浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2182-2187.DOI: 10.3969/j.issn.1004-1524.2022.10.12
万晓(), 田丹青(
), 潘晓韵, 潘刚敏, 葛亚英, 周媛, 谢卢鹏, 朱强
收稿日期:
2021-03-01
出版日期:
2022-10-25
发布日期:
2022-10-26
通讯作者:
田丹青
作者简介:
*田丹青,E-mail: tdq0123@163.com基金资助:
WAN Xiao(), TIAN Danqing(
), PAN Xiaoyun, PAN Gangmin, GE Yaying, ZHOU Yuan, XIE Lupeng, ZHU Qiang
Received:
2021-03-01
Online:
2022-10-25
Published:
2022-10-26
Contact:
TIAN Danqing
摘要:
为探究红掌发育过程中叶与花的营养分配关系,以Alabama为试材,测定各时期植株的形态特征指标、叶片不同发育时期的净光合速率和海藻糖-6-磷酸合成酶(TPS)活性,并以蔗糖溶液处理叶片统计花芽发育状况。结果表明,对于在同一生长点上的叶片与对应的苞片,T1-T3时期主要发育叶片;T3-T5时期,叶片逐步停止面积扩大及叶柄伸长,自身消耗减少,并向苞片提供养分,使其迅速发育;苞片的TPS活性在T1、T4及T5时期高于叶片,T2及T3时期与叶片差异不大;质量分数为15‰、20‰及25‰的蔗糖溶液均使花芽出现百分率提高。综上,红掌“一叶一花”的特性使其不同时期花叶存在不同的营养竞争关系,蔗糖在红掌花发育过程中发挥重要作用。
中图分类号:
万晓, 田丹青, 潘晓韵, 潘刚敏, 葛亚英, 周媛, 谢卢鹏, 朱强. 红掌“一叶一花”竞争生长特性及蔗糖促花处理研究[J]. 浙江农业学报, 2022, 34(10): 2182-2187.
WAN Xiao, TIAN Danqing, PAN Xiaoyun, PAN Gangmin, GE Yaying, ZHOU Yuan, XIE Lupeng, ZHU Qiang. Physiological characteristics and sucrose treatment of Anthurium at different developmental stages[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2182-2187.
时期 Stage | 外观描述 Appearance description | 生长重点 Key project |
---|---|---|
T1 | 新叶和花芽尚未钻出鳞叶(现蕾期),此时花芽呈白色 The new leaves and flower buds have not yet drilled out of the scale leaf(squaring stage), and the flower buds are white at this time | 叶芽从鳞叶中钻出,叶柄伸长,叶片面积增加,叶片平展 The leaf bud is drilling out of the scale leaf; the leaf petiole is elongating; the leaf area is increasing, and the leaf blade is flating |
T2 | 花芽尚未钻出对应叶片基部的托叶(孕蕾期) Stipules that have not yet emerged from the base of the corresponding leaf (bud pregnant stage) | 叶片面积增大,叶片加厚,花芽钻出托叶,花芽色素开始合成 Leaf area and thickness is increasing; flower buds is drilling out of the stipule; flower pigment is begining to synthesize |
T3 | 花芽从托叶钻出1/2左右;花朵的佛焰苞先端2/3呈红色 Flower bud have drilled out half of the stipules; the 2/3 front apex of spathe is red | 花芽的生长,花梗伸长,苞片面积增大,叶片蜡质增厚 Flower bud growth. Pedicel elongated, bract area enlarged, leaf waxy thickened |
T4 | 佛焰苞卷曲,花柄为叶柄一半长 The spathe is still curly; the flower petiole length is half of the leaf | 花梗伸长,苞片开展,面积增大 The flower pedicel is elongating; the spathe is flating; the spathe area is increasing |
T5 | 佛焰苞完全打开,肉穗花序先端黄色占1/3,此时为最佳观赏期 The spathe is fully open, 1/3 apex of the spadix is yellow;this stage is the best viewing period | 种子成熟 The seed is maturing |
表1 红掌不同发育时期的表型观测
Table 1 Phenotypic observation of Anthurium at different developmental stages
时期 Stage | 外观描述 Appearance description | 生长重点 Key project |
---|---|---|
T1 | 新叶和花芽尚未钻出鳞叶(现蕾期),此时花芽呈白色 The new leaves and flower buds have not yet drilled out of the scale leaf(squaring stage), and the flower buds are white at this time | 叶芽从鳞叶中钻出,叶柄伸长,叶片面积增加,叶片平展 The leaf bud is drilling out of the scale leaf; the leaf petiole is elongating; the leaf area is increasing, and the leaf blade is flating |
