浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1499-1510.DOI: 10.3969/j.issn.1004-1524.20221110
李小霞1(), 李丹1, 李万星1, 靳鲲鹏1, 刘永忠1, 韩文清1, 黄学芳2, 刘鑫1, 田岗1, 曹晋军1,*(
)
收稿日期:
2022-07-29
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
李小霞(1990—),女,山西长治人,硕士,助理研究员,主要从事有机旱作技术和大豆育种与栽培研究。E-mail: xiaoyaotan-lxx@163.com
通讯作者:
*曹晋军,E-mail: 53764135@qq.com
基金资助:
LI Xiaoxia1(), LI Dan1, LI Wanxing1, JIN Kunpeng1, LIU Yongzhong1, HAN Wenqing1, HUANG Xuefang2, LIU Xin1, TIAN Gang1, CAO Jinjun1,*(
)
Received:
2022-07-29
Online:
2023-07-25
Published:
2023-08-17
Contact:
CAO Jinjun
摘要:
为明确不同轮作模式对谷子灌浆期生理特性、产量和品质的影响,于2018—2020年设置谷子连作、玉米-大豆-谷子、玉米-高粱-谷子、玉米-花生-谷子、玉米-甘薯-谷子、玉米-马铃薯-谷子和玉米-糯玉米-谷子7个处理,研究不同处理谷子灌浆期生理特性,以及产量和小米品质的变化,并通过主成分分析法,对谷子产量和小米品质进行综合评价。结果表明,除玉米-高粱-谷子、玉米-糯玉米-谷子模式外,其他轮作处理谷子灌浆期叶绿素含量较连作显著增加2.17%~8.40%;灌浆期各轮作处理净光合速率较连作显著增加5.31%~24.40%,各轮作处理均可增加或显著增加谷子功能叶片中硝酸还原酶活性;各轮作处理在拔节期、抽穗期、开花期、灌浆期和成熟期叶面积指数大于或显著大于连作;各轮作处理灌浆起始势均早于连作;除玉米-糯玉米-谷子模式外,各轮作处理谷子产量显著高于连作或与连作差异不显著;玉米-大豆-谷子轮作模式氨基酸总量、粗蛋白质含量、胶稠度均显著高于连作。谷子产量和小米品质的主成分分析结果表明,玉米-大豆-谷子为最佳轮作模式,可有效改善连作障碍引起的产量下降和品质降低现象。
中图分类号:
李小霞, 李丹, 李万星, 靳鲲鹏, 刘永忠, 韩文清, 黄学芳, 刘鑫, 田岗, 曹晋军. 不同轮作模式对谷子灌浆期生理特性、产量和品质的影响[J]. 浙江农业学报, 2023, 35(7): 1499-1510.
LI Xiaoxia, LI Dan, LI Wanxing, JIN Kunpeng, LIU Yongzhong, HAN Wenqing, HUANG Xuefang, LIU Xin, TIAN Gang, CAO Jinjun. Effects of different rotation patterns on physiological characteristics, yield and quality of foxtail millet during grain filling stage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1499-1510.
图1 不同轮作模式下谷子旗叶SPAD值 SSSi,谷子连作;SZGm,玉米-大豆-谷子轮作;SZSb,玉米-高粱-谷子轮作;SZAh,玉米-花生-谷子轮作;SZLb,玉米-甘薯-谷子轮作;SZSt,玉米-马铃薯-谷子轮作;SZZm,玉米-糯玉米-谷子轮作。不同处理间没有相同小字母表示差异显著(P<0.05)。下同。
Fig.1 SPAD value of foxtail millet under different crop rotation patterns SSSi, Continuous cropping of foxtail millet; SZGm, Corn-soybean-foxtail millet; SZSb, Corn-sorghum-foxtail millet; SZAh, Corn-peanut-foxtail millet;SZLb, Corn-sweet potato-foxtail millet; SZSt, Corn-potato-foxtail millet; SZZm, Corn-glutinous corn-foxtail mille. The bars without the same lowercase letters indicated significant difference (P<0.05). The same as below.
