浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1773-1781.DOI: 10.3969/j.issn.1004-1524.20220965
袁晔1(
), 刘睿2, 王凌云3, 沈盟1, 叶雪莲2, 权新华1, 王瑞森1, 姚祥坦1,*(
)
收稿日期:2022-06-28
出版日期:2023-08-25
发布日期:2023-08-29
作者简介:袁晔(1991—),男,浙江嘉兴人,农艺师,主要从事水生蔬菜相关研究。E-mail:303027165@qq.com
通讯作者:
*姚祥坦,E-mail:yxt156@hotmail.com
基金资助:
YUAN Ye1(
), LIU Rui2, WANG Lingyun3, SHEN Meng1, YE Xuelian2, QUAN Xinhua1, WANG Ruisen1, YAO Xiangtan1,*(
)
Received:2022-06-28
Online:2023-08-25
Published:2023-08-29
摘要:
利用SLAF-seq技术对江浙地区17个主要的栽培菱品种和1个野生菱种质进行高通量测序,获得445 594个SLAF标签,鉴定到多态性SLAF标签95 931个。通过序列分析,获得269 338个SNP标记,并基于这些SNP 构建18份菱样品的遗传发育树及进行群体结构分析。结果表明,SLAF-seq技术能高效地开发出大量可用于群体遗传分析的SNP标记,基于SNP标记构建的进化树能较好地区分不同类型的菱品种。该结果对开展菱种质资源鉴定和菱种质遗传演化研究具有重要参考价值。
中图分类号:
袁晔, 刘睿, 王凌云, 沈盟, 叶雪莲, 权新华, 王瑞森, 姚祥坦. 江浙地区菱品种遗传多样性的SLAF-seq分析[J]. 浙江农业学报, 2023, 35(8): 1773-1781.
YUAN Ye, LIU Rui, WANG Lingyun, SHEN Meng, YE Xuelian, QUAN Xinhua, WANG Ruisen, YAO Xiangtan. Genetic diversity analysis of Trapa L. cultivars in Jiangsu and Zhejiang Provinces using SLAF-seq[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1773-1781.
| 样品Sample | 品种名Name of variety | 类别Variety type | 原产地Source area |
|---|---|---|---|
| aa | 南湖菱Nanhuling | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| ab | 无角青菱Wujiaoqingling | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| ac | 环菱1 Huanling 1 | 乌菱Trapa bicornis Nakai | 嘉兴Jiaxing |
| ad | 环菱2 Huanling 2 | 乌菱Trapa bicornis Nakai | 宿迁Suqian |
| ae | 环菱3 Huanling 3 | 乌菱Trapa bicornis Nakai | 宿迁Suqian |
| af | 苏州青菱Suzhouqingling | 四角菱Trapa quadrispinosa Roxb. | 苏州Suzhou |
| ag | 邵伯菱Shaoboling | 四角菱Trapa quadrispinosa Roxb. | 扬州Yangzhou |
| ah | 野菱Yeling | 野菱Trapa incisa Sieb | 嘉兴Jiaxing |
| ai | 金华青菱Jinhuaqingling | 四角菱Trapa quadrispinosa Roxb. | 金华Jinhua |
| aj | 绍兴水红菱1 Shaoxingshuihongling 1 | 四角菱Trapa quadrispinosa Roxb. | 嘉兴Jiaxing |
| ak | 两角红菱Liangjiaohongling | 二角菱Trapa bispinosa Roxb. | 嘉兴Jiaxing |
| al | 水果红菱Shuiguohongling | 二角菱Trapa bispinosa Roxb. | 苏州Suzhou |
| am | 南湖红菱Nanhuhongling | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| an | 驼背白菱Tuobeibailing | 四角菱Trapa quadrispinosa Roxb. | 绍兴Shaoxing |
| ao | 嘉兴水红菱Jiaxingshuihongling | 四角菱Trapa quadrispinosa Roxb. | 嘉兴Jiaxing |
| ap | 南湖菱提纯Nanhulingtichun | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| aq | 绍兴水红菱2 Shaoxingshuihongling 2 | 四角菱Trapa quadrispinosa Roxb. | 绍兴Shaoxing |
