浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 799-808.DOI: 10.3969/j.issn.1004-1524.2023.04.07
聂玮(), 孟科, 荣轩, 强浩, 郭晨浩, 陶毛孩, 冯登侦(
)
收稿日期:
2022-05-26
出版日期:
2023-04-25
发布日期:
2023-05-05
通讯作者:
*冯登侦,E-mail: fengdengzhen126@163.com
作者简介:
聂玮(1999—),男,天津武清人,硕士研究生,主要从事动物遗传育种研究。E-mail: nienyle@foxmail.com
基金资助:
NIE Wei(), MENG Ke, RONG Xuan, QIANG Hao, GUO Chenhao, TAO Maohai, FENG Dengzhen(
)
Received:
2022-05-26
Online:
2023-04-25
Published:
2023-05-05
摘要:
为探究绵羊代谢型谷氨酸受体1基因(GRM1)多态性及其对绵羊肉质性状的影响,以期为绵羊肉质性状选育提供有效的遗传分子标记。采用液相捕获测序技术对滩羊(T)、小尾寒羊(XH)、杜泊羊(D)3个绵羊群体共91只绵羊的GRM1基因进行测序,筛选出2个多态位点rs403075278和rs415006419。利用飞行质谱检测技术对滩羊(T)、小尾寒羊(XH)、杜泊羊(D)和杜滩寒三元杂交羊(DTH)共30只绵羊进行基因分型,对筛选出的位点与肉质性状进行关联分析。结果显示:不同基因型绵羊的肉质性状存在显著差异,GRM1基因rs415006419位点的CT基因型绵羊肾的质量显著(P<0.05)大于TT基因型,TT基因型绵羊肌肉的酪氨酸含量显著(P<0.05)高于CT基因型。rs403075278位点TT基因型绵羊的宰前活重、胴体重、净肉重、十二指肠长度,以及心、肺和肾的质量均极显著(P<0.01)大于CT基因型;TT基因型绵羊的背膘厚、净肉重、脾的质量、肌肉的脂肪、钙含量、苯丙氨酸和组氨酸含量显著(P<0.05)高于CT基因型;CT基因型绵羊的pH值、剪切力和失水率极显著(P<0.01)大于TT基因型;CT和TT基因型的其余屠宰性能、肉品质和肌肉营养成分含量均无显著差异(P>0.05)。以上结果表明,GRM1基因可以作为绵羊肉质性状的候选基因,rs415006419和rs403075278位点可以作为绵羊生长发育和产肉性能的候选遗传标记。
中图分类号:
聂玮, 孟科, 荣轩, 强浩, 郭晨浩, 陶毛孩, 冯登侦. 绵羊GRM1基因多态性及其与肉质性状的相关性[J]. 浙江农业学报, 2023, 35(4): 799-808.
NIE Wei, MENG Ke, RONG Xuan, QIANG Hao, GUO Chenhao, TAO Maohai, FENG Dengzhen. Analysis of GRM1 gene polymorphism and its correlation with meat quality traits in sheep[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 799-808.
SNPs | 突变类型 Mutation type | 上游引物 Forward primer(5’→3’) | 下游引物 Reverse primer (5’→3’) | 延伸引物 Extended primer (5’→3’) |
---|---|---|---|---|
rs415006419 | 同义突变 Synonymous mutation | ACGTTGGATGGAAAGGGAGAAAGAGATAG | ACGTTGGATGCTTCTGCGAAGGGATGACTG | TGGGCGAGTTCTCACTCAT |
rs403075278 | 同义突变 Synonymous mutation | ACGTTGGATGTGCAGCAGGTTCTGTACTTG | ACGTTGGATGCAGGACTAAGAAGCCCATTG | TGGGGCGTGATCGGCCC |
表1 SNP位点引物信息
Table 1 Primer information for SNP loci
SNPs | 突变类型 Mutation type | 上游引物 Forward primer(5’→3’) | 下游引物 Reverse primer (5’→3’) | 延伸引物 Extended primer (5’→3’) |
---|---|---|---|---|
rs415006419 | 同义突变 Synonymous mutation | ACGTTGGATGGAAAGGGAGAAAGAGATAG | ACGTTGGATGCTTCTGCGAAGGGATGACTG | TGGGCGAGTTCTCACTCAT |
rs403075278 | 同义突变 Synonymous mutation | ACGTTGGATGTGCAGCAGGTTCTGTACTTG | ACGTTGGATGCAGGACTAAGAAGCCCATTG | TGGGGCGTGATCGGCCC |
图1 试验羊群基因组DNA电泳图 M,DL2000 DNA marker;1~8,部分绵羊基因组DNA。
Fig.1 DNA electrophoresis diagram of experimental sheep M, DL2000 DNA marker; 1-8, Genomic DNA of some sheep.