处理 Treatment | Pn | Tr | Ci | Gs |
---|---|---|---|---|
SSSi | 16.56±0.28 e | 1.9±0.04 b | 275±4.36 c | 160±8.31 f |
SZGm | 17.44±0.44 d | 1.8±0.04 c | 214±2.92 d | 177±3.54 d |
SZSb | 17.76±0.36 d | 2.1±0.07 a | 279±5.24 bc | 194±3.54 c |
SZAh | 19.10±0.47 bc | 1.7±0.02 d | 283±4.06 b | 227±4.90 a |
SZLb | 18.70±0.16 c | 1.8±0.04 c | 349±3.08 a | 202±3.24 b |
SZSt | 20.60±0.26 a | 1.8±0.03 c | 349±2.92 a | 172±3.54 d |
SZZm | 19.47±0.36 b | 1.4±0.02 e | 189±5.34 e | 166±2.24 e |
表1 不同轮作模式下谷子旗叶的光合特性
Table 1 Photosynthetic characteristics of foxtail millet under different crop rotation patterns
处理 Treatment | Pn | Tr | Ci | Gs |
---|---|---|---|---|
SSSi | 16.56±0.28 e | 1.9±0.04 b | 275±4.36 c | 160±8.31 f |
SZGm | 17.44±0.44 d | 1.8±0.04 c | 214±2.92 d | 177±3.54 d |
SZSb | 17.76±0.36 d | 2.1±0.07 a | 279±5.24 bc | 194±3.54 c |
SZAh | 19.10±0.47 bc | 1.7±0.02 d | 283±4.06 b | 227±4.90 a |
SZLb | 18.70±0.16 c | 1.8±0.04 c | 349±3.08 a | 202±3.24 b |
SZSt | 20.60±0.26 a | 1.8±0.03 c | 349±2.92 a | 172±3.54 d |
SZZm | 19.47±0.36 b | 1.4±0.02 e | 189±5.34 e | 166±2.24 e |
图2 不同轮作模式下谷子叶片硝酸还原酶和谷氨酰胺合成酶的活性
Fig.2 Activities of nitrate reductase and glutamine synthetase in leaves of foxtail millet under different crop rotation patterns
处理 Treatment | R0 | Vmean/(g· d-1·1000- kernel-1) | Rmax/(g· d-1·1000 -kernel-1) | Tmax/d | P/d |
---|---|---|---|---|---|
SSSi(CK) | 0.102 | 0.047 | 0.356 | 27.835 | 58.824 |
SZGm | 0.113 | 0.046 | 0.347 | 25.775 | 53.097 |
SZSb | 0.185 | 0.059 | 0.465 | 17.601 | 32.432 |
SZAh | 0.155 | 0.056 | 0.410 | 17.507 | 38.710 |
SZLb | 0.108 | 0.045 | 0.318 | 22.092 | 55.556 |
SZSt | 0.133 | 0.051 | 0.383 | 21.661 | 45.113 |
SZZm | 0.112 | 0.045 | 0.323 | 22.100 | 53.571 |
表2 不同轮作模式下谷子籽粒的灌浆参数
Table 2 Grain filling parameters of foxtail millet under different crop rotation patterns
处理 Treatment | R0 | Vmean/(g· d-1·1000- kernel-1) | Rmax/(g· d-1·1000 -kernel-1) | Tmax/d | P/d |
---|---|---|---|---|---|
SSSi(CK) | 0.102 | 0.047 | 0.356 | 27.835 | 58.824 |
SZGm | 0.113 | 0.046 | 0.347 | 25.775 | 53.097 |
SZSb | 0.185 | 0.059 | 0.465 | 17.601 | 32.432 |
SZAh | 0.155 | 0.056 | 0.410 | 17.507 | 38.710 |
SZLb | 0.108 | 0.045 | 0.318 | 22.092 | 55.556 |
SZSt | 0.133 | 0.051 | 0.383 | 21.661 | 45.113 |
SZZm | 0.112 | 0.045 | 0.323 | 22.100 | 53.571 |
处理 Treatment | Logistic方程 Logistics equation | R2 |
---|---|---|
SSSi(CK) | Y=3.495/(1+17.102e-0.102t) | 0.977 |
SZGm | Y=3.069/(1+18.405e-0.113t) | 0.995 |
SZSb | Y=2.511/(1+25.948e-0.185t) | 0.985 |
SZAh | Y=2.648/(1+18.084e-0.155t) | 0.999 |
SZLb | Y=2.949/(1+10.869e-0.108t) | 0.959 |
SZSt | Y=2.879/(1+17.831e-0.133t) | 0.982 |
SZZm | Y=2.880/(1+11.884e-0.112t) | 0.986 |
表3 各轮作处理谷子籽粒灌浆过程的Logistic方程
Table 3 Logistic equations of grain filling processes under different crop rotation patterns
处理 Treatment | Logistic方程 Logistics equation | R2 |
---|---|---|
SSSi(CK) | Y=3.495/(1+17.102e-0.102t) | 0.977 |
SZGm | Y=3.069/(1+18.405e-0.113t) | 0.995 |
SZSb | Y=2.511/(1+25.948e-0.185t) | 0.985 |
SZAh | Y=2.648/(1+18.084e-0.155t) | 0.999 |
SZLb | Y=2.949/(1+10.869e-0.108t) | 0.959 |
SZSt | Y=2.879/(1+17.831e-0.133t) | 0.982 |
SZZm | Y=2.880/(1+11.884e-0.112t) | 0.986 |
处理 Treatment | 穗粗 Panicle diameter/cm | 穗长 Panicler length/cm | 千粒重 1 000-grain weight/g | 穗重 Panicle weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