| ar | 两角青菱Liangjiaoqingling | 二角菱Trapa bispinosa Roxb. | 嘉兴Jiaxing |
表1 供试菱资源及原产地明细
Table 1 Resources and origin of Trapa L. in this study
| 样品Sample | 品种名Name of variety | 类别Variety type | 原产地Source area |
|---|---|---|---|
| aa | 南湖菱Nanhuling | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| ab | 无角青菱Wujiaoqingling | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| ac | 环菱1 Huanling 1 | 乌菱Trapa bicornis Nakai | 嘉兴Jiaxing |
| ad | 环菱2 Huanling 2 | 乌菱Trapa bicornis Nakai | 宿迁Suqian |
| ae | 环菱3 Huanling 3 | 乌菱Trapa bicornis Nakai | 宿迁Suqian |
| af | 苏州青菱Suzhouqingling | 四角菱Trapa quadrispinosa Roxb. | 苏州Suzhou |
| ag | 邵伯菱Shaoboling | 四角菱Trapa quadrispinosa Roxb. | 扬州Yangzhou |
| ah | 野菱Yeling | 野菱Trapa incisa Sieb | 嘉兴Jiaxing |
| ai | 金华青菱Jinhuaqingling | 四角菱Trapa quadrispinosa Roxb. | 金华Jinhua |
| aj | 绍兴水红菱1 Shaoxingshuihongling 1 | 四角菱Trapa quadrispinosa Roxb. | 嘉兴Jiaxing |
| ak | 两角红菱Liangjiaohongling | 二角菱Trapa bispinosa Roxb. | 嘉兴Jiaxing |
| al | 水果红菱Shuiguohongling | 二角菱Trapa bispinosa Roxb. | 苏州Suzhou |
| am | 南湖红菱Nanhuhongling | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| an | 驼背白菱Tuobeibailing | 四角菱Trapa quadrispinosa Roxb. | 绍兴Shaoxing |
| ao | 嘉兴水红菱Jiaxingshuihongling | 四角菱Trapa quadrispinosa Roxb. | 嘉兴Jiaxing |
| ap | 南湖菱提纯Nanhulingtichun | 无角菱Trapa acornis Nakai | 嘉兴Jiaxing |
| aq | 绍兴水红菱2 Shaoxingshuihongling 2 | 四角菱Trapa quadrispinosa Roxb. | 绍兴Shaoxing |
| ar | 两角青菱Liangjiaoqingling | 二角菱Trapa bispinosa Roxb. | 嘉兴Jiaxing |
| 样品 Sample | 总序列数 Total reads | GC含量 GC content/% | 测序质量Q30 Q30 percentage/% |
|---|---|---|---|
| aa | 2 932 097 | 41.32 | 89.9 |
| ab | 2 596 064 | 41.40 | 89.77 |
| ac | 3 570 364 | 41.17 | 89.81 |
| ad | 2 198 670 | 41.14 | 89.74 |
| ae | 4 671 291 | 41.19 | 91.58 |
| af | 4 263 822 | 41.49 | 90.55 |
| ag | 2 283 401 | 41.07 | 91.97 |
| ah | 3 040 597 | 40.72 | 92.19 |
| ai | 2 942 299 | 40.72 | 92.82 |
| aj | 3 024 718 | 40.62 | 92.36 |
| ak | 3 519 849 | 42.23 | 92.95 |
| al | 3 488 184 | 41.95 | 90.74 |
| am | 3 070 469 | 41.61 | 92.69 |
| an | 2 546 657 | 40.93 | 92.34 |
| ao | 1 640 283 | 41.40 | 92.64 |
| ap | 3 001 143 | 41.22 | 92.7 |
| aq | 2 141 727 | 41.13 | 92.52 |
| ar | 3 413 097 | 42.42 | 93.00 |
| Rice | 1 218 766 | 43.87 | 90.09 |
表2 菱各材料测序数据统计表
Table 2 Reads statistics of Trapa L.
