浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1782-1792.DOI: 10.3969/j.issn.1004-1524.20221098
张博1(), 刘泽慈1,*(
), 汪洁1, 李兆壮1, 李录山1, 胡琳莉1, 郁继华1,2,*(
)
收稿日期:
2022-07-25
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
张博(1995—),男,甘肃定西人,硕士,主要从事蔬菜栽培与生理生态研究。E-mail:2395864925@qq.com
通讯作者:
*郁继华,E-mail:yujihuagg@163.com;刘泽慈,E-mail: liuzc@gsau.edu.cn
基金资助:
ZHANG Bo1(), LIU Zeci1,*(
), WANG Jie1, LI Zhaozhuang1, LI Lushan1, HU Linli1, YU Jihua1,2,*(
)
Received:
2022-07-25
Online:
2023-08-25
Published:
2023-08-29
摘要:
为探讨不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响,将羊粪、甘蓝尾菜(以下简称尾菜)、牛粪、平菇菇渣(以下简称菇渣)、玉米秸秆(以下简称秸秆)按不同质量比配置9种不同有机肥配方:T1(羊粪∶尾菜的体积比为5.5∶4.5)、T2(羊粪∶尾菜∶牛粪的体积比为6∶3∶1)、T3(羊粪∶尾菜∶菇渣的体积比为6∶3∶1)、T4(羊粪∶尾菜∶秸秆的体积比为6∶3∶1)、T5(羊粪∶尾菜∶牛粪∶菇渣的体积比为6∶2∶1∶1)、T6(羊粪∶尾菜∶牛粪∶秸秆的体积比为6∶2∶1∶1)、T7(羊粪∶甘蓝尾菜∶菇渣∶秸秆的体积比为6∶2∶1∶1)、T8(羊粪∶尾菜∶牛粪∶菇渣∶秸秆的体积比为5∶2∶1∶1∶1),以CK1(不施有机肥)、当地商品有机肥配方CK2(羊粪∶甘蓝尾菜的体积比为6.5∶3.5)为对照,探究了不同配方有机肥栽培条件下露地甘蓝生长、产量和品质的差异,旨在为农业废弃物肥料化利用提供依据。试验结果表明,T6(羊粪∶牛粪∶尾菜∶秸秆=6∶1∶2∶1)配方有机肥处理下的露地甘蓝株幅在结球期和采收期均高于其他处理,株高在结球期高于其他处理,最大叶面积在结球期和采收期均高于其他处理;T6处理下甘蓝莲座期根系活力显著高于其他生长时期;T6处理下甘蓝生物产量与干物质积累与商品有机肥CK2处理比较,分别增加7.18%和55.99%;同时T6处理下甘蓝可溶性糖、维生素C含量均高于其他配方有机肥处理;硝酸盐含量低于其他配方有机肥处理。各处理矿质元素含量较CK1有不同程度的提高。对17项指标进行隶属函数分析,综合评价以T6处理配方有机肥效果最佳,其次为T4>T3>T8>T7>T1>CK2>T2>T5>CK1。
中图分类号:
张博, 刘泽慈, 汪洁, 李兆壮, 李录山, 胡琳莉, 郁继华. 不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响[J]. 浙江农业学报, 2023, 35(8): 1782-1792.
ZHANG Bo, LIU Zeci, WANG Jie, LI Zhaozhuang, LI Lushan, HU Linli, YU Jihua. Effects of different fertilizer formulations of agricultural wastes on growth, yield and quality of cabbage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1782-1792.