SSSi(CK) | 4.45±0.36 a | 22.23±1.78 a | 2.88±0.14 a | 32.84±1.13 b | 5 195.8±28.35 c |
SZGm | 4.65±0.17 a | 23.23±0.89 a | 3.16±0.21 a | 35.03±0.55 a | 5 355.4±46.89 b |
SZSb | 4.52±0.11 a | 22.60±0.53 a | 2.97±0.06 a | 35.47±0.51 a | 5 178.5±69.69 c |
SZAh | 4.56±0.18 a | 22.80±0.92 a | 2.89±0.19 a | 31.57±0.50 c | 5 399.9±76.31 b |
SZLb | 4.41±0.10 a | 22.07±0.50 a | 3.00±0.04 a | 32.68±0.42 b | 5 250.3±46.29 c |
SZSt | 4.50±0.12 a | 23.18±0.61 a | 2.89±0.17 a | 32.12±0.20 bc | 5 714.6±70.42 a |
SZZm | 4.17±0.60 a | 20.87±3.00 a | 3.16±0.16 a | 34.78±0.45 a | 5 059.8±48.11 d |
表4 不同轮作模式下谷子的产量与产量构成因素
Table 4 Yield and yield components of foxtail millet under different crop rotation patterns
处理 Treatment | 穗粗 Panicle diameter/cm | 穗长 Panicler length/cm | 千粒重 1 000-grain weight/g | 穗重 Panicle weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
SSSi(CK) | 4.45±0.36 a | 22.23±1.78 a | 2.88±0.14 a | 32.84±1.13 b | 5 195.8±28.35 c |
SZGm | 4.65±0.17 a | 23.23±0.89 a | 3.16±0.21 a | 35.03±0.55 a | 5 355.4±46.89 b |
SZSb | 4.52±0.11 a | 22.60±0.53 a | 2.97±0.06 a | 35.47±0.51 a | 5 178.5±69.69 c |
SZAh | 4.56±0.18 a | 22.80±0.92 a | 2.89±0.19 a | 31.57±0.50 c | 5 399.9±76.31 b |
SZLb | 4.41±0.10 a | 22.07±0.50 a | 3.00±0.04 a | 32.68±0.42 b | 5 250.3±46.29 c |
SZSt | 4.50±0.12 a | 23.18±0.61 a | 2.89±0.17 a | 32.12±0.20 bc | 5 714.6±70.42 a |
SZZm | 4.17±0.60 a | 20.87±3.00 a | 3.16±0.16 a | 34.78±0.45 a | 5 059.8±48.11 d |
年份 Year | 氨基酸总量 Total amino acids /% | 粗蛋白质含量 Crude protein content/(g·kg-1) | 粗脂肪含量 Crude fat content/(g·kg-1) | 直链淀粉含量 Amylose content/% | 胶稠度 Gel consistency/mm | 碱消值 Alkali spreading value |
---|---|---|---|---|---|---|
2018 | 11.25±0.01 a | 113.00±1.00 b | 39.00±1.00 a | 15.04±0.33 c | 123±2.00 a | 4.3±0.10 a |
2019 | 11.27±0.02 a | 120.00±1.00 a | 29.00±1.00 c | 16.16±0.14 b | 123±1.73 a | 4.0±0.10 b |
2020 | 10.59±0.02 b | 107.00±0.01 c | 35.00±1.00 b | 18.84±0.17 a | 118±1.73 b | 3.5±0.10 c |
表5 连作对小米品质的影响
Table 5 Effects of continuous crop on the quality traits of millet
年份 Year | 氨基酸总量 Total amino acids /% | 粗蛋白质含量 Crude protein content/(g·kg-1) | 粗脂肪含量 Crude fat content/(g·kg-1) | 直链淀粉含量 Amylose content/% | 胶稠度 Gel consistency/mm | 碱消值 Alkali spreading value |
---|---|---|---|---|---|---|
2018 | 11.25±0.01 a | 113.00±1.00 b | 39.00±1.00 a | 15.04±0.33 c | 123±2.00 a | 4.3±0.10 a |
2019 | 11.27±0.02 a | 120.00±1.00 a | 29.00±1.00 c | 16.16±0.14 b | 123±1.73 a | 4.0±0.10 b |
2020 | 10.59±0.02 b | 107.00±0.01 c | 35.00±1.00 b | 18.84±0.17 a | 118±1.73 b | 3.5±0.10 c |
处理 Treatment | 氨基酸总量 Total amino acids/% | 粗蛋白质含量 Crude protein content/(g·kg-1) | 粗脂肪含量 Crude fat content/(g·kg-1) | 直链淀粉含量 Amylose content/% | 胶稠度 Gel consistency/mm | 碱消值 Alkali spreading value |
---|---|---|---|---|---|---|
SSSi | 10.59±0.07 e | 107.00±2.00 bc | 35.00±2.00 d | 18.84±0.10 a | 118±1.73 b | 3.5±0.01 c |
SZGm | 11.19±0.02 a | 112.00±1.70 a | 34.00±2.00 d | 16.77±0.17 e | 125±1.00 a | 4.0±0.10 b |
SZSb | 10.45±0.04 f | 105.00±1.00 c | 46.00±1.70 a | 18.44±0.07 b | 125±2.00 a | 4.3±0.10 a |
SZAh | 10.96±0.44 b | 110.00±1.00 ab | 39.00±1.00 c | 17.71±0.10 c | 120±1.00 b | 4.0±0.10 b |
SZLb | 10.68±0.35 d | 107.00±2.70 bc | 35.00±1.70 d | 17.00±0.23 d | 115±2.00 c | 3.4±0.17 c |
SZSt | 10.79±0.02 c | 108.00±2.00 bc | 43.00±2.00 b | 17.87±0.08 c | 123±1.73 a | 4.2±0.17 ab |
