical properties of soils for plant growth
盐生植物 Halophyte | pH | 碱解氮 Alkaline N/ (mg·kg-1) | 有效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 有机质 Organic matter/ (g·kg-1) | 水溶性盐分 Water soluble salt/( g·kg-1) |
---|---|---|---|---|---|---|
盐地碱蓬 Suaeda salsa | 8.55 | 19 | 10.3 | 256 | 4.69 | 4.0 |
盐角草 Salicornia europaea | 8.57 | 47 | 18.4 | 286 | 7.20 | 5.0 |
芦苇 Phragmites australis | 8.69 | 30 | 15.7 | 197 | 7.04 | 4.1 |
水麦冬 Triglochin palustre | 8.03 | 27 | 7.7 | 274 | 5.10 | 4.5 |
菌株来源 Sampling site | NaCl质量分数 NaCl mass fraction/% | 分离菌株数 Isolates quantity | 菌株编号 Strain No. |
---|---|---|---|
盐地碱蓬 Suaeda salsa | 5 | 3 | YP1~YP3 |
10 | 2 | YP4~YP5 | |
15 | 1 | YP6 | |
盐角草 Salicornia europaea | 5 | 1 | YJ7 |
10 | 1 | YJ8 | |
芦苇 Phragmites australis | 5 | 2 | LW9~LW10 |
10 | 1 | LW11 | |
水麦冬 Triglochin palustre | 5 | 2 | SM12~SM13 |
表2 分离得到的耐盐芽孢杆菌的基本信息
Table 2 Related information of 13 strains of salt-tolerant bacillus
菌株来源 Sampling site | NaCl质量分数 NaCl mass fraction/% | 分离菌株数 Isolates quantity | 菌株编号 Strain No. |
---|---|---|---|
盐地碱蓬 Suaeda salsa | 5 | 3 | YP1~YP3 |
10 | 2 | YP4~YP5 | |
15 | 1 | YP6 | |
盐角草 Salicornia europaea | 5 | 1 | YJ7 |
10 | 1 | YJ8 | |
芦苇 Phragmites australis | 5 | 2 | LW9~LW10 |
10 | 1 | LW11 | |
水麦冬 Triglochin palustre | 5 | 2 | SM12~SM13 |
菌株编号 Strain No. | IAA产生活性 IAA production activity | 溶解有机磷 Organic phosphate solubilization | 溶解无机磷 Inorganic phosphate solubilization | 解钾 Potassium-releasing | 固氮 Nitrogen fixation | IAA产生量 IAA yield/(mg·L-1) |
---|---|---|---|---|---|---|
YP1 | + | — | + | + | — | 25.76 |
YP2 | +++ | ++ | ++ | ++ | ++ | 62.10 |
YP3 | + | — | — | + | + | 33.27 |
YP4 | +++ | — | ++ | ++ | + | 50.00 |
YP5 | ++ | + | + | ++ | + | 40.30 |
YP6 | ++ | + | — | — | + | 36.55 |
YJ7 | + | — | — | — | + | 28.19 |
YJ8 | + | — | + | — | + | 25.46 |
LW9 | + | — | + | — | + | 20.32 |
LW10 | + | + | + | + | + | 18.57 |
LW11 | + | + | + | — | — | 10.11 |
SM12 | ++ | + | — | + | ++ | 43.80 |
SM13 | + | — | — | + | + | 29.57 |
表3 分离株的促生指标
Table 3 Plant-promoting abilities of isolated strains
菌株编号 Strain No. | IAA产生活性 IAA production activity | 溶解有机磷 Organic phosphate solubilization | 溶解无机磷 Inorganic phosphate solubilization | 解钾 Potassium-releasing | 固氮 Nitrogen fixation | IAA产生量 IAA yield/(mg·L-1) |
---|---|---|---|---|---|---|
YP1 | + | — | + | + | — | 25.76 |
YP2 | +++ | ++ | ++ | ++ | ++ | 62.10 |
YP3 | + | — | — | + | + | 33.27 |
YP4 | +++ | — | ++ | ++ | + | 50.00 |
YP5 | ++ | + | + | ++ | + | 40.30 |
YP6 | ++ | + | — | — | + | 36.55 |
YJ7 | + | — | — | — | + | 28.19 |