原料 Raw material | 全氮含量 Total N content/ (g·kg-1) | 全磷含量 Total P content/ (g·kg-1) | 全钾含量 Total K content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable N content/ (mg·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 有机质含量 Organic matter content/ (g·kg-1) |
---|---|---|---|---|---|---|---|
平菇菇渣Mushroom residue | 9.10 | 6.65 | 11.40 | 630.58 | 284.33 | 9 253.33 | 470.31 |
牛粪Cow manure | 9.00 | 5.71 | 13.30 | 686.58 | 383.29 | 6 786.67 | 510.76 |
羊粪Sheep manure | 8.99 | 6.61 | 11.80 | 658.58 | 304.87 | 9 320.00 | 945.67 |
玉米秸秆Corn straw | 10.04 | 7.79 | 15.09 | 546.58 | 385.61 | 8 246.67 | 998.77 |
甘蓝尾菜 Cabbage vegetable residue | 11.09 | 5.41 | 139.60 | 971.25 | 391.25 | 13 886.67 | 614.43 |
表1 农业废弃物原料基本理化性质
Table 1 Basic physical and chemical properties of agricultural waste materials
原料 Raw material | 全氮含量 Total N content/ (g·kg-1) | 全磷含量 Total P content/ (g·kg-1) | 全钾含量 Total K content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable N content/ (mg·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 有机质含量 Organic matter content/ (g·kg-1) |
---|---|---|---|---|---|---|---|
平菇菇渣Mushroom residue | 9.10 | 6.65 | 11.40 | 630.58 | 284.33 | 9 253.33 | 470.31 |
牛粪Cow manure | 9.00 | 5.71 | 13.30 | 686.58 | 383.29 | 6 786.67 | 510.76 |
羊粪Sheep manure | 8.99 | 6.61 | 11.80 | 658.58 | 304.87 | 9 320.00 | 945.67 |
玉米秸秆Corn straw | 10.04 | 7.79 | 15.09 | 546.58 | 385.61 | 8 246.67 | 998.77 |
甘蓝尾菜 Cabbage vegetable residue | 11.09 | 5.41 | 139.60 | 971.25 | 391.25 | 13 886.67 | 614.43 |
图1 农业废弃物肥料化配方对甘蓝株幅的影响 同一时期不同处理间没有相同小写字母表示在 0.05 水平差异显著。下同。
Fig.1 Effect of fertilizer formula of agricultural waste on the plant breadth of cabbage The bars with different lowercase letters in the same period indicate significant difference at 0.05 level. The same as below.
处理 Treatments | 生物产量 The biological yield/(kg·667m-2) | 经济产量 The economic yield/(kg·667m-2) | 经济系数 Harvest index | 产量增幅 Output growth/% |
---|---|---|---|---|
CK1 | 3 633.03±351.10 b | 2 523.88±285.34 b | 0.69±0.01 cd | — |
CK2 | 6 099.17±236.11 a | 4 501.77±271.38 a | 0.74±0.01 ab | 0.00 |
T1 | 5 675.91±725.68 a | 4 165.29±504.39 a | 0.73±0.01 ab | -6.93 |
T2 | 5 225.50±753.23 a | 3 807.55±546.95 a | 0.73±0.01 abc | -14.32 |
T3 | 5 566.46±487.63 a | 4 072.01±346.04 a | 0.73±0.01 ab | -8.73 |
T4 | 6 427.38±345.93 a | 4 649.35±272.89 a | 0.72±0.01 abc | 5.38 |
T5 | 5 590.96±221.02 a | 3 813.67±74.84 a | 0.68±0.03 d | -8.33 |
T6 | 6 537.18±393.84 a | 4 750.88±284.33 a | 0.73±0.01 abc | 7.18 |
T7 | 5 203.39±634.88 a | 3 703.85±514.95 a | 0.71±0.01 bcd | -14.69 |
T8 | 6 032.56±533.60 a | 4 522.70±410.66 a | 0.75±0.01 a | -1.09 |
表2 农业废弃物肥料化配方对甘蓝产量的影响
Table 2 Effects of fertilizer formula of agricultural waste on the yield of cabbage
处理 Treatments | 生物产量 The biological yield/(kg·667m-2) | 经济产量 The economic yield/(kg·667m-2) | 经济系数 Harvest index | 产量增幅 Output growth/% |