位点 Locus | 物理位置 Physical location | 突变频数Mutation frequency | 群体 Group | 基因型频率 Genotype frequency/% | 基因频率 Gene frequency/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D | XH | T | ||||||||||||
Het | Hom | Het | Hom | Het | Hom | CC | CT | TT | χ2 | C | T | |||
rs415006419 | 77181965 | 4 | 26 | 8 | 21 | 13 | 17 | D | 0 | 13.30 | 86.70 | 10.30 | 6.70 | 93.30 |
T | 0 | 43.30 | 56.70 | 21.70 | 78.30 | |||||||||
XH | 6.50 | 25.80 | 67.70 | 19.40 | 80.60 | |||||||||
rs403075278 | 77332591 | 8 | 17 | 13 | 16 | 18 | 12 | D | 16.70 | 26.70 | 56.70 | 10.80 | 30.00 | 70.00 |
T | 0 | 60.00 | 40.00 | 30.00 | 70.00 | |||||||||
XH | 6.50 | 41.90 | 51.60 | 27.40 | 72.60 |
表2 GRM1基因2个位点在3个群体中的基因频率和基因型频率
Table 2 Gene frequencies and genotype frequencies of two loci of GRM1 gene in three populations
位点 Locus | 物理位置 Physical location | 突变频数Mutation frequency | 群体 Group | 基因型频率 Genotype frequency/% | 基因频率 Gene frequency/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D | XH | T | ||||||||||||
Het | Hom | Het | Hom | Het | Hom | CC | CT | TT | χ2 | C | T | |||
rs415006419 | 77181965 | 4 | 26 | 8 | 21 | 13 | 17 | D | 0 | 13.30 | 86.70 | 10.30 | 6.70 | 93.30 |
T | 0 | 43.30 | 56.70 | 21.70 | 78.30 | |||||||||
XH | 6.50 | 25.80 | 67.70 | 19.40 | 80.60 | |||||||||
rs403075278 | 77332591 | 8 | 17 | 13 | 16 | 18 | 12 | D | 16.70 | 26.70 | 56.70 | 10.80 | 30.00 | 70.00 |
T | 0 | 60.00 | 40.00 | 30.00 | 70.00 | |||||||||
XH | 6.50 | 41.90 | 51.60 | 27.40 | 72.60 |
位点 | 群体 | He | Ho | Ne | PIC | P |
---|---|---|---|---|---|---|
Locus | Group | |||||
rs415006419 | D | 0.13 | 0.88 | 1.14 | 0.12 | 0.93 |
T | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 | |
XH | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
rs403075278 | D | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 |
T | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
XH | 0.42 | 0.58 | 1.72 | 0.33 | 0.06 |
表3 GRM1基因SNP位点群体遗传学分析
Table 3 Population genetic analysis of SNP locus of GRM1 gene
位点 | 群体 | He | Ho | Ne | PIC | P |
---|---|---|---|---|---|---|
Locus | Group | |||||
rs415006419 | D | 0.13 | 0.88 | 1.14 | 0.12 | 0.93 |
T | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 | |
XH | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
rs403075278 | D | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 |
T | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
XH | 0.42 | 0.58 | 1.72 | 0.33 | 0.06 |
位点 Locus | 群体 Group | 基因型数量Genotype number | ||
---|---|---|---|---|
CC | CT | TT | ||
rs403075278 | D | 1 | 2 | 4 |
DTH | 0 | 6 | 2 | |
T | 0 | 3 | 5 | |
XH | 0 | 3 | 4 | |
rs415006419 | D | 0 | 1 | 6 |
DTH | 0 | 1 | 7 | |
T | 0 | 0 | 8 | |
XH | 1 | 6 | 0 |
表4 GRM1基因rs403075278位点和rs415006419位点的群体分型结果
Table 4 Population typing results for rs403075278 locus and rs415006419 locus of GRM1 gene
位点 Locus | 群体 Group | 基因型数量Genotype number | ||
---|---|---|---|---|
CC | CT | TT | ||
rs403075278 | D | 1 | 2 | 4 |
DTH | 0 | 6 | 2 | |
T | 0 | 3 | 5 | |
XH | 0 | 3 | 4 | |
rs415006419 | D | 0 | 1 | 6 |
DTH | 0 | 1 | 7 | |
T | 0 | 0 | 8 | |
XH | 1 | 6 | 0 |