| 样品 Sample | 总序列数 Total reads | GC含量 GC content/% | 测序质量Q30 Q30 percentage/% |
|---|---|---|---|
| aa | 2 932 097 | 41.32 | 89.9 |
| ab | 2 596 064 | 41.40 | 89.77 |
| ac | 3 570 364 | 41.17 | 89.81 |
| ad | 2 198 670 | 41.14 | 89.74 |
| ae | 4 671 291 | 41.19 | 91.58 |
| af | 4 263 822 | 41.49 | 90.55 |
| ag | 2 283 401 | 41.07 | 91.97 |
| ah | 3 040 597 | 40.72 | 92.19 |
| ai | 2 942 299 | 40.72 | 92.82 |
| aj | 3 024 718 | 40.62 | 92.36 |
| ak | 3 519 849 | 42.23 | 92.95 |
| al | 3 488 184 | 41.95 | 90.74 |
| am | 3 070 469 | 41.61 | 92.69 |
| an | 2 546 657 | 40.93 | 92.34 |
| ao | 1 640 283 | 41.40 | 92.64 |
| ap | 3 001 143 | 41.22 | 92.7 |
| aq | 2 141 727 | 41.13 | 92.52 |
| ar | 3 413 097 | 42.42 | 93.00 |
| Rice | 1 218 766 | 43.87 | 90.09 |
| 样品 Sample | SLAF标签数 SLAF number | 测序总深度 Total depth | 平均深度 Average depth |
|---|---|---|---|
| aa | 166 455 | 2 767 290 | 16.62 |
| ab | 177 000 | 2 424 843 | 13.70 |
| ac | 186 372 | 3 375 654 | 18.11 |
| ad | 145 281 | 1 989 982 | 13.70 |
| ae | 219 199 | 4 463 382 | 20.36 |
| af | 199 132 | 4 033 069 | 20.25 |
| ag | 186 738 | 2 144 672 | 11.48 |
| ah | 220 713 | 2 817 050 | 12.76 |
| ai | 202 101 | 2 821 259 | 13.96 |
| aj | 200 880 | 2 901 428 | 14.44 |
| ak | 239 781 | 3 370 804 | 14.06 |
| al | 208 188 | 3 261 502 | 15.67 |
| am | 243 534 | 2 848 883 | 11.70 |
| an | 198 748 | 2 421 674 | 12.18 |
| ao | 164 538 | 1 556 854 | 9.46 |
| ap | 217 485 | 2 874 677 | 13.22 |
| aq | 210 247 | 2 024 107 | 9.63 |
| ar | 253 900 | 3 187 561 | 12.55 |
表3 菱各材料的SLAF标签统计
Table 3 SLAF label statistics of Trapa L.
| 样品 Sample | SLAF标签数 SLAF number | 测序总深度 Total depth | 平均深度 Average depth |
|---|---|---|---|
| aa | 166 455 | 2 767 290 | 16.62 |
| ab | 177 000 | 2 424 843 | 13.70 |
| ac | 186 372 | 3 375 654 | 18.11 |
| ad | 145 281 | 1 989 982 | 13.70 |
| ae | 219 199 | 4 463 382 | 20.36 |
| af | 199 132 | 4 033 069 | 20.25 |
| ag | 186 738 | 2 144 672 | 11.48 |
| ah | 220 713 | 2 817 050 | 12.76 |
| ai | 202 101 | 2 821 259 | 13.96 |
| aj | 200 880 | 2 901 428 | 14.44 |
| ak | 239 781 | 3 370 804 | 14.06 |
| al | 208 188 | 3 261 502 | 15.67 |
| am | 243 534 | 2 848 883 | 11.70 |
| an | 198 748 | 2 421 674 | 12.18 |
| ao | 164 538 | 1 556 854 | 9.46 |