YJ8 | + | — | + | — | + | 25.46 |
LW9 | + | — | + | — | + | 20.32 |
LW10 | + | + | + | + | + | 18.57 |
LW11 | + | + | + | — | — | 10.11 |
SM12 | ++ | + | — | + | ++ | 43.80 |
SM13 | + | — | — | + | + | 29.57 |
菌株编号 Strain No. | pH | NaCl质量分数NaCl mass fraction/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 0.5 | 1 | 5 | 10 | 15 | |
YP2 | — | — | ++ | +++ | +++ | +++ | +++ | + | +++ | +++ | +++ | ++ | + |
YP4 | — | — | + | +++ | +++ | +++ | ++ | — | +++ | +++ | +++ | + | — |
SM12 | — | — | — | +++ | +++ | +++ | ++ | — | +++ | +++ | ++ | + | — |
表4 分离株的生态适应性
Table 4 Ecological adaptability of isolated strains
菌株编号 Strain No. | pH | NaCl质量分数NaCl mass fraction/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 0.5 | 1 | 5 | 10 | 15 | |
YP2 | — | — | ++ | +++ | +++ | +++ | +++ | + | +++ | +++ | +++ | ++ | + |
YP4 | — | — | + | +++ | +++ | +++ | ++ | — | +++ | +++ | +++ | + | — |
SM12 | — | — | — | +++ | +++ | +++ | ++ | — | +++ | +++ | ++ | + | — |
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 地上部鲜重 Shoot biomass/g | 总根长 Root length/cm | 根系总表面积 Root surface area/cm2 | 根系直径 Root. diameter/mm | 根尖数 Root tips quantity |
---|---|---|---|---|---|---|---|
CK | 37.21±7.75 c | 2.09±0.21 b | 1.44±0.50 c | 76.5±13.3 c | 32.33±8.35 c | 1.35±0.15 a | 62.12±7.3 c |
YP2 | 64.01±8.26 a | 2.98±0.33 a | 4.12±1.24 a | 376.5±38.3 a | 154.56±31.25 a | 1.37±0.11 a | 384.43±13.16 a |
YP4 | 55.17±8.83 b | 2.25±0.38 b | 2.59±1.55 b | 228.2±38.0 b | 90.43±24.87 b | 1.22±0.10 a | 247.83±14.28 b |
SM12 | 62.66±9.41 ab | 2.68±0.25 a | 3.44±0.85 ab | 277.3±37.1 b | 102.97±13.09 b | 1.26±0.12 a | 256.34±18.14 b |
表5 盐胁迫下接种促生菌对燕麦生长的影响
Table 5 Effects of inoculation of isolated strains on oat growth under salt stress
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 地上部鲜重 Shoot biomass/g | 总根长 Root length/cm | 根系总表面积 Root surface area/cm2 | 根系直径 Root. diameter/mm | 根尖数 Root tips quantity |
---|---|---|---|---|---|---|---|
CK | 37.21±7.75 c | 2.09±0.21 b | 1.44±0.50 c | 76.5±13.3 c | 32.33±8.35 c | 1.35±0.15 a | 62.12±7.3 c |
YP2 | 64.01±8.26 a | 2.98±0.33 a | 4.12±1.24 a | 376.5±38.3 a | 154.56±31.25 a | 1.37±0.11 a | 384.43±13.16 a |
YP4 | 55.17±8.83 b | 2.25±0.38 b | 2.59±1.55 b | 228.2±38.0 b | 90.43±24.87 b | 1.22±0.10 a | 247.83±14.28 b |
SM12 | 62.66±9.41 ab | 2.68±0.25 a | 3.44±0.85 ab | 277.3±37.1 b | 102.97±13.09 b | 1.26±0.12 a | 256.34±18.14 b |
图1 不同处理组下燕麦的根系扫描图 A,CK;B,接种YP2;C,接种YP4;D,接种SM12。
Fig. 1 Root scanning diagrams of oat under different treatments A, CK; B, Inoculation of YP2; C, Inoculation of YP4; D, Inoculation of SM12.