位点 Locus | 基因型 Genotype | 宰前活重 Live weight/ kg | GR值 GR value/ cm | 胴体重 Carcass weight/ kg | 背膘厚 Back fat/ cm | 屠宰率 Slaughter rate/% | 净肉重 Net meat weight/ kg | 净肉率 Net meat rate/ % | 十二指肠 长度 Duodenal length/ cm | 质量 Weight/kg | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
心 Heart | 肝 Liver | 脾 Spleen | 肺 Lung | 肾 Kidney | 全骨 Total bone | |||||||||||
rs415006419 | CT | 26.69 ±6.20 | 0.75 ±0.27 | 12.75 ±3.90 | 0.37 ±0.18 | 47.25 ±5.25 | 9.64 ±3.52 | 35.37 ±5.87 | 17.00 ±3.31 | 0.12 ±0.02 | 0.37 ±0.09 | 0.06 ±0.03 | 0.35 ±0.13 | 0.22 ±0.11 a | 3.11 ±0.53 | |
TT | 27.68 ±5.49 | 0.81 ±0.31 | 12.38 ±2.88 | 0.31 ±0.13 | 44.65 ±4.81 | 9.21 ±2.64 | 33.13 ±5.69 | 16.79 ±2.61 | 0.13 ±0.02 | 0.39 ±0.10 | 0.05 ±0.02 | 0.42 ±0.15 | 0.14 ±0.08 b | 3.16 ±0.81 | ||
rs403075278 | CT | 23.53 ±4.39 Bb | 0.63 ±0.19 | 10.21 ±2.26 Bb | 0.23 ±0.06 b | 43.19 ±3.00 | 7.14 ±1.73 Bb | 30.22 ±4.05 b | 15.06 ±2.19 Bb | 0.11± 0.02 Bb | 0.33 ±0.08 | 0.04 ±0.02 b | 0.27± 0.11 Bb | 0.09± 0.07 Bb | 3.07 ±0.96 | |
TT | 29.42 ±5.32 Aa | 0.86 ±0.30 | 13.97 ±3.36 Aa | 0.37 ±0.17 a | 47.32 ±5.71 | 10.71 ±3.02 Aa | 36.16 ±5.86 a | 17.82 ±2.83 Aa | 0.13± 0.02 Aa | 0.42 ±0.11 | 0.06 ±0.02 a | 0.45± 0.12 Aa | 0.22± 0.08 Aa | 3.26 ±0.61 |
表5 绵羊GRM1基因不同位点各基因型的屠宰性能
Table 5 Slaughter performance of each genotype at different loci of GRM1 gene in sheep
位点 Locus | 基因型 Genotype | 宰前活重 Live weight/ kg | GR值 GR value/ cm | 胴体重 Carcass weight/ kg | 背膘厚 Back fat/ cm | 屠宰率 Slaughter rate/% | 净肉重 Net meat weight/ kg | 净肉率 Net meat rate/ % | 十二指肠 长度 Duodenal length/ cm | 质量 Weight/kg | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
心 Heart | 肝 Liver | 脾 Spleen | 肺 Lung | 肾 Kidney | 全骨 Total bone | |||||||||||
rs415006419 | CT | 26.69 ±6.20 | 0.75 ±0.27 | 12.75 ±3.90 | 0.37 ±0.18 | 47.25 ±5.25 | 9.64 ±3.52 | 35.37 ±5.87 | 17.00 ±3.31 | 0.12 ±0.02 | 0.37 ±0.09 | 0.06 ±0.03 | 0.35 ±0.13 | 0.22 ±0.11 a | 3.11 ±0.53 | |
TT | 27.68 ±5.49 | 0.81 ±0.31 | 12.38 ±2.88 | 0.31 ±0.13 | 44.65 ±4.81 | 9.21 ±2.64 | 33.13 ±5.69 | 16.79 ±2.61 | 0.13 ±0.02 | 0.39 ±0.10 | 0.05 ±0.02 | 0.42 ±0.15 | 0.14 ±0.08 b | 3.16 ±0.81 | ||
rs403075278 | CT | 23.53 ±4.39 Bb | 0.63 ±0.19 | 10.21 ±2.26 Bb | 0.23 ±0.06 b | 43.19 ±3.00 | 7.14 ±1.73 Bb | 30.22 ±4.05 b | 15.06 ±2.19 Bb | 0.11± 0.02 Bb | 0.33 ±0.08 | 0.04 ±0.02 b | 0.27± 0.11 Bb | 0.09± 0.07 Bb | 3.07 ±0.96 | |
TT | 29.42 ±5.32 Aa | 0.86 ±0.30 | 13.97 ±3.36 Aa | 0.37 ±0.17 a | 47.32 ±5.71 | 10.71 ±3.02 Aa | 36.16 ±5.86 a | 17.82 ±2.83 Aa | 0.13± 0.02 Aa | 0.42 ±0.11 | 0.06 ±0.02 a | 0.45± 0.12 Aa | 0.22± 0.08 Aa | 3.26 ±0.61 |
位点 Locus | 基因型 Genotype | 肌纤维直径 Muscle fiber diameter/μm | 肌纤维密度 Muscle fiber density/mm-2 | pH值 pH value | 剪切力 Shear force | 熟肉率 Cooked meat rate/% | 失水率 Water loss rate/% |
---|---|---|---|---|---|---|---|
rs415006419 | CT | 28.90±3.75 | 789.41±182.77 | 5.58±0.47 | 25.70±13.32 | 62.75±5.65 | 34.06±6.45 |
TT | 32.87±8.96 | 724.96±240.98 | 5.62±0.50 | 31.14±12.73 | 60.4±5.57 | 37.13±5.85 | |
rs403075278 | CT | 32.22±3.66 | 734.56±172.22 | 6.08±0.45 Aa | 42.67±14.53 Aa | 61.17±7.26 | 40.76±5.06 Aa |
TT | 31.05±7.92 | 738.68±228.79 | 5.44±0.40 Bb | 21.92±13.21 Bb | 62.75±5.64 | 33.44±5.27 Bb |
表6 绵羊GRM1基因不同位点各基因型的肉品质
Table 6 Meat quality of each genotype at different loci of GRM1 gene in sheep