---|---|---|---|---|
CK1 | 3 633.03±351.10 b | 2 523.88±285.34 b | 0.69±0.01 cd | — |
CK2 | 6 099.17±236.11 a | 4 501.77±271.38 a | 0.74±0.01 ab | 0.00 |
T1 | 5 675.91±725.68 a | 4 165.29±504.39 a | 0.73±0.01 ab | -6.93 |
T2 | 5 225.50±753.23 a | 3 807.55±546.95 a | 0.73±0.01 abc | -14.32 |
T3 | 5 566.46±487.63 a | 4 072.01±346.04 a | 0.73±0.01 ab | -8.73 |
T4 | 6 427.38±345.93 a | 4 649.35±272.89 a | 0.72±0.01 abc | 5.38 |
T5 | 5 590.96±221.02 a | 3 813.67±74.84 a | 0.68±0.03 d | -8.33 |
T6 | 6 537.18±393.84 a | 4 750.88±284.33 a | 0.73±0.01 abc | 7.18 |
T7 | 5 203.39±634.88 a | 3 703.85±514.95 a | 0.71±0.01 bcd | -14.69 |
T8 | 6 032.56±533.60 a | 4 522.70±410.66 a | 0.75±0.01 a | -1.09 |
图6 农业废弃物肥料化配方对甘蓝可溶性糖含量、可溶性蛋白含量、维生素C含量、硝酸盐含量的影响
Fig.6 Effects of fertilizer formula of agricultural waste on soluble sugar content, soluble protein content, vitamin C content, nitrate content in cabbage
处理 Treatments | Ca含量 Ca content/ (g·kg-1) | Mg含量 Mg content/ (g·kg-1) | Cu含量 Cu content/ (mg·kg-1) | Fe含量 Fe content/ (mg·kg-1) | Mn含量 Mn content/ (mg·kg-1) | Zn含量 Zn content/ (mg·kg-1) |
---|---|---|---|---|---|---|
T1 | 10.47±0.08 ab | 2.20±0.04 d | 0.15±0.02 cd | 4.15±0.29 abc | 0.43±0.01 abc | 0.54±0.01 a |
T2 | 9.91±0.25 b | 2.78±0.06 b | 0.14±0.01 de | 4.84±0.05 a | 0.39±0.03 cde | 0.53±0.01 a |
T3 | 10.02±0.48 b | 2.98±0.05 a | 0.17±0.01 cd | 3.92±0.20 bcd | 0.48±0.02 ab | 0.51±0.01 ab |
T4 | 8.90±0.12 c | 2.28±0.07 cd | 0.19±0.01 abc | 3.26±0.04 d | 0.37±0.03 cde | 0.47±0.01 b |
T5 | 10.22±0.54 b | 2.72±0.05 b | 0.13±0.01 de | 1.76±0.06 e | 0.35±0.03 de | 0.47±0.01 b |
T6 | 11.28±0.25 a | 2.44±0.07 c | 0.21±0.02 ab | 4.51±0.24 ab | 0.49±0.01 a | 0.54±0.02 a |
T7 | 10.41±0.11 ab | 2.71±0.10 b | 0.18±0.01 bc | 3.57±0.08 cd | 0.48±0.01 ab | 0.42±0.02 c |
T8 | 10.22±0.20 b | 2.35±0.05 cd | 0.23±0.01 a | 3.60±0.40 cd | 0.41±0.03 bcd | 0.43±0.01 c |
CK1 | 8.35±0.28 c | 1.76±0.03 e | 0.11±0.01 e | 1.60±0.21 e | 0.39±0.01 cde | 0.40±0.02 c |
CK2 | 9.87±0.31 b | 2.17±0.09 d | 0.16±0.01 cd | 3.76±0.38 cd | 0.32±0.03 e | 0.41±0.01 c |
表3 农业废弃物肥料化配方对甘蓝矿质元素含量的影响
Table 3 Effect of fertilizer formula of agricultural waste on content of mineral elements in cabbage
处理 Treatments | Ca含量 Ca content/ (g·kg-1) | Mg含量 Mg content/ (g·kg-1) | Cu含量 Cu content/ (mg·kg-1) | Fe含量 Fe content/ (mg·kg-1) | Mn含量 Mn content/ (mg·kg-1) | Zn含量 Zn content/ (mg·kg-1) |
---|---|---|---|---|---|---|
T1 | 10.47±0.08 ab | 2.20±0.04 d | 0.15±0.02 cd | 4.15±0.29 abc | 0.43±0.01 abc | 0.54±0.01 a |
T2 | 9.91±0.25 b | 2.78±0.06 b | 0.14±0.01 de | 4.84±0.05 a | 0.39±0.03 cde | 0.53±0.01 a |
T3 | 10.02±0.48 b | 2.98±0.05 a | 0.17±0.01 cd | 3.92±0.20 bcd | 0.48±0.02 ab | 0.51±0.01 ab |
T4 | 8.90±0.12 c | 2.28±0.07 cd | 0.19±0.01 abc | 3.26±0.04 d | 0.37±0.03 cde | 0.47±0.01 b |
T5 | 10.22±0.54 b | 2.72±0.05 b | 0.13±0.01 de | 1.76±0.06 e | 0.35±0.03 de | 0.47±0.01 b |