处理 Treatment | PC1得分 Score of PC1 | PC2得分 Score of PC2 | 综合得分 Total score | 排名 Rank |
---|---|---|---|---|
CK | -1.365 | 0.621 | -0.866 | 4 |
YP2 | 1.018 | 1.010 | 1.016 | 1 |
YP4 | 0.031 | -1.177 | -0.156 | 3 |
SM12 | 0.316 | -0.454 | 0.122 | 2 |
表6 分离株对燕麦的促生效果排名
Table 6 Ranking of growth-promoting performance of isolated strains
处理 Treatment | PC1得分 Score of PC1 | PC2得分 Score of PC2 | 综合得分 Total score | 排名 Rank |
---|---|---|---|---|
CK | -1.365 | 0.621 | -0.866 | 4 |
YP2 | 1.018 | 1.010 | 1.016 | 1 |
YP4 | 0.031 | -1.177 | -0.156 | 3 |
SM12 | 0.316 | -0.454 | 0.122 | 2 |
处理 Treatment | 叶绿素 Chlorophyll/(mg·g-1) | 丙二醛Malondialdehyde/ (μmol·g-1) | 脯氨酸 Proline/(μg·g-1) | 过氧化物酶 Peroxidase/(U·g-1·min-1) | 过氧化氢酶Catalase/(mg·g-1·min-1) |
---|---|---|---|---|---|
CK | 0.82±0.03 c | 15.02±0.16 a | 0.83±0.04 c | 163.33±8.72 c | 12.13±0.21 d |
YP2 | 3.38±0.07 a | 8.51±0.44 d | 1.86±0.04 a | 611.00±3.21 a | 36.22±0.60 a |
YP4 | 0.91±0.12 bc | 13.58±0.33 b | 1.64±0.06 b | 483.67±4.16 b | 15.98±0.41 c |
SM12 | 1.00±0.08 b | 12.13±0.30 c | 1.68±0.05 b | 499.50±4.58 b | 31.28±0.36 b |
表7 盐胁迫下接种分离株对燕麦生理特性的影响
Table 7 Effects of inoculation of isolated strains on physiological characteristics of oat under salt stress
处理 Treatment | 叶绿素 Chlorophyll/(mg·g-1) | 丙二醛Malondialdehyde/ (μmol·g-1) | 脯氨酸 Proline/(μg·g-1) | 过氧化物酶 Peroxidase/(U·g-1·min-1) | 过氧化氢酶Catalase/(mg·g-1·min-1) |
---|---|---|---|---|---|
CK | 0.82±0.03 c | 15.02±0.16 a | 0.83±0.04 c | 163.33±8.72 c | 12.13±0.21 d |
YP2 | 3.38±0.07 a | 8.51±0.44 d | 1.86±0.04 a | 611.00±3.21 a | 36.22±0.60 a |
YP4 | 0.91±0.12 bc | 13.58±0.33 b | 1.64±0.06 b | 483.67±4.16 b | 15.98±0.41 c |
SM12 | 1.00±0.08 b | 12.13±0.30 c | 1.68±0.05 b | 499.50±4.58 b | 31.28±0.36 b |
[1] | 雷雪峰, 赵宝平, 刘景辉, 等. 燕麦对盐碱胁迫的响应机制及缓解措施研究进展[J]. 种子, 2019, 38(4): 62-66. |
LEI X F, ZHAO B P, LIU J H, et al. Research progress on response mechanisms to saline-alkali stress and its mitigation measures in oats[J]. Seed, 2019, 38(4): 62-66. (in Chinese) | |
[2] | 侯鑫狄, 贾玉山, 包健, 等. 土壤盐碱程度对燕麦生育期和农艺性状的影响[J]. 畜牧与饲料科学, 2018, 39(8): 45-49. |
HOU X D, JIA Y S, BAO J, et al. Effect of soil saline-alkaline degree on growth period and agronomic characters of Avena sativa L[J]. Animal Husbandry and Feed Science, 2018, 39(8): 45-49. (in Chinese with English abstract) | |
[3] | 武俊英, 赵宝平, 刘景辉, 等. 葡萄糖浸种对NaCl胁迫下燕麦幼苗生长和渗透调节的影响[J]. 麦类作物学报, 2014, 34(7): 983-989. |
WU J Y, ZHAO B P, LIU J H, et al. Effects of glucose soaking on growth and osmotic adjustment of oat seedlings under NaCl stress[J]. Journal of Triticeae Crops, 2014, 34(7): 983-989. (in Chinese with English abstract) | |
[4] | 赖弟利, 朱红林, 何凤, 等. 盐胁迫对3个燕麦品种幼苗生长及生理生化的影响[J]. 贵州农业科学, 2019, 47(5): 4-9. |
LAI D L, ZHU H L, HE F, et al. Effects of salt stress on growth and physiological indexes of three oat cultivars at seedling stage[J]. Guizhou Agricultural Sciences, 2019, 47(5): 4-9. (in Chinese with English abstract) | |
[5] | 王丹, 赵亚光, 张凤华. 耐盐促生菌筛选、鉴定及对盐胁迫小麦的效应[J]. 麦类作物学报, 2020, 40(1): 110-117. |
WANG D, ZHAO Y G, ZHANG F H. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress[J]. Journal of Triticeae Crops, 2020, 40(1): 110-117. (in Chinese with English abstract) | |