位点 Locus | 基因型 Genotype | 肌纤维直径 Muscle fiber diameter/μm | 肌纤维密度 Muscle fiber density/mm-2 | pH值 pH value | 剪切力 Shear force | 熟肉率 Cooked meat rate/% | 失水率 Water loss rate/% |
---|---|---|---|---|---|---|---|
rs415006419 | CT | 28.90±3.75 | 789.41±182.77 | 5.58±0.47 | 25.70±13.32 | 62.75±5.65 | 34.06±6.45 |
TT | 32.87±8.96 | 724.96±240.98 | 5.62±0.50 | 31.14±12.73 | 60.4±5.57 | 37.13±5.85 | |
rs403075278 | CT | 32.22±3.66 | 734.56±172.22 | 6.08±0.45 Aa | 42.67±14.53 Aa | 61.17±7.26 | 40.76±5.06 Aa |
TT | 31.05±7.92 | 738.68±228.79 | 5.44±0.40 Bb | 21.92±13.21 Bb | 62.75±5.64 | 33.44±5.27 Bb |
位点 Locus | 基因型 Genotype | 脂肪 Fat/% | 蛋白质 Protein/ % | 肌酐 Creat- inine/ (μg· g-1) | 肌苷酸 Creatinine acid/ (μg· g-1) | 胆固醇 Inosinic acid/ (μg· g-1) | 铜 Cu/ (mg· kg-1) | 锌 Zn/ (mg· kg-1) | 硒 Se/ (mg· kg-1) | 钙 Ca/ (mg· kg-1) | 铁 Fe/ (mg· kg-1) | 锰 Mn/ (mg· kg-1) | 天冬氨酸 Aspartic acid/ (mg· g-1) | 苏氨酸 Threonine/ (mg· g-1) | 丝氨酸 Serine/ (mg· g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs415006419 | CT | 3.46 ±1.84 | 20.90 ±1.34 | 450.34 ±98.30 | 1838.03 ±339.12 | 307.59 ±64.54 | 1.62 ±0.39 | 24.38 ±2.80 | 221.86 ±91.32 | 139.74 ±13.68 | 23.11 ±4.19 | 291.01 ±42.07 | 1.72 ±0.23 | 0.92 ±0.11 | 0.82 ±0.12 |
TT | 3.46 ±1.93 | 20.77 ±1.21 | 456.13 ±131.79 | 1978.06 ±350.81 | 313.07 ±56.14 | 1.42 ±0.47 | 25.75 ±3.83 | 195.03 ±82.99 | 142.94 ±31.95 | 23.25 ±4.17 | 285.15 ±27.30 | 1.86 ±0.39 | 0.99 ±0.19 | 0.86 ±0.17 | |
rs403075278 | CT | 2.25 ±0.83 b | 20.30 ±1.22 | 547.64 ±86.89 | 2054.80 ±292.85 | 290.24 ±70.96 | 1.51 ±0.39 | 26.33 ±1.81 | 174.92 ±20.87 | 126.84 ±23.80 b | 24.27 ±3.90 | 283.74 ±18.41 | 1.73 ±0.42 | 0.94 ±0.20 | 0.80 ±0.18 |
TT | 4.07 ±1.92 a | 21.22 ±1.21 | 437.73 ±160.29 | 1776.24 ±451.47 | 316.67 ±53.81 | 1.49 ±0.49 | 24.47 ±3.85 | 220.26 ±98.90 | 147.04 ±22.84 a | 22.97 ±4.38 | 287.76 ±39.57 | 1.83 ±0.29 | 0.97 ±0.14 | 0.87 ±0.13 | |
位点 Locus | 基因型 Genotype | 谷氨酸 Gluta- mate/ (mg· g-1) | 甘氨酸 Glycine/ (mg· g-1) | 丙氨酸 Alanine/ (mg· g-1) | 半胱氨酸 Cysteine/ (mg· g-1) | 缬氨酸 Valine/ (mg· g-1) | 甲硫氨酸 Methionine/ (mg· g-1) | 异亮氨酸 Isole- ucine/ (mg· g-1) | 亮氨酸 Leucine/ (mg· g-1) | 酪氨酸 Tyrosine/ (mg· g-1) | 苯丙氨酸 Phenyla- lanine/ (mg· g-1) | 赖氨酸 Lysine/ (mg· g-1) | 组氨酸 Histidine/ (mg· g-1) | 精氨酸 Argin- ine/ (mg· g-1) | 脯氨酸 Proline/ (mg· g-1) |
rs415006419 | CT | 2.90 ±0.37 | 0.83 ±0.11 | 1.27 ±0.23 | 0.03 ±0.06 | 1.00 ±0.17 | 0.49 ±0.13 | 0.96 ±0.13 | 1.68 ±0.18 | 0.67 ±0.14 b | 1.26 ±0.21 | 1.95 ±0.29 | 0.88 ±0.20 | 1.16 ±0.11 | 1.10 ±0.22 |
TT | 3.17 ±0.65 | 0.90 ±0.17 | 1.30 ±0.26 | 0.05 ±0.08 | 1.13 ±0.35 | 0.62 ±0.35 | 1.08 ±0.31 | 1.87 ±0.42 | 0.83 ±0.23 a | 1.32 ±0.27 | 2.07 ±0.37 | 0.90 ±0.21 | 1.30 ±0.24 | 1.02 ±0.31 | |
rs403075278 | CT | 2.98 ±0.73 | 0.84 ±0.21 | 1.17 ±0.34 | 0.04 ±0.02 | 1.03 ±0.43 | 0.59 ±0.38 | 1.07 ±0.38 | 1.81 ±0.47 | 0.84 ±0.25 | 1.13 ±0.30 b | 1.90 ±0.48 | 0.76 ±0.16 b | 1.29 ±0.29 | 1.18 ±0.36 |
TT | 3.07 ±0.47 | 0.89 ±0.12 | 1.35 ±0.18 | 0.04 ±0.08 | 1.10 ±0.20 | 0.55 ±0.22 | 1.01 ±0.19 | 1.77 ±0.28 | 0.71 ±0.18 | 1.35 ±0.19 a | 2.07 ±0.25 | 0.95 ±0.19 a | 1.21 ±0.16 | 1.01 ±0.22 |
表7 绵羊GRM1基因不同位点各基因型的肌肉营养成分
Table 7 Nutrient composition in sheep muscle of each genotype at different loci of GRM1 gene