SZZm | 10.38±0.04 f | 105.00±1.70 c | 31.00±1.00 e | 17.92±0.05 c | 123±1.00 a | 4.0±0.10 b |
表6 不同轮作模式下小米的品质指标
Table 6 Quality traits of foxtail millet under different crop rotation patterns
处理 Treatment | 氨基酸总量 Total amino acids/% | 粗蛋白质含量 Crude protein content/(g·kg-1) | 粗脂肪含量 Crude fat content/(g·kg-1) | 直链淀粉含量 Amylose content/% | 胶稠度 Gel consistency/mm | 碱消值 Alkali spreading value |
---|---|---|---|---|---|---|
SSSi | 10.59±0.07 e | 107.00±2.00 bc | 35.00±2.00 d | 18.84±0.10 a | 118±1.73 b | 3.5±0.01 c |
SZGm | 11.19±0.02 a | 112.00±1.70 a | 34.00±2.00 d | 16.77±0.17 e | 125±1.00 a | 4.0±0.10 b |
SZSb | 10.45±0.04 f | 105.00±1.00 c | 46.00±1.70 a | 18.44±0.07 b | 125±2.00 a | 4.3±0.10 a |
SZAh | 10.96±0.44 b | 110.00±1.00 ab | 39.00±1.00 c | 17.71±0.10 c | 120±1.00 b | 4.0±0.10 b |
SZLb | 10.68±0.35 d | 107.00±2.70 bc | 35.00±1.70 d | 17.00±0.23 d | 115±2.00 c | 3.4±0.17 c |
SZSt | 10.79±0.02 c | 108.00±2.00 bc | 43.00±2.00 b | 17.87±0.08 c | 123±1.73 a | 4.2±0.17 ab |
SZZm | 10.38±0.04 f | 105.00±1.70 c | 31.00±1.00 e | 17.92±0.05 c | 123±1.00 a | 4.0±0.10 b |
处理 Treatment | 谷氨酸 Glu | 精氨酸 Arg | 丙氨酸 Ala | 亮氨酸 Leu | 苯丙氨酸 Phe | 缬氨酸 Val | 天门冬氨酸 Asp | 丝氨酸 Ser |
---|---|---|---|---|---|---|---|---|
SSSi | 2.23±0.03 bc | 1.54±0.02 c | 0.94±0.02 b | 0.91±0.01 b | 0.66±0.01 abc | 0.67±0.03 abc | 0.68±0.01 b | 0.53±0.02 c |
SZGm | 2.34±0.01 a | 1.58±0.01 b | 1.00±0.02 a | 0.92±0.02 ab | 0.69±0.02 a | 0.70±0.01 a | 0.74±0.02 a | 0.57±0.01 ab |
SZSb | 2.17±0.02 c | 1.48±0.02 e | 0.91±0.01 b | 0.89±0.03 b | 0.64±0.02 c | 0.64±0.02 c | 0.66±0.03 b | 0.51±0.01 c |
SZAh | 2.21±0.01 bc | 1.66±0.01 a | 1.01±0.01 a | 0.84±0.01 c | 0.68±0.01 ab | 0.68±0.02 ab | 0.73±0.02 a | 0.59±0.02 a |
SZLb | 2.26±0.03 b | 1.58±0.02 b | 0.98±0.03 a | 0.85±0.02 c | 0.65±0.02 bc | 0.65±0.02 bc | 0.68±0.01 b | 0.57±0.01 ab |
SZSt | 2.08±0.03 d | 1.55±0.01 c | 0.98±0.01 a | 0.95±0.02 a | 0.66±0.02 abc | 0.66±0.02 bc | 0.69±0.03 b | 0.56±0.01 b |
SZZm | 2.2±0.10 bc | 1.51±0.01 d | 0.93±0.03 b | 0.90±0.01 b | 0.68±0.03 ab | 0.68±0.01 ab | 0.66±0.02 b | 0.51±0.01 c |
平均值 | 2.21±0.84 | 1.56±0.06 | 0.96±0.04 | 0.89±0.04 | 0.67±0.02 | 0.67±0.03 | 0.66±0.16 | 0.55±0.03 |
Mean | ||||||||
处理 Treatment | 蛋氨酸 Met | 苏氨酸 Thr | 脯氨酸 Pro | 组氨酸 His | 甘氨酸 Gly | 赖氨酸 Lys | 酪氨酸 Tyr | |
SSSi | 0.43±0.03 ab | 0.39±0.03 a | 0.23±0.03 b | 0.27±0.02 b | 0.23±0.02 a | 0.21±0.02 bc | 0.15±0.01 c | |
SZGm | 0.44±0.01 a | 0.42±0.02 a | 0.20±0.00 b | 0.32±0.02 a | 0.25±0.01 a | 0.25±0.02 a | 0.19±0.02 b | |
SZSb | 0.42±0.01 ab | 0.38±0.02 a | 0.33±0.03 a | 0.27±0.02 b | 0.23±0.02 a | 0.20±0.02 bc | 0.19±0.01 b | |
SZAh | 0.43±0.03 ab | 0.41±0.01 a | 0.20±0.02 b | 0.32±0.02 a | 0.13±0.02 b | 0.22±0.02 ab | 0.27±0.02 a | |
SZLb | 0.40±0.01 b | 0.39±0.03 a | 0.20±0.01 b | 0.27±0.02 b | 0.23±0.02 a | 0.18±0.02 c | 0.25±0.02 a | |
SZSt | 0.42±0.03 ab | 0.40±0.02 a | 0.30±0.02 a | 0.31±0.02 a | 0.25±0.02 a | 0.22±0.02 ab | 0.20±0.02 b | |
SZZm | 0.42±0.01 ab | 0.39±0.03 a | 0.20±0.02 b | 0.25±0.02 b | 0.23±0.02 a | 0.19±0.02 bc | 0.14±0.01 c | |
平均值 | 0.42±0.20 | 0.40±0.02 | 0.24±0.06 | 0.29±0.03 | 0.22±0.04 | 0.21±0.03 | 0.20±0.05 | |
Mean |
表7 不同轮作模式下小米的氨基酸组分
Table 7 Amino acids composition of millet under different crop rotation patterns %
处理 Treatment | 谷氨酸 Glu | 精氨酸 Arg | 丙氨酸 Ala | 亮氨酸 Leu | 苯丙氨酸 Phe | 缬氨酸 Val | 天门冬氨酸 Asp | 丝氨酸 Ser |