| ap | 217 485 | 2 874 677 | 13.22 |
| aq | 210 247 | 2 024 107 | 9.63 |
| ar | 253 900 | 3 187 561 | 12.55 |
| 样品 Sample | SNP总数 Total SNP | 对应SNP个数 SNP number | SNP杂合率 Hetloci ratio/% | SNP完整度 Integrity ratio/% |
|---|---|---|---|---|
| aa | 269 338 | 169 049 | 1.75 | 62.76 |
| ab | 269 338 | 180 913 | 2.13 | 67.16 |
| ac | 269 338 | 181 016 | 1.97 | 67.20 |
| ad | 269 338 | 167 124 | 2.96 | 62.04 |
| ae | 269 338 | 212 843 | 4.03 | 79.02 |
| af | 269 338 | 199 091 | 2.46 | 73.91 |
| ag | 269 338 | 191 099 | 2.25 | 70.95 |
| ah | 269 338 | 209 631 | 51.32 | 77.83 |
| ai | 269 338 | 205 872 | 2.72 | 76.43 |
| aj | 269 338 | 199 054 | 2.14 | 73.90 |
| ak | 269 338 | 212 032 | 2.70 | 78.72 |
| al | 269 338 | 206 130 | 6.19 | 76.53 |
| am | 269 338 | 224 360 | 6.70 | 83.30 |
| an | 269 338 | 196 836 | 1.88 | 73.08 |
| ao | 269 338 | 177 757 | 1.59 | 65.99 |
| ap | 269 338 | 206 121 | 2.28 | 76.52 |
| aq | 269 338 | 201 976 | 2.47 | 74.98 |
| ar | 269 338 | 223 897 | 3.81 | 83.12 |
表4 菱各材料的SNP信息统计
Table 4 SNP statistics of Trapa L.
| 样品 Sample | SNP总数 Total SNP | 对应SNP个数 SNP number | SNP杂合率 Hetloci ratio/% | SNP完整度 Integrity ratio/% |
|---|---|---|---|---|
| aa | 269 338 | 169 049 | 1.75 | 62.76 |
| ab | 269 338 | 180 913 | 2.13 | 67.16 |
| ac | 269 338 | 181 016 | 1.97 | 67.20 |
| ad | 269 338 | 167 124 | 2.96 | 62.04 |
| ae | 269 338 | 212 843 | 4.03 | 79.02 |
| af | 269 338 | 199 091 | 2.46 | 73.91 |
| ag | 269 338 | 191 099 | 2.25 | 70.95 |
| ah | 269 338 | 209 631 | 51.32 | 77.83 |
| ai | 269 338 | 205 872 | 2.72 | 76.43 |
| aj | 269 338 | 199 054 | 2.14 | 73.90 |
| ak | 269 338 | 212 032 | 2.70 | 78.72 |
| al | 269 338 | 206 130 | 6.19 | 76.53 |
| am | 269 338 | 224 360 | 6.70 | 83.30 |
| an | 269 338 | 196 836 | 1.88 | 73.08 |
| ao | 269 338 | 177 757 | 1.59 | 65.99 |
| ap | 269 338 | 206 121 | 2.28 | 76.52 |
| aq | 269 338 | 201 976 | 2.47 | 74.98 |
| ar | 269 338 | 223 897 | 3.81 | 83.12 |
图2 十八个菱材料的遗传结构分析结果 A, Admixture各个K值交叉验证错误率;B, Admixture各个K值对应的样品聚类结果。红框中为K=7的聚类结果图。
Fig.2 Genetic structure analysis of Trapa L. samples A, Admixture of each K value cross validation error rate; B, Admixture of each K value corresponding sample clustering results. The red box is the clustering result graph with K=7.