T6 | 11.28±0.25 a | 2.44±0.07 c | 0.21±0.02 ab | 4.51±0.24 ab | 0.49±0.01 a | 0.54±0.02 a |
T7 | 10.41±0.11 ab | 2.71±0.10 b | 0.18±0.01 bc | 3.57±0.08 cd | 0.48±0.01 ab | 0.42±0.02 c |
T8 | 10.22±0.20 b | 2.35±0.05 cd | 0.23±0.01 a | 3.60±0.40 cd | 0.41±0.03 bcd | 0.43±0.01 c |
CK1 | 8.35±0.28 c | 1.76±0.03 e | 0.11±0.01 e | 1.60±0.21 e | 0.39±0.01 cde | 0.40±0.02 c |
CK2 | 9.87±0.31 b | 2.17±0.09 d | 0.16±0.01 cd | 3.76±0.38 cd | 0.32±0.03 e | 0.41±0.01 c |
指标Index | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | CK1 | CK2 |
---|---|---|---|---|---|---|---|---|---|---|
投影Projection | 0.38 | 0.26 | 0.05 | 0.62 | 0.40 | 1.00 | 0.78 | 0.78 | 0 | 0.75 |
最大叶面积Maximum leaf area | 0.56 | 0 | 0.16 | 0.60 | 0.38 | 1.00 | 0.32 | 0.32 | 0.13 | 0.66 |
株高Plant height | 0.92 | 0.21 | 0.49 | 0.74 | 0.79 | 0.92 | 1.00 | 1.00 | 0 | 0.65 |
根系活力Root vitality | 0.30 | 0.19 | 1.00 | 0.56 | 0.43 | 0.35 | 0.20 | 0.09 | 0.03 | 0 |
生物产量Economic yield | 0.70 | 0.55 | 0.67 | 0.96 | 0.67 | 1.00 | 0.54 | 0.83 | 0 | 0.85 |
经济产量Biological yield | 0.74 | 0.58 | 0.70 | 0.95 | 0.58 | 1.00 | 0.53 | 0.90 | 0 | 0.89 |
干物质积累量Dry matter accumulation | 0.10 | 0.35 | 0.45 | 0.75 | 0.47 | 1.00 | 0.39 | 0.41 | 0 | 0.59 |
可溶性糖含量Soluble sugar content | 0.97 | 0.57 | 0.20 | 0.48 | 0.43 | 1.00 | 0.11 | 0.64 | 0 | 0.11 |
可溶性蛋白含量Soluble protein content | 0.37 | 0.87 | 0.88 | 1.00 | 0.22 | 0 | 0.86 | 0.04 | 0.42 | 0.90 |
维生素C含量VC content | 0.04 | 0.30 | 0.35 | 0.87 | 0.61 | 1.00 | 0.82 | 0.71 | 0 | 0.36 |
硝酸盐含量Nitrate content | 0.32 | 0.79 | 0.54 | 0 | 0.56 | 1.00 | 0.68 | 0.69 | 0.29 | 0.91 |
钙含量Ca content | 0.72 | 0.53 | 0.57 | 0.19 | 0.64 | 1.00 | 0.70 | 0.64 | 0 | 0.52 |
镁含量Mg content | 0.36 | 0.84 | 1.00 | 0.42 | 0.79 | 0.56 | 0.78 | 0.48 | 0 | 0.34 |
铜含量Cu content | 0.43 | 0.30 | 0.60 | 0.81 | 0.24 | 1.00 | 0.72 | 1.13 | 0 | 0.46 |
铁含量Fe content | 0.73 | 0.94 | 0.63 | 0.21 | 0.42 | 1.00 | 0.40 | 0.42 | 0 | 0.53 |
锰含量Mn content | 0.71 | 0.52 | 0.94 | 0.41 | 0.31 | 1.00 | 0.93 | 0.62 | 0 | 0.33 |
锌含量Zn content | 1.00 | 0.91 | 0.79 | 0.50 | 0.50 | 0.96 | 0.10 | 0.16 | 0 | 0.07 |
平均隶属度Average membership | 0.55 | 0.51 | 0.59 | 0.59 | 0.50 | 0.87 | 0.58 | 0.58 | 0.05 | 0.52 |
位次Rank | 6 | 8 | 3 | 2 | 9 | 1 | 5 | 4 | 10 | 7 |
表4 农业废弃物肥料化配方对甘蓝生长及品质指标影响综合性评价
Table 4 Comprehensive evaluation of effects of agricultural waste fertilizer formula on growth and quality indexes of cabbage
指标Index | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | CK1 | CK2 |
---|---|---|---|---|---|---|---|---|---|---|
投影Projection | 0.38 | 0.26 | 0.05 | 0.62 | 0.40 | 1.00 | 0.78 | 0.78 | 0 | 0.75 |
最大叶面积Maximum leaf area | 0.56 | 0 | 0.16 | 0.60 | 0.38 | 1.00 | 0.32 | 0.32 | 0.13 | 0.66 |
株高Plant height | 0.92 | 0.21 | 0.49 | 0.74 | 0.79 | 0.92 | 1.00 | 1.00 | 0 | 0.65 |
根系活力Root vitality | 0.30 | 0.19 | 1.00 | 0.56 | 0.43 | 0.35 | 0.20 | 0.09 | 0.03 | 0 |