---|---|---|---|---|---|---|---|---|
SSSi | 2.23±0.03 bc | 1.54±0.02 c | 0.94±0.02 b | 0.91±0.01 b | 0.66±0.01 abc | 0.67±0.03 abc | 0.68±0.01 b | 0.53±0.02 c |
SZGm | 2.34±0.01 a | 1.58±0.01 b | 1.00±0.02 a | 0.92±0.02 ab | 0.69±0.02 a | 0.70±0.01 a | 0.74±0.02 a | 0.57±0.01 ab |
SZSb | 2.17±0.02 c | 1.48±0.02 e | 0.91±0.01 b | 0.89±0.03 b | 0.64±0.02 c | 0.64±0.02 c | 0.66±0.03 b | 0.51±0.01 c |
SZAh | 2.21±0.01 bc | 1.66±0.01 a | 1.01±0.01 a | 0.84±0.01 c | 0.68±0.01 ab | 0.68±0.02 ab | 0.73±0.02 a | 0.59±0.02 a |
SZLb | 2.26±0.03 b | 1.58±0.02 b | 0.98±0.03 a | 0.85±0.02 c | 0.65±0.02 bc | 0.65±0.02 bc | 0.68±0.01 b | 0.57±0.01 ab |
SZSt | 2.08±0.03 d | 1.55±0.01 c | 0.98±0.01 a | 0.95±0.02 a | 0.66±0.02 abc | 0.66±0.02 bc | 0.69±0.03 b | 0.56±0.01 b |
SZZm | 2.2±0.10 bc | 1.51±0.01 d | 0.93±0.03 b | 0.90±0.01 b | 0.68±0.03 ab | 0.68±0.01 ab | 0.66±0.02 b | 0.51±0.01 c |
平均值 | 2.21±0.84 | 1.56±0.06 | 0.96±0.04 | 0.89±0.04 | 0.67±0.02 | 0.67±0.03 | 0.66±0.16 | 0.55±0.03 |
Mean | ||||||||
处理 Treatment | 蛋氨酸 Met | 苏氨酸 Thr | 脯氨酸 Pro | 组氨酸 His | 甘氨酸 Gly | 赖氨酸 Lys | 酪氨酸 Tyr | |
SSSi | 0.43±0.03 ab | 0.39±0.03 a | 0.23±0.03 b | 0.27±0.02 b | 0.23±0.02 a | 0.21±0.02 bc | 0.15±0.01 c | |
SZGm | 0.44±0.01 a | 0.42±0.02 a | 0.20±0.00 b | 0.32±0.02 a | 0.25±0.01 a | 0.25±0.02 a | 0.19±0.02 b | |
SZSb | 0.42±0.01 ab | 0.38±0.02 a | 0.33±0.03 a | 0.27±0.02 b | 0.23±0.02 a | 0.20±0.02 bc | 0.19±0.01 b | |
SZAh | 0.43±0.03 ab | 0.41±0.01 a | 0.20±0.02 b | 0.32±0.02 a | 0.13±0.02 b | 0.22±0.02 ab | 0.27±0.02 a | |
SZLb | 0.40±0.01 b | 0.39±0.03 a | 0.20±0.01 b | 0.27±0.02 b | 0.23±0.02 a | 0.18±0.02 c | 0.25±0.02 a | |
SZSt | 0.42±0.03 ab | 0.40±0.02 a | 0.30±0.02 a | 0.31±0.02 a | 0.25±0.02 a | 0.22±0.02 ab | 0.20±0.02 b | |
SZZm | 0.42±0.01 ab | 0.39±0.03 a | 0.20±0.02 b | 0.25±0.02 b | 0.23±0.02 a | 0.19±0.02 bc | 0.14±0.01 c | |
平均值 | 0.42±0.20 | 0.40±0.02 | 0.24±0.06 | 0.29±0.03 | 0.22±0.04 | 0.21±0.03 | 0.20±0.05 | |
Mean |
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
---|---|---|---|
1 | 10.797 | 46.943 | 46.943 |
2 | 4.544 | 19.755 | 66.698 |
3 | 4.178 | 18.166 | 84.864 |
4 | 1.608 | 6.989 | 91.853 |
5 | 1.043 | 4.537 | 96.390 |
表8 主成分分析的特征值与方差分析贡献率
Table 8 Eigenvalue of principal component analysis and contribution rate of variance analysis
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
---|---|---|---|
1 | 10.797 | 46.943 | 46.943 |
2 | 4.544 | 19.755 | 66.698 |
3 | 4.178 | 18.166 | 84.864 |
4 | 1.608 | 6.989 | 91.853 |
5 | 1.043 | 4.537 | 96.390 |
处理 Treatment | F1 | F2 | F3 | F4 | F5 | 总分 Total score | 得分排序 Score rank |
---|---|---|---|---|---|---|---|
SSSi | -0.260 | -0.050 | -0.138 | -0.006 | -0.070 | -0.525 | 6 |
SZGm | 0.687 | 0.133 | -0.204 | 0.049 | 0.044 | 0.708 | 1 |
SZSb | -0.585 | 0.164 | 0.141 | -0.044 | 0.059 | -0.264 | 5 |
SZAh | 0.598 | -0.101 | 0.137 | -0.120 | -0.013 | 0.501 | 2 |
SZLb | -0.058 | -0.355 | 0.135 | 0.086 | 0.022 | -0.171 | 4 |
SZSt | 0.041 | 0.257 | 0.180 | 0.067 | -0.048 | 0.498 | 3 |
SZZm | -0.423 | -0.049 | -0.251 | -0.032 | 0.007 | -0.747 | 7 |
表9 因子得分与综合得分
Table 9 Principal component score and comprehensive score
处理 Treatment | F1 | F2 | F3 | F4 | F5 | 总分 Total score | 得分排序 Score rank |
---|---|---|---|---|---|---|---|
SSSi | -0.260 | -0.050 | -0.138 | -0.006 | -0.070 | -0.525 | 6 |