T2 | 花芽尚未钻出对应叶片基部的托叶(孕蕾期) Stipules that have not yet emerged from the base of the corresponding leaf (bud pregnant stage) | 叶片面积增大,叶片加厚,花芽钻出托叶,花芽色素开始合成 Leaf area and thickness is increasing; flower buds is drilling out of the stipule; flower pigment is begining to synthesize |
T3 | 花芽从托叶钻出1/2左右;花朵的佛焰苞先端2/3呈红色 Flower bud have drilled out half of the stipules; the 2/3 front apex of spathe is red | 花芽的生长,花梗伸长,苞片面积增大,叶片蜡质增厚 Flower bud growth. Pedicel elongated, bract area enlarged, leaf waxy thickened |
T4 | 佛焰苞卷曲,花柄为叶柄一半长 The spathe is still curly; the flower petiole length is half of the leaf | 花梗伸长,苞片开展,面积增大 The flower pedicel is elongating; the spathe is flating; the spathe area is increasing |
T5 | 佛焰苞完全打开,肉穗花序先端黄色占1/3,此时为最佳观赏期 The spathe is fully open, 1/3 apex of the spadix is yellow;this stage is the best viewing period | 种子成熟 The seed is maturing |
时期 Stage | 发育到下一时期 天数Duration of each stage/d | 叶柄长 Petiole length/cm | 叶长 Leaf length/cm | 叶宽 Leaf width/cm | 花梗长 Pedicel length/cm | 苞片长 Bract length/cm | 苞片宽 Bract width/cm |
---|---|---|---|---|---|---|---|
T1 | 55.25±4.11 | 10.43±0.21 | |||||
T2 | 55.50±4.20 | 17.53±2.35 | 7.93±0.67 | 6.83±0.35 | |||
T3 | 35.00±1.41 | 22.30±1.8 | 17.07±0.45 | 12.23±0.15 | |||
T4 | 58.75±2.22 | 25.2±0.53 | 17.10±0.46 | 12.23±0.15 | 13.63±1.21 | 7.17±0.25 | |
T5 | 28.47±0.60 | 17.23±0.31 | 12.23±0.15 | 29.37±0.95 | 9.07±0.21 | 9.60±0.26 |
表2 红掌不同发育时期叶片与苞片的发育情况
Table 2 The development state of leaf and spathe at different developmental stages of Anthurium
时期 Stage | 发育到下一时期 天数Duration of each stage/d | 叶柄长 Petiole length/cm | 叶长 Leaf length/cm | 叶宽 Leaf width/cm | 花梗长 Pedicel length/cm | 苞片长 Bract length/cm | 苞片宽 Bract width/cm |
---|---|---|---|---|---|---|---|
T1 | 55.25±4.11 | 10.43±0.21 | |||||
T2 | 55.50±4.20 | 17.53±2.35 | 7.93±0.67 | 6.83±0.35 | |||
T3 | 35.00±1.41 | 22.30±1.8 | 17.07±0.45 | 12.23±0.15 | |||
T4 | 58.75±2.22 | 25.2±0.53 | 17.10±0.46 | 12.23±0.15 | 13.63±1.21 | 7.17±0.25 | |
T5 | 28.47±0.60 | 17.23±0.31 | 12.23±0.15 | 29.37±0.95 | 9.07±0.21 | 9.60±0.26 |
图1 红掌不同发育时期的净光合速率不同处理间没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Net photosynthetic rate of Anthurium at different developmental stages The treatments with different lowercase letters showed significant difference (P<0.05). The same as below.
图2 红掌不同发育时期的TPS活性*和**分别表示差异达显著(P<0.05)和极显著(P<0.01)水平。
Fig.2 TPS activity of Anthurium in different development stages* and ** represented the significant difference at the level of 0.05 and 0.01, respectively.
图3 不同浓度蔗糖处理对红掌花芽诱导情况 A,花梗>5 cm的百分率;B,1 cm≤花梗≤5 cm的百分率;C,花梗<1 cm的百分率;D,只露出花芽没露花梗的百分率;E,花芽出现百分率。
Fig.3 Induction of Anthurium flower buds by different concentrations of sucrose solution A, The percentage of flower pedicel>5 cm; B, The percentage of 1 cm≤flower pedicel≤5 cm; C, The percentage of flower pedicel<1 cm; D, The percentage of flower pedicel without drilling out of the scale leaf; E, The percentage of flower bud emergency.
[1] |
DAI J W, PAULL R E. The role of leaf development on Anthurium flower growth[J]. Journal of the American Society for Horticultural Science, 1990, 115(6): 901-905.