| 样品Sample | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | 组Group |
|---|---|---|---|---|---|---|---|---|
| af | 0.999 934 | 0.000 010 | 0.000 016 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q1 |
| ak | 0.488 402 | 0.000 010 | 0.188 437 | 0.076 140 | 0.223 630 | 0.023 371 | 0.000 010 | Q1 |
| aa | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q2 |
| ag | 0.000 014 | 0.616 692 | 0.000 010 | 0.383 254 | 0.000 010 | 0.000 010 | 0.000 010 | Q2 |
| ap | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q2 |
| al | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q3 |
| ar | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q3 |
| ai | 0.000 010 | 0.000 010 | 0.020 474 | 0.375 273 | 0.249 194 | 0.355 028 | 0.000 010 | Q4 |
| aj | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| an | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| af | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| aq | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| ac | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | Q5 |
| ad | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | Q5 |
| ae | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | Q5 |
| ab | 0.000 015 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 935 | 0.000 010 | Q6 |
| am | 0.000 010 | 0.000 220 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 730 | 0.000 010 | Q6 |
| ah | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | Q7 |
表5 菱材料遗传结构分群表
Table 5 The table of the groups of Trapa L. samples classified by genetic structure
| 样品Sample | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | 组Group |
|---|---|---|---|---|---|---|---|---|
| af | 0.999 934 | 0.000 010 | 0.000 016 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q1 |
| ak | 0.488 402 | 0.000 010 | 0.188 437 | 0.076 140 | 0.223 630 | 0.023 371 | 0.000 010 | Q1 |
| aa | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q2 |
| ag | 0.000 014 | 0.616 692 | 0.000 010 | 0.383 254 | 0.000 010 | 0.000 010 | 0.000 010 | Q2 |
| ap | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q2 |
| al | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q3 |
| ar | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | Q3 |
| ai | 0.000 010 | 0.000 010 | 0.020 474 | 0.375 273 | 0.249 194 | 0.355 028 | 0.000 010 | Q4 |
| aj | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| an | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| af | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| aq | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | 0.000 010 | Q4 |
| ac | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | Q5 |
| ad | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | Q5 |
| ae | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | 0.000 010 | 0.000 010 | Q5 |
| ab | 0.000 015 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 935 | 0.000 010 | Q6 |
| am | 0.000 010 | 0.000 220 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 730 | 0.000 010 | Q6 |
| ah | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.000 010 | 0.999 940 | Q7 |
| [1] | 于丹. 中国东北菱属植物的研究[J]. 植物研究, 1994, 14(1): 40-47. |
| YU D. Study on Trapa L.(Trapaceae)from northeast China[J]. Bulletin of Botanical Research, 1994, 14(1): 40-47. (in Chinese with English abstract) | |
| [2] | 陈家瑞. 中国植物志:第53卷, 第2分册[M]. 北京: 科学出版社, 2000:1-26 |