[6] | 王艳宇, 向君亮, 周妍, 等. 耐盐碱细菌DQSA1的分离鉴定及盐碱胁迫下对绿豆的促生作用[J]. 微生物学通报, 2021, 48(8): 2653-2664. |
WANG Y Y, XIANG J L, ZHOU Y, et al. Isolation and identification of saline-alkali tolerance bacteria DQSA1 and its growth-promoting effect on mung bean under saline-alkali stress[J]. Microbiology China, 2021, 48(8): 2653-2664. (in Chinese with English abstract) | |
[7] | 黄智华, 崔永和, 计思贵, 等. 云南烤烟根际土壤PGPR菌株的筛选与鉴定[J]. 中国烟草科学, 2017, 38(5): 18-23. |
HUANG Z H, CUI Y H, JI S G, et al. Isolation and identification of PGPR strains from rhizosphere soil of Yunnan flue-cured tobacco[J]. Chinese Tobacco Science, 2017, 38(5): 18-23. (in Chinese with English abstract) | |
[8] | 白文娟, 胡蓉蓉, 章家恩, 等. 玉米根际溶磷细菌的分离、筛选及溶磷能力研究[J]. 华南农业大学学报, 2013, 34(2): 167-176. |
BAI W J, HU R R, ZHANG J E, et al. A study on the isolation, screening and phosphate solubilizing capacity of phosphate solubilizing bacteria in the rhizosphere of corn[J]. Journal of South China Agricultural University, 2013, 34(2): 167-176. (in Chinese with English abstract) | |
[9] | 荣良燕, 姚拓, 赵桂琴, 等. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用[J]. 植物保护, 2011, 37(1): 59-64. |
RONG L Y, YAO T, ZHAO G Q, et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens[J]. Plant Protection, 2011, 37(1): 59-64. (in Chinese with English abstract) | |
[10] | 李引, 虞丽, 李辉信, 等. 一株花生根际促生菌的筛选鉴定及其特性研究[J]. 生态与农村环境学报, 2012, 28(4): 416-421. |
LI Y, YU L, LI H X, et al. Isolation, identification and characteristics of a peanut growth-promoting strain of rhizobacteria[J]. Journal of Ecology and Rural Environment, 2012, 28(4): 416-421. (in Chinese with English abstract) | |
[11] | 王欢, 韩丽珍. 4株茶树根际促生菌菌株的鉴定及促生作用[J]. 微生物学通报, 2019, 46(3): 548-562. |
WANG H, HAN L Z. Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere[J]. Microbiology China, 2019, 46(3): 548-562. (in Chinese with English abstract) | |
[12] | 雷平, 黄军, 黄彬彬, 等. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用[J]. 激光生物学报, 2020, 29(4): 379-384. |
LEI P, HUANG J, HUANG B B, et al. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from capscium[J]. Acta Laser Biology Sinica, 2020, 29(4): 379-384. (in Chinese with English abstract) | |
[13] | 陈越, 李虎林, 朱诗苗, 等. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J]. 作物杂志, 2020(2): 176-181. |
CHEN Y, LI H L, ZHU S M, et al. Isolation and identification of IAA-producing rhizobacteria and its effects on seed germination and seedling growth of tobacco[J]. Crops, 2020(2): 176-181. (in Chinese with English abstract) | |
[14] | 崔月贞, 万志文, 冯疆蓉, 等. 东祁连山高寒草地优势牧草内生细菌产IAA能力的研究[J]. 草地学报, 2016, 24(3): 618-623. |
CUI Y Z, WAN Z W, FENG J R, et al. Research on IAA secreting ability of endophytic bacteria from forage on eastern-Qilian mountain[J]. Acta Agrestia Sinica, 2016, 24(3): 618-623. (in Chinese with English abstract) | |
[15] | 王辰月, 陈秀蓉, 杨成德. 分泌吲哚乙酸洽草内生细菌的筛选及其对种子发芽的影响[J]. 草原与草坪, 2013, 33(1): 21-24. |
WANG C Y, CHEN X R, YANG C D. Screening of IAA-producing endophytic bacteria from Koeleria cristata and the effect on seed germination[J]. Grassland and Turf, 2013, 33(1): 21-24. (in Chinese with English abstract) | |
[16] |
GLICKMANN E, DESSAUX Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2): 793-796.