DOI URL |
[2] | 常娟霞. 红掌CO和FT类基因的克隆与分析[D]. 海口: 海南大学, 2014. |
CHANG J X. Cloning and analysis of CO and FT gene in Anthurium andraeanum[D]. Haikou: Hainan University, 2014. (in Chinese with English abstract) | |
[3] |
DUFOUR L, GUÉRIN V. Growth, developmental features and flower production of Anthurium andreanum Lind. in tropical conditions[J]. Scientia Horticulturae, 2003, 98(1): 25-35.
DOI URL |
[4] |
IORDACHESCU M, IMAI R. Trehalose biosynthesis in response to abiotic stresses[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1223-1229.
DOI |
[5] |
GRIFFITHS C A, PAUL M J, FOYER C H. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857(10): 1715-1725.
DOI PMID |
[6] | PAUL M J, JHURREEA D, ZHANG Y H, et al. Up-regulation of biosynthetic processes associated with growth by trehalose 6-phosphate[J]. Plant Signaling & Behavior, 2010, 5(4): 386-392. |
[7] | SCHLUEPMANN H, PELLNY T, VAN DIJKEN A, et al. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(11): 6849-6854. |
[8] |
OSZVALD M, PRIMAVESI L F, GRIFFITHS C A, et al. Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive tissue[J]. Plant Physiology, 2018, 176(4): 2623-2638.
DOI PMID |
[9] |
MARTINS M C M, HEJAZI M, FETTKE J, et al. Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate[J]. Plant Physiology, 2013, 163(3): 1142-1163.
DOI URL |
[10] |
PAUL M J, GONZALEZ-URIARTE A, GRIFFITHS C A, et al. The role of trehalose 6-phosphate in crop yield and resilience[J]. Plant Physiology, 2018, 177(1): 12-23.
DOI PMID |
[11] | 韩明玉, 杜利莎, 邢利博, 等. 一种促进苹果花芽孕育的蔗糖喷施方法: CN106212012A[P]. 2016-12-14. |
[12] | 蒋甲福, 王恒, 陈发棣, 等. 一种蔗糖处理促进菊花开花的方法: CN105766409B[P]. 2019-08-23. |
[13] | 张晓, 任惠惠, 曹婧, 等. 弱光导致荷花花芽败育的机制探析[J]. 南京农业大学学报, 2019, 42(6): 1040-1049. |
ZHANG X, REN H H, CAO J, et al. Analysis of the mechanism of Lotus flower bud abortion caused by low light[J]. Journal of Nanjing Agricultural University, 2019, 42(6): 1040-1049. (in Chinese with English abstract) | |
[14] |
NUCCIO M L, WU J, MOWERS R, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions[J]. Nature Biotechnology, 2015, 33(8): 862-869.
PMID |
[15] | 彭丽丽, 姜卫兵, 韩健. 源库关系变化对果树产量及果实品质的影响[J]. 经济林研究, 2012, 30(3): 134-140. |
PENG L L, JIANG W B, HAN J. Effects of source-sink relationship change on yield and quality in fruit tree[J]. Nonwood Forest Research, 2012, 30(3): 134-140. (in Chinese with English abstract) | |
[16] | 徐迎春, 李绍华, 柴成林, 等. 水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J]. 果树学报, 2001, 18(1): 1-6. |
XU Y C, LI S H, CHAI C L, et al. Carbohydrate metabolism in source leaves of jonagold apple tree under water stress and after water stress relief[J]. Journal of Fruit Science, 2001, 18(1): 1-6. (in Chinese with English abstract) | |
[17] | 方金豹, 田莉莉, 陈锦永, 等. 猕猴桃源库关系的变化对果实特性的影响[J]. 园艺学报, 2002, 29(2): 113-118. |
FANG J B, TIAN L L, CHEN J Y, et al. Influence of sink or source change on fruit characteristics in kiwifruit[J]. Acta Horticulturae Sinica, 2002, 29(2): 113-118. (in Chinese with English abstract) | |
[18] |
ZHANG Y, XU W G, WANG H W, et al. Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province[J]. Field Crops Research, 2016, 199: 117-128.
DOI URL |
[19] |
KHAN S U, GURMANI A R, DIN J U, et al. Exogenously applied gibberellic acid, indole acetic acid and kinetin as potential regulators of source-sink relationship, physiological and yield attributes in rice (Oryza sativa) genotypes under water deficit conditions[J]. International Journal of Agriculture and Biology, 2015, 18(1): 139-145.
DOI URL |
[20] |
MA Y T, CHEN Y J, ZHU J Y, et al. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-maize[J]. Annals of Botany, 2018, 121(5): 961-973.
DOI PMID |
[21] |
ZHANG Z P, DENG Y K, SONG X X, et al. Trehalose-6-phosphate and SNF1-related protein kinase 1 are involved in the first-fruit inhibition of cucumber[J]. Journal of Plant Physiology, 2015, 177: 110-120.