| [3] | HUMMEL M, KIVIAT E. Review of world literature on water chestnut with implications for management in North America[J]. Journal of Aquatic Plant Management, 2004, 42: 17-28. |
| [4] | HOQUE A, DAVEY M R, ARIMA S. Water chestnut: potential of biotechnology for crop improvement[J]. Journal of New Seeds, 2009, 10(3): 180-195. |
| [5] | 彭静, 柯卫东, 刘义满, 等. 中国菱的研究概况[J]. 中国蔬菜, 2007(B08): 76-80. |
| PENG J, KE W D, LIU Y M, et al. Overview of research on Chinese Trapa L.[J]. China Vegetables, 2007(B08): 76-80. (in Chinese) | |
| [6] | 夏如冰. 古代江南菱的栽培与利用[J]. 中国农史, 1996, 15(1): 102-106. |
| XIA R B. The cultivation and utilization of ancient Jiangnan Trapa L.[J]. Agricultural History of China, 1996, 15(1): 102-106. (in Chinese) | |
| [7] | 惠富平, 曹颖. 明清时期太湖地区菱的种植[J]. 中国农史, 2015(5): 24-33. |
| HUI F P, CAO Y. Water caltrop cultivation around Taihu Lake in the Ming-Qing dynasties[J]. Agricultural History of China, 2015(5): 24-33. (in Chinese with English abstract) | |
| [8] | 孔庆东. 中国水生蔬菜品种资源[M]. 武汉: 湖北科学技术出版社, 2005. |
| [9] | 姚祥坦, 张敏, 沈亚强. 南湖菱研究进展[J]. 浙江农业科学, 2016, 57(10): 1735-1739. |
| YAO X T, ZHANG M, SHEN Y Q. Progress in Research on Nanhu Trapa L. plnts[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(10): 1735-1739. (in Chinese) | |
| [10] | 丁炳扬, 张慧明. 浙江菱属植物花粉形态研究[J]. 植物分类学报, 1991(2): 172-177. |
| DING B Y, ZHANG H M. A Study on the pollen morphology of Trapa plants in Zhejiang Province[J]. Acta Phytotaxonomica Sinica, 1991(2): 172-177. (in Chinese) | |
| [11] | 胡仁勇, 丁炳扬, 黄涛, 等. 国产菱属植物数量分类学研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(4): 419-423. |
| HU R Y, DING B Y, HUANG T, et al. A numerical taxonomic study of Trapa from China[J]. Journal of Zhejiang Agricultural University (Agriculture and Life Sciences), 2001, 27(4): 419-423. (in Chinese with English abstract) | |
| [12] | 丁炳扬, 金孝锋. 中国菱属菱科植物的分类研究[J]. 广西植物, 2020, 40(1):1-15 |
| DING B Y, JIN X F. Taxonomic notes on genus Trapa L.(Trapaceae) in China[J]. Guihaia, 2020, 40(1): 1-15. (in Chinese with English abstract) | |
| [13] | 董晶莱, 高广春, 黄嬛, 等. DNA条形码技术在部分菱属植物分子鉴定中的应用[J]. 浙江农业科学, 2015, 56(4): 530-533, 557. |
| DONG J L, GAO G C, HUANG Q, et al. Application of DNA barcoding technology in molecular identification of some Rhombus plants[J]. Journal of Zhejiang Agricultural Sciences, 2015, 56(4): 530-533, 557. (in Chinese) | |
| [14] | 保曙琳, 丁小余, 常俊, 等. 长江中下游地区菱属植物的DNA分子鉴别[J]. 中草药, 2004, 35(8): 926-930. |
| BAO S L, DING X Y, CHANG J, et al. Identification of Trapa L. plants along middle-low reaches of Changjiang River by analyzing their DNA sequences[J]. Chinese Traditional and Herbal Drugs, 2004, 35(8): 926-930. (in Chinese with English abstract) | |
| [15] | SUN X W, LIU D Y, ZHANG X F, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700. |
| [16] | 李余良, 索海翠, 韩福光, 等. 基于SLAF-seq技术分析甜、糯玉米种质遗传多样性[J]. 玉米科学, 2019, 27(4): 71-78. |
| LI Y L, SUO H C, HAN F G, et al. Analysis of genetic diversity of sweet and wax corn germplasms using SLAF-seq technology[J]. Journal of Maize Sciences, 2019, 27(4): 71-78. (in Chinese with English abstract) | |
| [17] | 段义忠, 王建武, 杜忠毓, 等. 基于SLAF-seq简化基因组技术的沙冬青SNP位点开发及遗传分析[J]. 植物研究, 2018, 38(1): 141-147. |
| DUAN Y Z, WANG J W, DU Z Y, et al. SNP sites developed by specific length amplification fragment sequencing (SLAF-seq) and genetic analysis in ammopitanthus mongolicus[J]. Bulletin of Botanical Research, 2018, 38(1): 141-147. (in Chinese with English abstract) | |