位点 Locus | 基因型 Genotype | 脂肪 Fat/% | 蛋白质 Protein/ % | 肌酐 Creat- inine/ (μg· g-1) | 肌苷酸 Creatinine acid/ (μg· g-1) | 胆固醇 Inosinic acid/ (μg· g-1) | 铜 Cu/ (mg· kg-1) | 锌 Zn/ (mg· kg-1) | 硒 Se/ (mg· kg-1) | 钙 Ca/ (mg· kg-1) | 铁 Fe/ (mg· kg-1) | 锰 Mn/ (mg· kg-1) | 天冬氨酸 Aspartic acid/ (mg· g-1) | 苏氨酸 Threonine/ (mg· g-1) | 丝氨酸 Serine/ (mg· g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs415006419 | CT | 3.46 ±1.84 | 20.90 ±1.34 | 450.34 ±98.30 | 1838.03 ±339.12 | 307.59 ±64.54 | 1.62 ±0.39 | 24.38 ±2.80 | 221.86 ±91.32 | 139.74 ±13.68 | 23.11 ±4.19 | 291.01 ±42.07 | 1.72 ±0.23 | 0.92 ±0.11 | 0.82 ±0.12 |
TT | 3.46 ±1.93 | 20.77 ±1.21 | 456.13 ±131.79 | 1978.06 ±350.81 | 313.07 ±56.14 | 1.42 ±0.47 | 25.75 ±3.83 | 195.03 ±82.99 | 142.94 ±31.95 | 23.25 ±4.17 | 285.15 ±27.30 | 1.86 ±0.39 | 0.99 ±0.19 | 0.86 ±0.17 | |
rs403075278 | CT | 2.25 ±0.83 b | 20.30 ±1.22 | 547.64 ±86.89 | 2054.80 ±292.85 | 290.24 ±70.96 | 1.51 ±0.39 | 26.33 ±1.81 | 174.92 ±20.87 | 126.84 ±23.80 b | 24.27 ±3.90 | 283.74 ±18.41 | 1.73 ±0.42 | 0.94 ±0.20 | 0.80 ±0.18 |
TT | 4.07 ±1.92 a | 21.22 ±1.21 | 437.73 ±160.29 | 1776.24 ±451.47 | 316.67 ±53.81 | 1.49 ±0.49 | 24.47 ±3.85 | 220.26 ±98.90 | 147.04 ±22.84 a | 22.97 ±4.38 | 287.76 ±39.57 | 1.83 ±0.29 | 0.97 ±0.14 | 0.87 ±0.13 | |
位点 Locus | 基因型 Genotype | 谷氨酸 Gluta- mate/ (mg· g-1) | 甘氨酸 Glycine/ (mg· g-1) | 丙氨酸 Alanine/ (mg· g-1) | 半胱氨酸 Cysteine/ (mg· g-1) | 缬氨酸 Valine/ (mg· g-1) | 甲硫氨酸 Methionine/ (mg· g-1) | 异亮氨酸 Isole- ucine/ (mg· g-1) | 亮氨酸 Leucine/ (mg· g-1) | 酪氨酸 Tyrosine/ (mg· g-1) | 苯丙氨酸 Phenyla- lanine/ (mg· g-1) | 赖氨酸 Lysine/ (mg· g-1) | 组氨酸 Histidine/ (mg· g-1) | 精氨酸 Argin- ine/ (mg· g-1) | 脯氨酸 Proline/ (mg· g-1) |
rs415006419 | CT | 2.90 ±0.37 | 0.83 ±0.11 | 1.27 ±0.23 | 0.03 ±0.06 | 1.00 ±0.17 | 0.49 ±0.13 | 0.96 ±0.13 | 1.68 ±0.18 | 0.67 ±0.14 b | 1.26 ±0.21 | 1.95 ±0.29 | 0.88 ±0.20 | 1.16 ±0.11 | 1.10 ±0.22 |
TT | 3.17 ±0.65 | 0.90 ±0.17 | 1.30 ±0.26 | 0.05 ±0.08 | 1.13 ±0.35 | 0.62 ±0.35 | 1.08 ±0.31 | 1.87 ±0.42 | 0.83 ±0.23 a | 1.32 ±0.27 | 2.07 ±0.37 | 0.90 ±0.21 | 1.30 ±0.24 | 1.02 ±0.31 | |
rs403075278 | CT | 2.98 ±0.73 | 0.84 ±0.21 | 1.17 ±0.34 | 0.04 ±0.02 | 1.03 ±0.43 | 0.59 ±0.38 | 1.07 ±0.38 | 1.81 ±0.47 | 0.84 ±0.25 | 1.13 ±0.30 b | 1.90 ±0.48 | 0.76 ±0.16 b | 1.29 ±0.29 | 1.18 ±0.36 |
TT | 3.07 ±0.47 | 0.89 ±0.12 | 1.35 ±0.18 | 0.04 ±0.08 | 1.10 ±0.20 | 0.55 ±0.22 | 1.01 ±0.19 | 1.77 ±0.28 | 0.71 ±0.18 | 1.35 ±0.19 a | 2.07 ±0.25 | 0.95 ±0.19 a | 1.21 ±0.16 | 1.01 ±0.22 |
[1] | 周颖, 刘维平, 陈西风. 滩羊肉品质营养调控研究进展[J]. 畜牧与饲料科学, 2021, 42(5): 51-54. |
ZHOU Y, LIU W P, CHEN X F. Research advances on nutritional regulation of Tan sheep mutton quality[J]. Animal Husbandry and Feed Science, 2021, 42(5): 51-54. (in Chinese with English abstract) | |
[2] | 张志恒, 王玉琴, 任国艳, 等. 舍饲条件下波尔山羊与河南淮山羊杂交羊生长发育、屠宰性能及肉品质特性研究[J]. 中国畜牧兽医, 2020, 47(8): 2518-2527. |
ZHANG Z H, WANG Y Q, REN G Y, et al. Study on growth and development, slaughter performance and meat quality characteristics of crossbreed goat from Boer and Henan Huai goat under the condition of house feeding[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(8): 2518-2527. (in Chinese with English abstract) | |