DOI PMID |
[22] |
SCHWACHTJE J, MINCHIN P E H, JAHNKE S, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12935-12940.
DOI PMID |
[23] |
WAHL V, PONNU J, SCHLERETH A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120): 704-707.
DOI URL |
[24] |
PAUL M J, PRIMAVESI L F, JHURREEA D, et al. Trehalose metabolism and signaling[J]. Annual Review of Plant Biology, 2008, 59: 417-441.
DOI PMID |
[25] |
DIJKEN A J H V, SCHLUEPMANN H, SMEEKENS S C M. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering[J]. Plant Physiology, 2004, 135(2): 969-977.
DOI URL |
[26] | 牛俊海, 常娟霞, 杨光穗, 等. 红掌CONSTANS类基因AaCOL1和AaCOL2的克隆与表达分析[J]. 分子植物育种, 2014, 12(6): 1222-1229. |
NIU J H, CHANG J X, YANG G S, et al. Molecular cloning and expression analysis of CONSTANS-like genes, AaCOL1 and AaCOL2 of Anthurium andraeanum[J]. Molecular Plant Breeding, 2014, 12(6): 1222-1229. (in Chinese with English abstract) |
[1] | 郭春倩, 田洁. 大蒜己糖激酶基因AsHXK2的克隆及其参与根际促生菌缓解干旱胁迫的表达分析[J]. 浙江农业学报, 2022, 34(9): 1925-1934. |
[2] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[3] | 詹佳飞, 徐魁, 张磊, 夏介英, 洪杨, 董涵, 刘洋露, 周静, 袁明铭, 王永金, 鄢良春. 毛蕊花糖苷抑制2型猪链球菌的溶血素蛋白活性而降低其小鼠致病性[J]. 浙江农业学报, 2022, 34(8): 1609-1616. |
[4] | 吕淑芳, 张红晓, 胥华伟, 赵杏利. 棉纤维起始分化期基因枪介导的GhSuSy表达分析[J]. 浙江农业学报, 2022, 34(7): 1361-1368. |
[5] | 杨肖芳, 李云端, 孙云帆, 李绍佳, 苗立祥, 张豫超, 蒋桂华. 基质栽培与土壤栽培对越心草莓蔗糖和柠檬酸积累的影响[J]. 浙江农业学报, 2022, 34(7): 1423-1430. |
[6] | 任梦云, 杜龙岗, 王美兴, 黄益峰. 糯玉米可溶性糖组分特征与采后品质特性[J]. 浙江农业学报, 2022, 34(6): 1133-1140. |
[7] | 郑美瑜, 王璐, 刘哲, 张文娟, 高浦, 陆胜民. 桑黄中抑制α-葡萄糖苷酶活性成分提取及其化学成分鉴定[J]. 浙江农业学报, 2022, 34(5): 949-958. |
[8] | 谭天宇, 才冬杰, 王之盛, 左之才. 糖浓度变化对牛肺泡巨噬细胞促炎细胞因子释放的影响[J]. 浙江农业学报, 2022, 34(3): 464-470. |
[9] | 冯彩军, 宋瑞娇, 宋凌宇, 张松, 齐军仓. 2,4-表芸苔素内酯浸种对干旱胁迫下大麦种子萌发期淀粉代谢的影响[J]. 浙江农业学报, 2022, 34(10): 2112-2120. |
[10] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
[11] | 赵虎, 张越亭, 刘永华. 糖分含量对番茄叶片Pst DC3000抗性的影响及其机理[J]. 浙江农业学报, 2021, 33(6): 1001-1011. |
[12] | 田玉潭, 马露, 刘军, 李冬冬, 陶迎梅, 赵晓璐, 马亚男, 孙少忆, 刘敦华. 葡萄酒渣多酚-壳聚糖-CMC可食性复合膜在水煮羊肉贮藏中的应用[J]. 浙江农业学报, 2021, 33(6): 1095-1103. |
[13] | 王启璋, 张广楠, 王丽慧, 田洁. 不同栽培方式对韭菜生长和碳水化合物累积的影响[J]. 浙江农业学报, 2021, 33(2): 288-297. |
[14] | 赵琳, 叶夏芳, 董韦, 石江, 骆乐谈, 陆国权. 贮藏期不同类型甘薯块根营养品质与淀粉特性变化[J]. 浙江农业学报, 2021, 33(12): 2224-2233. |
[15] | 张伟梅, 张古文, 冯志娟, 刘娜, 王斌, 卜远鹏. 菜用大豆籽粒中蔗糖的遗传与调控机制研究进展[J]. 浙江农业学报, 2021, 33(12): 2446-2456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||