生物产量Economic yield | 0.70 | 0.55 | 0.67 | 0.96 | 0.67 | 1.00 | 0.54 | 0.83 | 0 | 0.85 |
经济产量Biological yield | 0.74 | 0.58 | 0.70 | 0.95 | 0.58 | 1.00 | 0.53 | 0.90 | 0 | 0.89 |
干物质积累量Dry matter accumulation | 0.10 | 0.35 | 0.45 | 0.75 | 0.47 | 1.00 | 0.39 | 0.41 | 0 | 0.59 |
可溶性糖含量Soluble sugar content | 0.97 | 0.57 | 0.20 | 0.48 | 0.43 | 1.00 | 0.11 | 0.64 | 0 | 0.11 |
可溶性蛋白含量Soluble protein content | 0.37 | 0.87 | 0.88 | 1.00 | 0.22 | 0 | 0.86 | 0.04 | 0.42 | 0.90 |
维生素C含量VC content | 0.04 | 0.30 | 0.35 | 0.87 | 0.61 | 1.00 | 0.82 | 0.71 | 0 | 0.36 |
硝酸盐含量Nitrate content | 0.32 | 0.79 | 0.54 | 0 | 0.56 | 1.00 | 0.68 | 0.69 | 0.29 | 0.91 |
钙含量Ca content | 0.72 | 0.53 | 0.57 | 0.19 | 0.64 | 1.00 | 0.70 | 0.64 | 0 | 0.52 |
镁含量Mg content | 0.36 | 0.84 | 1.00 | 0.42 | 0.79 | 0.56 | 0.78 | 0.48 | 0 | 0.34 |
铜含量Cu content | 0.43 | 0.30 | 0.60 | 0.81 | 0.24 | 1.00 | 0.72 | 1.13 | 0 | 0.46 |
铁含量Fe content | 0.73 | 0.94 | 0.63 | 0.21 | 0.42 | 1.00 | 0.40 | 0.42 | 0 | 0.53 |
锰含量Mn content | 0.71 | 0.52 | 0.94 | 0.41 | 0.31 | 1.00 | 0.93 | 0.62 | 0 | 0.33 |
锌含量Zn content | 1.00 | 0.91 | 0.79 | 0.50 | 0.50 | 0.96 | 0.10 | 0.16 | 0 | 0.07 |
平均隶属度Average membership | 0.55 | 0.51 | 0.59 | 0.59 | 0.50 | 0.87 | 0.58 | 0.58 | 0.05 | 0.52 |
位次Rank | 6 | 8 | 3 | 2 | 9 | 1 | 5 | 4 | 10 | 7 |
[1] | 陶秀萍, 董红敏. 畜禽废弃物无害化处理与资源化利用技术研究进展[J]. 中国农业科技导报, 2017, 19(1): 37-42. |
TAO X P, DONG H M. Research progress on animal waste treatment and recycling technology[J]. Journal of Agricultural Science and Technology, 2017, 19(1): 37-42. (in Chinese with English abstract) | |
[2] | 宋志伟, 王晶, 朱旭丽, 等. 秸秆资源综合利用现状及展望[J]. 安徽农业科学, 2017, 45(7): 64-66, 162. |
SONG Z W, WANG J, ZHU X L, et al. Present research status and prospects of the comprehensive utilization of straw resources[J]. Journal of Anhui Agricultural Sciences, 2017, 45(7): 64-66, 162. (in Chinese with English abstract) | |
[3] | 武淑霞, 刘宏斌, 刘申, 等. 农业面源污染现状及防控技术[J]. 中国工程科学, 2018, 20(5): 23-30. |
WU S X, LIU H B, LIU S, et al. Review of current situation of agricultural non-point source pollution and its prevention and control technologies[J]. Strategic Study of CAE, 2018, 20(5): 23-30. (in Chinese with English abstract) | |
[4] | 李鹏, 王文杰. 我国农业废弃物资源的利用现状及开发前景[J]. 天津农业科学, 2009, 15(3): 46-49. |
LI P, WANG W J. Utilization status and prospect of agricultural wastes in China[J]. Tianjin Agricultural Sciences, 2009, 15(3): 46-49. (in Chinese with English abstract) | |
[5] | 董雪云, 张金流, 郭鹏飞. 农业固体废弃物资源化利用技术研究进展及展望[J]. 安徽农学通报, 2014, 20(18): 86-89. |
DONG X Y, ZHANG J L, GUO P F. Research progress and prospect in resource utilization technology of agricultural solid waste[J]. Anhui Agricultural Science Bulletin, 2014, 20(18): 86-89. (in Chinese with English abstract) | |
[6] | 刘长莉, 魏利, 黄剑. 农业有机废弃物资源化利用[M]. 哈尔滨: 东北林业大学出版社, 2010. |
[7] | 王长波, 平英华, 刘先才, 等. 我国秸秆资源“五化”利用研究进展[J]. 安徽农业科学, 2018, 46(7): 22-26, 29. |