SZGm | 0.687 | 0.133 | -0.204 | 0.049 | 0.044 | 0.708 | 1 |
SZSb | -0.585 | 0.164 | 0.141 | -0.044 | 0.059 | -0.264 | 5 |
SZAh | 0.598 | -0.101 | 0.137 | -0.120 | -0.013 | 0.501 | 2 |
SZLb | -0.058 | -0.355 | 0.135 | 0.086 | 0.022 | -0.171 | 4 |
SZSt | 0.041 | 0.257 | 0.180 | 0.067 | -0.048 | 0.498 | 3 |
SZZm | -0.423 | -0.049 | -0.251 | -0.032 | 0.007 | -0.747 | 7 |
[1] | 习现民. 谷子产业化发展的现状与未来[J]. 农产品加工, 2008(3): 10-11. |
XI X M. Present situation and future of millet industrialization development[J]. Farm Products Processing, 2008(3): 10-11. (in Chinese) | |
[2] | 薛月圆, 李鹏, 林勤保. 小米的化学成分及物理性质的研究进展[J]. 中国粮油学报, 2008, 23(3): 199-203. |
XUE Y Y, LI P, LIN Q B. Research evolution on chemical component and physical character of foxtail millet[J]. Journal of the Chinese Cereals and Oils Association, 2008, 23(3): 199-203. (in Chinese with English abstract) | |
[3] | 刘敬科, 刁现民. 我国谷子产业现状与加工发展方向[J]. 农业工程技术(农产品加工业), 2013(12): 15-17. |
LIU J K, DIAO X M. Present situation and processing development direction of millet industry in China[J]. Agriculture Engineering Technology(Agricultural Product Processing Industry), 2013(12): 15-17. (in Chinese) | |
[4] | 李六林, 季兰. 杂种榛子不同方位叶片光合作用的日变化[J]. 林业科学, 2006, 42(12): 47-53. |
LI L L, JI L. Diurnal variation in photosynthesis of differently directional leaves in hybrid hazels (Corylus heterophylla×Corylus avellana)[J]. Scientia Silvae Sinicae, 2006, 42(12): 47-53. (in Chinese with English abstract) | |
[5] | 周艳敏, 张春庆. 玉米生育后期光合特性的遗传分析[J]. 中国农业科学, 2008, 41(7): 1900-1907. |
ZHOU Y M, ZHANG C Q. Genetic analysis of photosynthetic characteristics of maize during late growth stage[J]. Scientia Agricultura Sinica, 2008, 41(7): 1900-1907. (in Chinese with English abstract) | |
[6] | 李青山, 张玉琴, 沈晗, 等. 基于叶绿素相对含量的烤烟叶色仿真[J]. 山西农业大学学报(自然科学版), 2020, 40(3): 110-117. |
LI Q S, ZHANG Y Q, SHEN H, et al. Visual simulation of tobacco leaf color based on the relative content of chlorophyll[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2020, 40(3): 110-117. (in Chinese with English abstract) | |
[7] | MAY L, VAN SANFORD D A, MACKOWN C T, et al. Genetic variation for nitrogen use in soft red×hard red winter wheat populations[J]. Crop Science, 1991, 31(3): 626-630. |
[8] | 王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J]. 分子植物育种, 2019, 17(4): 1373-1377. |
WANG J W, WU G, XU Y M. Research progress of glutamine synthetase in plant nitrogen assimilation and recycling[J]. Molecular Plant Breeding, 2019, 17(4): 1373-1377. (in Chinese with English abstract) | |
[9] | MARTIN A, LEE J, KICHEY T, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production[J]. The Plant Cell, 2006, 18(11): 3252-3274. |
[10] | SALEH A S M, ZHANG Q, CHEN J, et al. Millet grains: nutritional quality, processing, and potential health benefits[J]. Comprehensive Reviews in Food Science and Food Safety, 2013, 12(3): 281-295. |
[11] | 王玉文, 李会霞, 田岗, 等. 我国小米品质研究进展及其改良设想[J]. 中国农学通报, 2001, 17(5): 49-51. |
WANG Y W, LI H X, TIAN G, et al. Research progress and improvement of millet quality in China[J]. Chinese Agricultural Science Bulletin, 2001, 17(5): 49-51. (in Chinese) | |
[12] | 冯小磊, 史高雷, 张晓磊, 等. 不同小米品种氨基酸与脂肪酸营养含量分析[J]. 食品工业, 2020, 41(7): 340-344. |
FENG X L, SHI G L, ZHANG X L, et al. Analysis of amino acid and fatty acid contents in different varieties of millet[J]. The Food Industry, 2020, 41(7): 340-344. (in Chinese with English abstract) | |