[3] | 杨雪, 覃圣, 王慧, 等. 藏羊与小尾寒羊不同部位脂肪组织特性对比[J]. 现代畜牧兽医, 2022(2): 32-35. |
YANG X, QIN S, WANG H, et al. Comparison of adipose tissue characteristics in different parts of Tibetan sheep and Small-Tailed Han sheep[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(2): 32-35. (in Chinese with English abstract) | |
[4] | 孟科, 荣轩, 梁鹏, 等. 绵羊BMP2、BMP4和BMP7基因多态性与产羔数的关联分析[J]. 中国畜牧杂志, 2022, 58(5): 113-118, 123. |
MENG K, RONG X, LIANG P, et al. Polymorphism of sheep BMP2, BMP4 and BMP7 genes and its association with litter size[J]. Chinese Journal of Animal Science, 2022, 58(5): 113-118, 123. (in Chinese with English abstract) | |
[5] | BRENNAN-MINNELLA A M, SHEN Y, EL-BENNA J, et al. Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death[J]. Cell Death & Disease, 2013, 4(4): e580. |
[6] | 杨叔媛, 宋璐, 吴娜, 等. Ⅰ组代谢型谷氨酸受体在帕金森病大鼠模型中的表达变化[J]. 中国神经免疫学和神经病学杂志, 2021, 28(6): 469-474. |
YANG S Y, SONG L, WU N, et al. Changes in expression of group Ⅰ mGluRs in a 6-OHDA model of Parkinson’s disease[J]. Chinese Journal of Neuroimmunology and Neurology, 2021, 28(6): 469-474. (in Chinese with English abstract) | |
[7] |
HUANG H, QING X Y, LI H D. Isoflurane preconditioning protects the myocardium against ischemia and reperfusion injury by upregulating GRM1 expression[J]. Current Neurovascular Research, 2020, 17(2): 171-176.
DOI URL |
[8] |
BOLDYREV A A, KAZEY V I, LEINSOO T A, et al. Rodent lymphocytes express functionally active glutamate receptors[J]. Biochemical and Biophysical Research Communications, 2004, 324(1): 133-139.
PMID |
[9] | 朱萍, 冯吉, 杨荟敏, 等. 血清通过调节mGluR1介导的信号通路调控细胞的生长与凋亡[J]. 中国生物化学与分子生物学报, 2010, 26(4): 332-340. |
ZHU P, FENG J, YANG H M, et al. Serum regulates cell growth and apoptosis viam GluR1-mediated signaling pathways[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(4): 332-340. (in Chinese with English abstract) | |
[10] |
AYOUB M A, ANGELICHEVA D, VILE D, et al. Deleterious GRM1 mutations in schizophrenia[J]. PLoS One, 2012, 7(3): e32849.
DOI URL |
[11] |
RONDARD P, PIN J P. Dynamics and modulation of metabotropic glutamate receptors[J]. Current Opinion in Pharmacology, 2015, 20: 95-101.
DOI PMID |
[12] |
BHARDWAJ S K, RYAN R T, WONG T P, et al. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice[J]. Frontiers in Behavioral Neuroscience, 2015, 9: 72.
DOI PMID |
[13] |
DIRADDO J O, PSHENICHKIN S, GELB T, et al. Two newly identified exons in human GRM1 express a novel splice variant of metabotropic glutamate 1 receptor[J]. Gene, 2013, 519(2): 367-373.
DOI URL |
[14] |
BRUZIK K S, TSAI M D. Toward the mechanism of phosphoinositide-specific phospholipases C[J]. Bioorganic & Medicinal Chemistry, 1994, 2(2): 49-72.
DOI URL |
[15] |
HUANG X J, LIU G H, GUO J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes[J]. International Journal of Biological Sciences, 2018, 14(11): 1483-1496.
DOI PMID |
[16] |
ROY N K, MONISHA J, PADMAVATHI G, et al. Isoform-specific role of Akt in oral squamous cell carcinoma[J]. Biomolecules, 2019, 9(7): 253.
DOI URL |
[17] |
ZHANG L, LIU J S, ZHAO F P, et al. Genome-wide association studies for growth and meat production traits in sheep[J]. PLoS One, 2013, 8(6): e66569.