WANG C B, PING Y H, LIU X C, et al. Research progress of the five ways of straw utilization in China[J]. Journal of Anhui Agricultural Sciences, 2018, 46(7): 22-26, 29. (in Chinese with English abstract) | |
[8] | 李龙涛, 李万明, 孙继民, 等. 城乡有机废弃物资源化利用现状及展望[J]. 农业资源与环境学报, 2019, 36(3): 264-271. |
LI L T, LI W M, SUN J M, et al. Research status and prospects of the resource utilization of organic waste in urban and rural areas[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 264-271. (in Chinese with English abstract) | |
[9] | 李国学, 李玉春, 李彦富. 固体废物堆肥化及堆肥添加剂研究进展[J]. 农业环境科学学报, 2003, 22(2): 252-256. |
LI G X, LI Y C, LI Y F. Advance on composting of solid waste and utilization of additives[J]. Journal of Agro-Environmental Science, 2003, 22(2): 252-256. (in Chinese with English abstract) | |
[10] | 李剑. 蔬菜废弃物堆肥技术参数的优化研究[D]. 上海: 上海交通大学, 2011. |
LI J. Study on optimizational technique of vegetable waste compost[D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese with English abstract) | |
[11] | 张修顺. 蔬菜废弃物肥料化处理研究[D]. 杨凌: 西北农林科技大学, 2019. |
ZHANG X S. Study on fertilization treatment of vegetable waste[D]. Yangling: Northwest A & F University, 2019. (in Chinese with English abstract) | |
[12] | 方智远, 张扬勇, 刘玉梅, 等. 高山(高原)夏菜中的甘蓝[J]. 中国蔬菜, 2010(19): 12-13. |
FANG Z Y, ZHANG Y Y, LIU Y M, et al. Cabbage in summer vegetable in alpine (plateau)[J]. China Vegetables, 2010(19): 12-13. (in Chinese) | |
[13] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[14] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[15] | 刘玉英, 罗云米, 李戎, 等. 有机无机肥施用对结球甘蓝形态、产量及品质的影响[J]. 中国农学通报, 2016, 32(4): 44-47. |
LIU Y Y, LUO Y M, LI R, et al. Effects of organic and inorganic fertilizer on cabbage morphology, yield and quality[J]. Chinese Agricultural Science Bulletin, 2016, 32(4): 44-47. (in Chinese with English abstract) | |
[16] | 汪新胜, 陆玲, 李拥军, 等. 有机肥与化肥配施对结球甘蓝生长特性、产量及品质的影响[J]. 湖北农业科学, 2018, 57(7): 22-24. |
WANG X S, LU L, LI Y J, et al. Effects of combined application of organic manure and chemical fertilizer on growth, yield and quality of the cabbage[J]. Hubei Agricultural Sciences, 2018, 57(7): 22-24. (in Chinese with English abstract) | |
[17] | 崔正勇, 李新华, 裴艳婷, 等. 氮磷配施对冬小麦干物质积累、分配及产量的影响[J]. 西北农业学报, 2018, 27(3): 339-346. |
CUI Z Y, LI X H, PEI Y T, et al. Effects of nitrogen-phosphorus-combined application on characteristics of dry matter accumulation, distribution and yield of winter wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(3): 339-346. (in Chinese with English abstract) | |
[18] | 柳燕兰, 郭贤仕, 张绪成, 等. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331. |
LIU Y L, GUO X S, ZHANG X C, et al. Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato[J]. Acta Agronomica Sinica, 2021, 47(2): 320-331. (in Chinese with English abstract) | |
[19] | 朱明霞, 白婷, 靳玉龙, 等. 施肥对春青稞干物质积累、分配及产量的影响[J]. 中国农学通报, 2020, 36(25): 7-13. |