[13] | 妙佳源, 李夏, 周达, 等. 连作对谷子土壤酶活性及养分的影响[J]. 干旱地区农业研究, 2016, 34(3): 123-126. |
MIAO J Y, LI X, ZHOU D, et al. Effects of foxtail millet continuous cropping on soil enzyme activities and nutrients[J]. Agricultural Research in the Arid Areas, 2016, 34(3): 123-126. (in Chinese with English abstract) | |
[14] | 郝晓芬, 王根全, 郭二虎, 等. 连作、轮作对谷子根际细菌群落结构的影响[J]. 农业环境科学学报, 2022, 41(3): 585-596. |
HAO X F, WANG G Q, GUO E H, et al. Effects of continuous cropping and rotation on rhizosphere bacterial community structure of millet[J]. Journal of Agro-Environment Science, 2022, 41(3): 585-596. (in Chinese with English abstract) | |
[15] | 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018, 37(12): 2802-2809. |
NIU Q Y, HAN Y S, XU L X, et al. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil[J]. Journal of Agro-Environment Science, 2018, 37(12): 2802-2809. (in Chinese with English abstract) | |
[16] | 许艳丽, 李兆林, 李春杰. 小麦连作、迎茬和轮作对麦田杂草群落的影响[J]. 植物保护, 2004, 30(3): 26-29. |
XU Y L, LI Z L, LI C J. Effects of wheat rotation and monocropping system on weed populations in wheat fields[J]. Plant Protection, 2004, 30(3): 26-29. (in Chinese with English abstract) | |
[17] | 刘会芳, 韩宏伟, 王强, 等. 不同蔬菜与番茄轮作对设施土壤微生物多样性、酶活性及土壤理化性质的影响[J]. 微生物学报, 2021, 61(1): 167-182. |
LIU H F, HAN H W, WANG Q, et al. Effect of vegetables-tomato rotation on soil microbial diversity, enzyme activity and physicochemical properties of vegetables in greenhouse[J]. Acta Microbiologica Sinica, 2021, 61(1): 167-182. (in Chinese with English abstract) | |
[18] | 宋丽萍, 罗珠珠, 李玲玲, 等. 陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响[J]. 草业学报, 2015, 24(7): 12-20. |
SONG L P, LUO Z Z, LI L L, et al. Effect of lucerne-crop rotations on soil physical properties in the semi-arid Loess Plateau of Central Gansu[J]. Acta Prataculturae Sinica, 2015, 24(7): 12-20. (in Chinese with English abstract) | |
[19] | 郑孟静, 李岩, 贾秀领. 主要农作物多样化轮作制度研究进展及展望[J]. 华北农学报, 2021, 36(S1): 215-221. |
ZHENG M J, LI Y, JIA X L. Research progress and perspective of diversified crop rotation systems in main crops[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 215-221. (in Chinese with English abstract) | |
[20] | 阳显斌, 李廷轩, 张锡洲, 等. 烟蒜轮作与套作对土壤农化性状及烤烟产量的影响[J]. 核农学报, 2015, 29(5): 980-985. |
YANG X B, LI T X, ZHANG X Z, et al. Effects of tobacco garlic crop rotation and tobacco garlic crop intercropping on soil agrochemical characters and tobacco yield[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 980-985. (in Chinese with English abstract) | |
[21] | 殷尧翥, 郭长春, 孙永健, 等. 稻油轮作下油菜秸秆还田与水氮管理对杂交稻群体质量和产量的影响[J]. 中国水稻科学, 2019, 33(3): 257-268. |
YIN Y Z, GUO C C, SUN Y J, et al. Effects of rape straw retention and water and nitrogen management on population quality and yield of hybrid rice under rice-rape rotation[J]. Chinese Journal of Rice Science, 2019, 33(3): 257-268. (in Chinese with English abstract) | |
[22] | 林郸, 李郁, 孙永健, 等. 不同轮作模式下秸秆还田与氮肥运筹对杂交籼稻产量及米质的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1581-1590. |
LIN D, LI Y, SUN Y J, et al. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1581-1590. (in Chinese with English abstract) | |
[23] | 田中伟, 王方瑞, 戴廷波, 等. 小麦品种改良过程中物质积累转运特性与产量的关系[J]. 中国农业科学, 2012, 45(4): 801-808. |
TIAN Z W, WANG F R, DAI T B, et al. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield[J]. Scientia Agricultura Sinica, 2012, 45(4): 801-808. (in Chinese with English abstract) | |