DOI URL |
[18] | CAVANAGH C R, JONAS E, HOBBS M, et al. Mapping quantitative trait loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL[J]. Genetics, Selection, Evolution, 2010, 42(1): 36. |
[19] | 特日格勒, 何辉杰, 何小龙, 等. 杜蒙羊肉用性能活体检测及屠宰性能对比分析[J]. 畜牧与饲料科学, 2022, 43(1): 104-109. |
TERIGELE, HE H J, HE X L, et al. Evaluation of live meat performance and slaughter performance of Dumeng mutton sheep[J]. Animal Husbandry and Feed Science, 2022, 43(1): 104-109. (in Chinese with English abstract) | |
[20] |
AZIMU W, MANATBAY B, LI Y, et al. Genetic diversity and population structure analysis of eight local chicken breeds of Southern Xinjiang[J]. British Poultry Science, 2018, 59(6): 629-635.
DOI PMID |
[21] |
SANTOS C P, AGUIAR A F, GIOMETTI I C, et al. High final energy of Gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats[J]. Lasers in Medical Science, 2018, 33(4): 843-850.
DOI |
[22] |
CENDRON F, MASTRANGELO S, TOLONE M, et al. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds[J]. Poultry Science, 2021, 100(2): 441-451.
DOI PMID |
[23] | 赵金艳, 权凯, 张子军, 等. 黄淮肉羊肉用性能的研究[J]. 内蒙古农业大学学报(自然科学版), 2021, 42(5): 59-64. |
ZHAO J Y, QUAN K, ZHANG Z J, et al. Mutton performance of Huang-Huai sheep[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2021, 42(5): 59-64. (in Chinese with English abstract) | |
[24] | 王秀娟, 高翰, 李海鹏, 等. 郏县红牛生长和肉用性能指标测定分析[J]. 中国牛业科学, 2021, 47(5): 12-16. |
WANG X J, GAO H, LI H P, et al. Analysis of growth and meat performance in Jiaxian red cattle[J]. China Cattle Science, 2021, 47(5): 12-16. (in Chinese with English abstract) | |
[25] | 彭珍, 张维旭, 周炼, 等. 恩施黑猪胴体与肉质性状测定及性状间相关分析[J]. 猪业科学, 2015, 32(9): 126-130. |
PENG Z, ZHANG W X, ZHOU L, et al. Determination of carcass and meat quality traits of Enshi black pig and correlation analysis between them[J]. Swine Industry Science, 2015, 32(9): 126-130. (in Chinese) | |
[26] |
殷雨洋, 蒋永清, 黄杰, 等. 青贮饲用油菜对湖羊生长性能、屠宰性能、瘤胃发酵及器官发育的影响[J]. 动物营养学报, 2021, 33(2): 1153-1162.
DOI |
YIN Y Y, JIANG Y Q, HUANG J, et al. Effects of silage feeding rape on growth performance, slaughter performance, rumen fermentation and organ development of Hu sheep[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 1153-1162. (in Chinese with English abstract) | |
[27] | 闵凡贵, 潘金春, 王希龙, 等. 影响五指山小型猪主要脏器重量及脏器系数的因素分析[J]. 中国畜牧兽医, 2012, 39(10): 218-222. |
MIN F G, PAN J C, WANG X L, et al. Analysis of the effect factors on organ weight and organ coefficients of Wuzhishan mini-pigs[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(10): 218-222. (in Chinese with English abstract) | |
[28] | 王国森, 李寒妹, 秦学波, 等. 肉用绵羊杂交一代CLPG基因遗传效应研究[C]//2018年全国养羊生产与学术研讨会论文集. 蚌埠, 2018: 151. |
[29] | 王勇, 李忠德. 不同水平的益生菌发酵酒糟添加对育肥牛生长性能、屠宰性能及肉品质影响[J]. 中国饲料, 2020(11): 117-120. |
WANG Y, LI Z D. Effects of different levels of probiotic fermented distiller’s grains on growth performance, slaughter performance and meat quality of fattening cattle[J]. China Feed, 2020(11): 117-120. (in Chinese with English abstract) | |
[30] | 马吉锋, 张建勇, 黄金涛, 等. 日粮中添加不同水平25-羟基胆钙化醇对羔羊生长性能、肉品质及钙磷代谢的影响[J]. 饲料研究, 2020, 43(11): 10-13. |
MA J F, ZHANG J Y, HUANG J T, et al. Effects of different levels of 25-hydroxycholecalciferol on growth performance, meat quality and calcium and phosphorus metabolism of lambs[J]. Feed Research, 2020, 43(11): 10-13. (in Chinese) | |
[31] | 曹亮, 赵文昌, 李德宏, 等. 青贮玉米不同处理方式对肉羊生长性能、屠宰性能、肉品质及抗氧化能力影响[J]. 饲料研究, 2022, 45(6): 14-17. |
CAO L, ZHAO W C, LI D H, et al. Effect of different treatment methods of silage corn on growth performance, slaughter performance, meat quality and antioxidant capacity of mutton sheep[J]. Feed Research, 2022, 45(6): 14-17. (in Chinese with English abstract) | |
[32] | 李武峰, 关家伟, 邱丽霞, 等. 基于转录组学和代谢组学研究调控驴背最长肌嫩度的分子机制[J]. 畜牧兽医学报, 2022, 53(3): 743-754. |
LI W F, GUAN J W, QIU L X, et al. Study on the molecular mechanism of regulating tenderness of longissimus dorsi muscle of donkey based on transcriptomics and metabolomics[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 743-754. (in Chinese with English abstract) | |
[33] |
ROWE L J, MADDOCK K R, LONERGAN S M, et al. Oxidative environments decrease tenderization of beef steaks through inactivation of μ-calpain[J]. Journal of Animal Science, 2004, 82(11): 3254-3266.