ZHU M X, BAI T, JIN Y L, et al. Fertilization: effects on dry matter accumulation, distribution and yield of spring hulless barley[J]. Chinese Agricultural Science Bulletin, 2020, 36(25): 7-13. (in Chinese with English abstract) | |
[20] | 包奇军, 潘永东, 张华瑜, 等. 减量施肥对啤酒大麦干物质积累、产量及肥料利用率的影响[J]. 中国农业科技导报, 2020, 22(8): 149-158. |
BAO Q J, PAN Y D, ZHANG H Y, et al. Effect of reducing fertilizer application on dry matter accumulation, yield and fertilizer utilization efficiency of beer barely[J]. Journal of Agricultural Science and Technology, 2020, 22(8): 149-158. (in Chinese with English abstract) | |
[21] | 王晓玲. 不同培肥措施对复垦土壤肥力及玉米生长的影响[D]. 太谷: 山西农业大学, 2014. |
WANG X L. Effects of different fertilization on fertility of reclaimed soil and corn growth[D]. Taigu: Shanxi Agricultural University, 2014. (in Chinese with English abstract) | |
[22] | 朱秀云, 梁梦, 马玉. 根系活力的测定(TTC法)实验综述报告[J]. 广东化工, 2020, 47(6): 211-212. |
ZHU X Y, LIANG M, MA Y. A review report on the experiments for the determination of root activity by TTC method[J]. Guangdong Chemical Industry, 2020, 47(6): 211-212. (in Chinese with English abstract) | |
[23] | 郭士伟, 夏士健, 朱虹霞, 等. 水稻根系活力测定方法及超级稻两优培九生育后期根系活力研究[J]. 土壤, 2012, 44(2): 308-311. |
GUO S W, XIA S J, ZHU H X, et al. Factors influencing collecting amount of rice roots bleeding and investigation on roots vigor after heading[J]. Soils, 2012, 44(2): 308-311. (in Chinese with English abstract) | |
[24] | 赵欣宇. 不同农业有机废弃物对黑土理化性质及腐殖化特征的影响[D]. 长春: 吉林农业大学, 2016. |
ZHAO X Y. Effects of different agriculture organic wastes on physicochemical property and humification of black soil[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese with English abstract) | |
[25] | 王保平, 周静, 史向远, 等. 不同农业废弃物复合基质对西瓜光合特性、产量和品质的影响[J]. 河南农业科学, 2021, 50(6): 116-124. |
WANG B P, ZHOU J, SHI X Y, et al. Effects of different agricultural waste compound substrates on photosynthetic characteristics, yield and quality of watermelon[J]. Journal of Henan Agricultural Sciences, 2021, 50(6): 116-124. (in Chinese with English abstract) | |
[26] | 韩丽娜, 丁哲利, 曾会才, 等. 功能性有机肥对大白菜生长的影响[J]. 浙江农业学报, 2016, 28(10): 1718-1723. |
HAN L N, DING Z L, ZENG H C, et al. Effect of functional organic fertilizer on growth of Chinese cabbage[J]. Acta Agriculturae Zhejiangensis, 2016, 28(10): 1718-1723. (in Chinese with English abstract) | |
[27] | LI S X, SHEN Q R, ZHENG X Q, et al. Effect of organic microbe fertilizer application on watermelon growth and soil microorganisms under continuous mono-cropping[J]. Chinese Journal of Eco-Agriculture, 2012, 20(2): 169-174. |
[28] | TENG G X, QIU H Z, ZHANG C H, et al. Effect of microbial organic fertilizer on seedling growth, yield and quality of flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2012, 19(6): 1255-1260. |
[29] | 杜莹, 黄兴学, 周国林, 等. 轮作和有机肥对连作小白菜生长及土壤微生物特性的影响[J]. 湖北农业科学, 2016, 55(24): 6498-6503. |