| [18] | 李贝贝, 张恒, 姜建福, 等. 基于SLAF-seq技术的葡萄种质遗传多样性分析[J]. 园艺学报, 2019, 46(11): 2109-2118. |
| LI B B, ZHANG H, JIANG J F, et al. Analysis of genetic diversity of grape germplasms using SLAF-seq technology[J]. Acta Horticulturae Sinica, 2019, 46(11): 2109-2118. (in Chinese with English abstract) | |
| [19] | 高源, 王大江, 王昆, 等. 苹果属植物种质多样性的SLAF-seq分析[J]. 园艺学报, 2020, 47(10): 1869-1882. |
| GAO Y, WANG D J, WANG K, et al. Analysis of genetic diversity of apple germplasms of Malus using SLAF-seq technology[J]. Acta Horticulturae Sinica, 2020, 47(10): 1869-1882. (in Chinese with English abstract) | |
| [20] | 白牡丹, 郝国伟, 张晓伟, 等. 基于SLAF-seq技术的山西省地方梨品种的SNP分析[J]. 西北农业学报, 2020, 29(7): 1020-1027. |
| BAI M D, HAO G W, ZHANG X W, et al. SNP analysis of local pear germplasm resources in Shanxi Province based on SLAF-seq technology[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(7): 1020-1027. (in Chinese with English abstract) | |
| [21] | 张一中, 范昕琦, 杨慧勇, 等. 基于简化基因组测序高粱育种材料亲缘关系的分析[J]. 生物技术通报, 2020, 36(12): 21-33. |
| ZHANG Y Z, FAN X Q, YANG H Y, et al. Genetic relationship analysis of sorghum breeding materials based on simplified genome sequencing[J]. Biotechnology Bulletin, 2020, 36(12): 21-33. (in Chinese with English abstract) | |
| [22] | KOZICH J J, WESTCOTT S L, BAXTER N T, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J]. Applied and Environmental Microbiology, 2013, 79(17): 5112-5120. |
| [23] | LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760. |
| [24] | MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303. |
| [25] | LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079. |
| [26] | KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. |
| [27] | ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664. |
| [28] | 詹丽娟, 魏国强, 朱祝军, 等. 南湖菱果实退化现状与成因初探[J]. 浙江农业科学, 2012, 53(4): 482-484. |
| ZHAN L J, WEI G Q, ZHU Z J, et al. Preliminary study on the fruit degradation status and causes of Nanhu Trapa L. plants[J]. Journal of Zhejiang Agricultural Sciences, 2012, 53(4): 482-484. (in Chinese) |
| [1] | 洪霞, 卢基来, 漆慧娟, 陈孝赏. 姜种质资源遗传多样性分析与核心种质资源库的构建[J]. 浙江农业学报, 2025, 37(6): 1233-1243. |
| [2] | 秦斗文, 刘伟强, 田吉婷, 巨秀婷. 伊犁郁金香cpDNA-PCR体系构建与遗传多样性分析[J]. 浙江农业学报, 2025, 37(1): 78-89. |
| [3] | 张元元, 冯举伶, 肖婧凤, 关宇, 龙楚儿, 姚立蓉, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 周喜荣, 刘梅金, 汪军成. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 浙江农业学报, 2024, 36(9): 1977-1989. |
| [4] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
| [5] | 黄辉, 储忝江, 谢楠, 刘凯. 基于线粒体COI序列片段研究华鳈不同地理群体及其他鳈属鱼类的遗传多样性[J]. 浙江农业学报, 2024, 36(8): 1779-1788. |
| [6] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
| [7] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
| [8] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
| [9] | 向进, 王春源, 吴燕, 谭元成, 杨酸, 张依裕. 柯乐猪CRISP3基因SNP鉴定及其对繁殖性状的影响[J]. 浙江农业学报, 2024, 36(6): 1270-1278. |
| [10] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
| [11] | 杨天文, 王静, 李炯, 徐彬其, 程蛟文, 洪宇, 曹毅, 崔竣杰. 大顶苦瓜种质资源的遗传多样性分析与指纹图谱构建[J]. 浙江农业学报, 2024, 36(1): 103-114. |
| [12] | 吴倩, 汤紫依, 田盛野, 何海叶, 潘伟伟, 王军峰, 鲍洪华, 张慧娟, 蒋明. 基于SRAP分子标记的华顶杜鹃遗传多样性[J]. 浙江农业学报, 2024, 36(1): 127-133. |
| [13] | 张小利, 朱灵龙, 李付振, 唐秀梅, 夏友霖, 游宇, 钟瑞春. 115份花生种质资源农艺与品质性状鉴评及分析[J]. 浙江农业学报, 2023, 35(9): 2033-2044. |
| [14] | 孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498. |
| [15] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||