[24] | 张建福, 朱永生, 蔡秋华, 等. 再生稻净光合速率与产量及其构成因素的相关性分析[J]. 中国水稻科学, 2011, 25(1): 103-106. |
ZHANG J F, ZHU Y S, CAI Q H, et al. Analysis on correlationship of net photosynthetic rate with yield and its components of ratooning rice[J]. Chinese Journal of Rice Science, 2011, 25(1): 103-106. (in Chinese with English abstract) | |
[25] | 王空军, 胡昌浩, 董树亭, 等. 我国不同年代玉米品种开花后叶片保护酶活性及膜脂过氧化作用的演进[J]. 作物学报, 1999, 25(6): 700-706. |
WANG K J, HU C H, DONG S T, et al. Changes of the protective enzyme activities and lipid peroxidation after anthesis among maize varieties planted in different years[J]. Acta Agronomica Sinica, 1999, 25(6): 700-706. (in Chinese with English abstract) | |
[26] | 吴兴慧, 张余, 李振宙, 等. 不同耕作方式对苦荞衰老和籽粒灌浆特性的影响[J]. 浙江农业学报, 2019, 31(12): 1963-1970. |
WU X H, ZHANG Y, LI Z Z, et al. Effect of different tillage methods on senescence and grain filling characteristics of Tartary buckwheat[J]. Acta Agriculturae Zhejiangensis, 2019, 31(12): 1963-1970. (in Chinese with English abstract) | |
[27] | 王仪明, 雷艳芳, 魏臻武, 等. 不同轮作模式对青贮玉米产量、品质及土壤肥力的影响[J]. 核农学报, 2017, 31(9): 1803-1810. |
WANG Y M, LEI Y F, WEI Z W, et al. Effects of different rotation modes on yield, quality of silage corn, and soil fertility[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(9): 1803-1810. (in Chinese with English abstract) | |
[28] | 王丹丹, 徐文俊, 王卓, 等. 50份谷子营养与食味品质的聚类和相关性分析[J]. 分子植物育种, 2017, 15(3): 1043-1052. |
WANG D D, XU W J, WANG Z, et al. Cluster and correlation analysis on nutrition and eating qualities in 50 foxtail millets[J]. Molecular Plant Breeding, 2017, 15(3): 1043-1052. (in Chinese with English abstract) | |
[29] | 张艾英, 郭二虎, 刁现民, 等. 不同气候和土壤对小米品质的影响[J]. 中国农业科学, 2019, 52(18): 3218-3231. |
ZHANG A Y, GUO E H, DIAO X M, et al. Effects of different types of climate and soil on foxtail millet quality[J]. Scientia Agricultura Sinica, 2019, 52(18): 3218-3231. (in Chinese with English abstract) |
[1] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[2] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[3] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[4] | 张志国, 丛琳, 张世杰, 李荣光, 邹维娜, 迟法安, 张宝, 姜玉萍. 根区温度对萱草生长发育及其开花的影响[J]. 浙江农业学报, 2022, 34(5): 1005-1014. |
[5] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[6] | 孙守霞, 陈虹, 吕威, 朴涵琪, 周光辉, 王贺松, 张述斌, 郝金莲. 降尘对阿克苏地区主栽果树叶片光合特性及叶绿素荧光特性的影响[J]. 浙江农业学报, 2022, 34(12): 2659-2668. |
[7] | 万晓, 田丹青, 潘晓韵, 潘刚敏, 葛亚英, 周媛, 谢卢鹏, 朱强. 红掌“一叶一花”竞争生长特性及蔗糖促花处理研究[J]. 浙江农业学报, 2022, 34(10): 2182-2187. |
[8] | 王佳, 慕瑞瑞, 杨乔乔, 刘伟, 张月荷, 康建宏. 滴灌水肥一体化下施钾量对宁夏春玉米叶绿素荧光特性与产量的影响[J]. 浙江农业学报, 2021, 33(8): 1347-1357. |
[9] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[10] | 肖志云, 王伊凝. 基于RF-VR的紫丁香叶片叶绿素含量高光谱反演[J]. 浙江农业学报, 2021, 33(11): 2164-2173. |
[11] | 刘寒, 戴远兴, 吕明芳, 袁正杰, 李静, 严成其, 张恒木. 外源水杨酸对水稻苗期生长与防卫相关基因表达的影响[J]. 浙江农业学报, 2021, 33(10): 1789-1796. |
[12] | 孟亚轩, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 谷子GH5基因家族全基因组鉴定和表达分析[J]. 浙江农业学报, 2021, 33(10): 1797-1807. |
[13] | 宋新丹, 陈斌斌, 马增岭, 徐丽丽, 林立东, 吴明江. 盐度对羊栖菜(Sargassum fusiforme)幼体光合特性的影响[J]. 浙江农业学报, 2020, 32(9): 1634-1644. |
[14] | 刘艺平, 苏少文, 张琳, 刘莹, 黄志远, 贺丹, 孔德政. 外源钙对荷花适应盐胁迫的影响[J]. 浙江农业学报, 2020, 32(2): 243-252. |
[15] | 张红涛, 李艺嘉, 谭联, 许帅涛. 基于CS-SVM的谷子叶片病害图像识别[J]. 浙江农业学报, 2020, 32(2): 274-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||