DOI URL |
[34] | 瞿彪. 组氨酸对生长中期草鱼肉质的影响和肠道、鳃损伤的保护作用研究[D]. 雅安: 四川农业大学, 2014. |
QU B. Dietary histidine affects flesh quality and protects intestinal damage of young grass carp (Ctenopharyngodon idella)[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese with English abstract) | |
[35] | 李文. 苯丙氨酸对生长中期草鱼生长性能、肌肉品质和肠道黏膜免疫功能的影响研究[D]. 雅安: 四川农业大学, 2014. |
LI W. The effect of dietary phenylalanine supplement on growth, flesh quality parameters, antioxidant capacity and intestine immune function of young grass carp (Ctenopharyngodon idellus)[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese with English abstract) | |
[36] | 曹艳芳, 张晨曦, 陶艺庆, 等. 不同水平酪氨酸对淅川乌骨鸡组织乌度及屠宰性状的影响[J]. 中国畜牧杂志, 2020, 56(12): 109-113. |
CAO Y F, ZHANG C X, TAO Y Q, et al. Effects of dietary tyrosine levels on tissue brightness value and slaughter traits of Xichuan black-bone chicken[J]. Chinese Journal of Animal Science, 2020, 56(12): 109-113. (in Chinese with English abstract) |
[1] | 杨酸, 郭小江, 杨红文, 熊力, 李晨, 谭元成, 王春源, 张依裕. 柯乐猪PRLR基因多态性与繁殖性状的关联性[J]. 浙江农业学报, 2023, 35(3): 556-564. |
[2] | 王龙威, 白俊艳, 贾小平, 雷莹, 陈梦柯, 樊红灯, 卢小宁, 何豫涵, 曾凡林, 张容恺. 鹌鹑GnRH-1基因多态性与蛋品质的关联分析[J]. 浙江农业学报, 2023, 35(3): 565-574. |
[3] | 刘鹏程, 张继, 邱淦远, 龚俞, 李雪松, 李维, 张依裕, 刘若余. 关岭牛TBC1D7基因单核苷酸多态性筛查及生物信息学分析[J]. 浙江农业学报, 2022, 34(7): 1402-1411. |
[4] | 吴涛, 魏玉明, 江小帆, 黄杰, 杨发荣, 陈国顺, 蔡原, 焦婷, 赵生国. 日粮中添加藜麦对芦花鸡生长性能、屠宰性能、器官指数与肠道形态的影响[J]. 浙江农业学报, 2022, 34(2): 255-265. |
[5] | 王新乐, 白俊艳, 李静云, 雷莹, 李淦, 庞有志, 董智豪, 陈宇, 樊红灯, 王龙威, 陈梦柯, 曾凡林, 安肖凯, 白永振. 肉用鹌鹑血管活性肠肽Ⅰ型受体基因的多态性与胴体性状的关联分析[J]. 浙江农业学报, 2022, 34(11): 2379-2385. |
[6] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[7] | 江小帆, 吴涛, 魏玉明, 杨发荣, 陈国顺, 焦婷, 蔡原, 赵生国. 饲粮中添加牛至精油对芦花鸡生长性能、屠宰性能、器官指数和肠道形态的影响[J]. 浙江农业学报, 2022, 34(1): 41-49. |
[8] | 郭嘉, 门小明, 邓波, 徐子伟. 动物硒蛋白功能、表达及其肉质调控机制研究进展[J]. 浙江农业学报, 2021, 33(9): 1779-1788. |
[9] | 董智豪, 陈宇, 黄高想, 白俊艳, 李静云, 赵淑娟, 雷莹, 王新乐, 胡琦杭, 范征宇. 蛋用鹌鹑的VIPR-1基因的多态性与早期生长性状的关联分析[J]. 浙江农业学报, 2021, 33(8): 1393-1401. |
[10] | 林朦婕, 温慧萍, 肖建中, 郑强. 四十八份青花菜品种SSR指纹图谱构建[J]. 浙江农业学报, 2021, 33(12): 2304-2312. |
[11] | 陶鹏, 岳智臣, 赵彦婷, 雷娟利, 李必元. 大白菜BrSPS1Fb基因剪接受体位点变异及其对剪接的影响[J]. 浙江农业学报, 2021, 33(11): 2068-2074. |
[12] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
[13] | 喻宗岗, 蒋隽, 姚亚铃, 郭英, 李闯, 燕海峰. 雪峰乌骨鸡HSP70基因多态性与精液品质关联分析[J]. 浙江农业学报, 2020, 32(8): 1378-1384. |
[14] | 白俊艳, 卢军浩, 付学言, 武晓红, 杨又兵, 雷莹, 庞有志, 卢小宁, 巩慧荣, 胡陆星, 刘红涛, 樊红灯, 曹恒, 时坤鹏, 陈梦柯, 马永康. 蛋用鹌鹑IGF-1R基因的多态性与体尺性状相关性分析[J]. 浙江农业学报, 2020, 32(3): 398-405. |
[15] | 王塑天, 孟繁明, 胡斌, 辛海云, 李宝红, 杜宗亮, 李剑豪. 藏猪在亚热带条件下的生长特性及其杂交利用效果[J]. 浙江农业学报, 2020, 32(11): 1963-1969. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||