DU Y, HUANG X X, ZHOU G L, et al. Effects of rotation and organic fertilizer on the growth of Brassica campestris ssp. chinensis var. communis and soil microbial characteristics of continuous cropping soil[J]. Hubei Agricultural Sciences, 2016, 55(24): 6498-6503. (in Chinese with English abstract) | |
[30] | 史晓君. 农业废弃物制备生物有机肥及其在小白菜上的应用[J]. 河南农业, 2020(2): 16-17. |
SHI X J. Preparation of bio-organic fertilizer from agricultural waste and its application in Chinese cabbage[J]. Henan Nongye, 2020(2):16-17. (in Chinese) | |
[31] | 陆景陵. 植物营养学(上册)[M]. 北京: 中国农业大学出版社,1994. |
[32] | 王凡. 长期秸秆还田及施用粪肥对小麦产量和矿质营养品质及重金属的影响[D]. 杨凌: 西北农林科技大学, 2016. |
WANG F. Responses of wheat yield, quality and heavy metals to longterm straw returning and manure compost application[D]. Yangling: Northwest A & F University, 2016. (in Chinese with English abstract) | |
[33] | LI B Y, ZHOU D M, CANG L, et al. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications[J]. Soil and Tillage Research, 2007, 96(1/2): 166-173. |
[34] | RUTKOWSKA B, SZULC W, SOSULSKI T, et al. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications[J]. Plant, Soil and Environment, 2014, 60(5): 198-203. |
[35] | STEVENSON F J. Nature of divalent transition metal complexes of humic acids as revealed by a modified potentiometric titration method[J]. Soil Science, 1977, 123(1): 10-17. |
[36] | RENGEL Z, BATTEN G D, CROWLEY D E. Agronomic approaches for improving the micronutrient density in edible portions of field crops[J]. Field Crops Research, 1999, 60(1/2): 27-40. |
[1] | 张宁, 陶荣浩, 刘佩诗, 胡含秀, 高琳琳, 郭龙, 祝尊友, 马友华. 不同种类有机肥配施化肥对茶叶生长、品质和土壤肥力的影响[J]. 浙江农业学报, 2023, 35(8): 1844-1852. |
[2] | 王迪, 杨汉梅, 李阳倩, 贾梦婷, 邹亮, 杨帆. 苦荞麦“品、质、效、用”的多维评价及其活性成分高值化利用的研究进展[J]. 浙江农业学报, 2023, 35(8): 1960-1974. |
[3] | 田玉刚, 万素梅, 林皎, 陈国栋, 李浩, 胡宇凯, 李燕芳, 胡守林, 毛廷勇, 赵书珍. 不同地膜类型与灌溉量对棉花光合参数和产量、品质的影响[J]. 浙江农业学报, 2023, 35(7): 1523-1531. |
[4] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
[5] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[6] | 叶雷, 张波, 杨学圳, 李小林, 张小平, 谭伟. 竹屑替代木屑栽培毛木耳的可行性及其品质综合评价[J]. 浙江农业学报, 2023, 35(6): 1416-1426. |
[7] | 铁建中, 刘亚昱, 高雪琴, 徐之奇, 胡琳莉, 郁继华. 种养废弃物堆肥对日光温室西葫芦养分利用和土壤性质的影响[J]. 浙江农业学报, 2023, 35(6): 1427-1439. |
[8] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
[9] | 肖立涵, 辛美果, 卢文静, 叶沁, 张岑, 肖朝耿, 谌迪. 不同贮藏条件对3种花粉源蜂王浆品质的影响[J]. 浙江农业学报, 2023, 35(5): 1161-1167. |
[10] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
[11] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[12] | 马义虎, 曾孝元, 何贤彪, 周奶弟, 陈剑. 浙东南地区优质稻产量与品质对不同播期气候因子的响应[J]. 浙江农业学报, 2023, 35(4): 736-751. |
[13] | 马新超, 轩正英, 谭占明, 周宇, 王旭峰. 温室沙培黄瓜生产效应的水氮耦合方案优化[J]. 浙江农业学报, 2023, 35(4): 809-820. |
[14] | 王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533. |
[15] | 王龙威, 白俊艳, 贾小平, 雷莹, 陈梦柯, 樊红灯, 卢小宁, 何豫涵, 曾凡林, 张容恺. 鹌鹑GnRH-1基因多态性与蛋品质的关联分析[J]. 浙江农业学报, 2023, 35(3): 565-574. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||