DOI URL |
[17] | 陈腊, 米国华, 李可可, 等. 多功能植物根际促生菌对东北黑土区玉米的促生效果[J]. 应用生态学报, 2020, 31(8): 2759-2766. |
CHEN L, MI G H, LI K K, et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2759-2766. (in Chinese with English abstract) | |
[18] | 刘亚东, 刘景辉, 卿香玉, 等. 生物菌肥对燕麦叶片生理特性及产量的影响[J]. 北方农业学报, 2019, 47(3): 58-63. |
LIU Y D, LIU J H, QING X Y, et al. Effect of the compound microbial fertilizer on the physiological characteristics and yield of oats[J]. Journal of Northern Agriculture, 2019, 47(3): 58-63. (in Chinese with English abstract) | |
[19] | 高俊山, 蔡永萍. 植物生理学实验指导[M]. 2版. 北京: 中国农业大学出版社, 2018. |
[20] | 蔡长平, 黄军, 曾艳, 等. 一株辣椒内生拮抗细菌的筛选及初步鉴定[J]. 湖南农业科学, 2018(7): 1-4. |
CAI C P, HUANG J, ZENG Y, et al. Isolation and primary identification of an endophytic antagonistic bacteria from pepper[J]. Hunan Agricultural Sciences, 2018(7): 1-4. (in Chinese with English abstract) | |
[21] | 黄军, 曾艳, 蔡长平, 等. 一株辣椒内生拮抗放线菌的筛选及初步鉴定[J]. 湖南农业科学, 2018(9): 6-8. |
HUANG J, ZENG Y, CAI C P, et al. Screening and primary identification of an endophytic antagonistic actinomycetes from pepper[J]. Hunan Agricultural Sciences, 2018(9): 6-8. (in Chinese with English abstract) | |
[22] |
YOON S H, HA S M, KWON S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617.
DOI URL |
[23] | 石慧, 陈启和. 食品分子微生物学[M]. 北京: 中国农业大学出版社, 2019. |
[24] | 张志东, 顾美英, 唐琦勇, 等. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3): 186-192. |
ZHANG Z D, GU M Y, TANG Q Y, et al. Screening of salt-tolerant and growth-promoting bacteria in the rhizosphere of Kalidium foliatum and the functional identification in pot experiments[J]. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192. (in Chinese with English abstract) | |
[25] | 刘佳莉, 方芳, 史煦涵, 等. 2株盐碱地燕麦根际促生菌的筛选及其促生作用研究[J]. 草业学报, 2013, 22(2): 132-139. |
LIU J L, FANG F, SHI X H, et al. Isolation and characterization of PGPR from the rhizosphere of the Avena sativa in saline-alkali soil[J]. Acta Prataculturae Sinica, 2013, 22(2): 132-139. (in Chinese with English abstract) | |
[26] | 徐瑛, 郭晓农, 蔡德育. 解淀粉芽孢杆菌11B91对藜麦生长影响的初探[J]. 大麦与谷类科学, 2019, 36(5): 10-14. |
XU Y, GUO X N, CAI D Y. Preliminary study on the effects of Bacillus amyloliquefaciens 11B91 on the growth of Chenopodium quinoa Willd[J]. Barley and Cereal Sciences, 2019, 36(5): 10-14. (in Chinese with English abstract) | |
[27] | 谭石勇, 易永健, 汪洪鹰, 等. 苎麻促生菌的筛选、鉴定及其促生效应[J]. 微生物学通报, 2015, 42(3): 525-533. |
TAN S Y, YI Y J, WANG H Y, et al. Isolation and identification of plant growth-promoting bacteria (PGPB) from ramie (Boehmeria nivea L. Gaud) rhizosphere and their promoting growth effects[J]. Microbiology China, 2015, 42(3): 525-533. (in Chinese with English abstract) | |
[28] | 刘文英. 植物逆境与基因[M]. 北京: 北京理工大学出版社, 2015. |
[29] |
潘晶, 黄翠华, 彭飞, 等. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87.
DOI |
PAN J, HUANG C H, PENG F, et al. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria[J]. Biotechnology Bulletin, 2020, 36(9): 75-87. (in Chinese with English abstract) | |
[30] | 武俊英, 刘景辉, 李倩. 盐胁迫对燕麦幼苗生长, K+、Na+吸收和光合性能的影响[J]. 西北农业学报, 2010, 19(2): 100-105. |
WU J Y, LIU J H, LI Q. Effects of salt stress on oat seedling growth and selective absorption of K+ and Na+ and photosynthetic characters[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(2): 100-105. (in Chinese with English abstract) | |
[31] | 徐亚军, 赵龙飞, 邢鸿福, 等. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响[J]. 生态学报, 2020, 40(11): 3726-3737. |
XU Y J, ZHAO L F, XING H F, et al. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress[J]. Acta Ecologica Sinica, 2020, 40(11): 3726-3737. (in Chinese with English abstract) | |
[32] | 王鲁, 魏宏达, 方可, 等. 解淀粉芽孢杆菌HM618对盐胁迫下小麦幼苗生长及生理特性的影响[J]. 天津农业科学, 2020, 26(12): 33-37. |
WANG L, WEI H D, FANG K, et al. Effects of Bacillus amyloliquefaciens HM618 on the growth and physiological characteristics of wheat seedlings under salt stress[J]. Tianjin Agricultural Sciences, 2020, 26(12): 33-37. (in Chinese with English abstract) | |
[33] | NAZ R, BANO A. Influence of exogenously applied salicylic acid and plant growth promoting rhizobacteria inoculation on the growth and physiology of sunflower (Helianthus annuus L.) under salt stress[J]. Pakistan Journal of Botany, 2013, 45(2): 367-373. |
[1] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[2] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[3] | 唐晓山, 侯小琴, 孙力军, 房志家, 邓旗. 纳豆菌NT-6发酵患病畜禽肉骨粉制备微生物肥料[J]. 浙江农业学报, 2022, 34(3): 574-581. |
[4] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[5] | 颜静婷, 乔凯, 蔡燕飞. rpoB、gyrA、cheA基因在芽孢杆菌鉴定上的应用[J]. 浙江农业学报, 2022, 34(1): 128-140. |
[6] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. |
[7] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[8] | 李福艳, 刘晓玉, 颜静婷, 蔡燕飞. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884. |
[9] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[10] | 陆安桥, 张峰举, 王学琴, 许兴. 盐胁迫对苗期湖南稷子K +、Na +含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403. |
[11] | 朱海霞, 马永强, 咸文荣. 多孢木霉HZ-31菌株侵染对野燕麦生理机制的影响[J]. 浙江农业学报, 2021, 33(3): 490-496. |
[12] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[13] | 毛爽, 周万里, 杨帆, 狄小琳, 蔺吉祥, 杨青杰. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991-2000. |
[14] | 高竞, 方伟, 顾佳悦, 严淑娴, 邵帅, 梁辰飞, 秦华, 陈俊辉, 徐秋芳. 荧光标记解淀粉芽孢杆菌WK1在山核桃树体和土壤中的定殖规律[J]. 浙江农业学报, 2021, 33(1): 77-86. |
[15] | 桂雪儿, 王志, 李思婷, 贺濛初, 朱杰, 冯士彬, 吴金节. 鸡源复合益生菌对青年白羽肉杂鸡免疫球蛋白和Toll样受体通路的影响[J]. 浙江农业学报, 2020, 32(9): 1609-1614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||