浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 168-176.DOI: 10.3969/j.issn.1004-1524.20230146
夏智杰1(), 张雷1, 宋江华2, 傅敏1, 张立新1,*(
)
收稿日期:
2023-02-11
出版日期:
2024-01-25
发布日期:
2024-02-18
作者简介:
夏智杰(1997—),男,河南商丘人,硕士研究生,研究方向为植物病理学。E-mail:245385836@qq.com
通讯作者:
* 张立新,E-mail:lxzhang@ahau.edu.cn
基金资助:
XIA Zhijie1(), ZHANG Lei1, SONG Jianghua2, FU Min1, ZHANG Lixin1,*(
)
Received:
2023-02-11
Online:
2024-01-25
Published:
2024-02-18
摘要:
为明确安徽舒城和巢湖地区甜瓜和栝楼蔓枯病的病原菌种类,2021—2022年对该地区的甜瓜和栝楼蔓枯病的病组织进行病原菌的分离和培养,利用柯赫式法则验证其致病性。通过对分离菌株的形态学特征,以及ITS、LSU和TUB2多位点序列分析,确定引起甜瓜及栝楼蔓枯病的病原菌为亚隔孢壳菌Stagonosporopsis citrulli。采用菌丝生长速率法测定了7种杀菌剂对病原菌代表性菌株的室内毒力,结果显示,啶酰菌胺、咪鲜胺对其抑制效果较好,其EC50值在0.010 6~0.043 8 μg·mL-1,可优先选择这两种药剂进行轮换使用防治该病害。
中图分类号:
夏智杰, 张雷, 宋江华, 傅敏, 张立新. 安徽甜瓜和栝楼蔓枯病的病原菌鉴定及其有效药剂筛选[J]. 浙江农业学报, 2024, 36(1): 168-176.
XIA Zhijie, ZHANG Lei, SONG Jianghua, FU Min, ZHANG Lixin. Identification of pathogen causing gummy stem blight of Cucumis melo and Trichosanthes kirilowii in Anhui Province and screening of effective fungicides[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 168-176.
菌株编号 Isolate No. | GenBank登录号GenBank accession number | ||
---|---|---|---|
LSU | ITS | TUB2 | |
SC1-1 | OP585646 | OP585640 | OP593318 |
SC2-1 | OP585647 | OP585641 | OP593319 |
SC3-1 | OP585648 | OP585642 | OP593320 |
CH1-1 | OP585649 | OP585643 | OP593321 |
CH2-1 | OP585650 | OP585644 | OP593322 |
表1 菌株信息及目的位点序列
Table 1 GenBank accessions of tested isolates of Stagonosporopsis citrulli used in the phylogenetic analysis
菌株编号 Isolate No. | GenBank登录号GenBank accession number | ||
---|---|---|---|
LSU | ITS | TUB2 | |
SC1-1 | OP585646 | OP585640 | OP593318 |
SC2-1 | OP585647 | OP585641 | OP593319 |
SC3-1 | OP585648 | OP585642 | OP593320 |
CH1-1 | OP585649 | OP585643 | OP593321 |
CH2-1 | OP585650 | OP585644 | OP593322 |
图1 甜瓜和栝楼蔓枯病田间发病症状 a, c, 甜瓜蔓枯病田间发病症状;b, 栝楼蔓枯病田间发病症状。
Fig.1 Field sympthoms of gummy stem blight on Cucumis melo and Trichosanthes kirilowii a, c, Diseased symptoms of C. melo in the field; b, Diseased symptoms of T. kirilowii in the field.
图2 病菌分离物的形态学特征 a, b,菌株在PDA培养基上培养7 d的菌落形态;c,分生孢子,标尺为10 μm;d,子囊,标尺为10 μm;e,子囊孢子,标尺为10 μm。
Fig.2 Morphological characteristics of the isolates a, b,Colony characters of isolates on PDA medium for 7 d; c,Conidia, scale bar=10 μm; d,Asci, scale bar=10 μm; e,Ascospores, scale bar=10 μm.
图4 蔓枯病菌在甜瓜(2 d)和栝楼(5 d)幼苗上的致病性 a,甜瓜幼苗对照;b,接种菌株S.citrulli SC1-1的甜瓜幼苗;c,栝楼幼苗对照;d,接种菌株S.citrulli CH1-1的栝楼幼苗。
Fig.4 Pathogenicity of S. citrulli isolates on C. melo(2 d) and T. kirilowii (5 d) seedlings a, Control(C. melo seedlings); b, C. melo seedlings inoculated with S. citrulli SC1-1; c, Control (T. kirilowii seedlings); d, T. kirilowii seedlings inoculated with S. citrulli CH1-1.
杀菌剂 Fungicide | SC1-1 | SC2-1 | SC3-1 | ||||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | EC50/ (μg· mL-1) | 决定系数 R2 | 回归方程 Regression equation | EC50/ (μg· mL-1) | 决定系数 R2 | 回归方程 Regression equation | EC50/ (μg· mL-1) | 决定系数 R2 | |
啶酰菌胺boscalid | y=0.420 2x+5.571 0 | 0.043 8 | 0.956 2 | y=0.880 6x+6.282 0 | 0.035 0 | 0.994 4 | y=0.917 0x+6.392 0 | 0.035 0 | 0.973 7 |
咪鲜胺prochloraz | y=0.468 3x+5.906 6 | 0.011 6 | 0.978 4 | y=0.880 6x+5.953 7 | 0.035 0 | 0.984 2 | y=0.917 0x+5.918 9 | 0.030 3 | 0.971 8 |
苯醚甲环唑 | y=0.802 5x+4.995 1 | 1.014 0 | 0.984 9 | y=0.755 2x+5.046 6 | 0.867 5 | 0.985 3 | y=0.733 0x+5.027 9 | 0.916 2 | 0.983 6 |
difenoconazole | |||||||||
吡唑醚菌酯 | y=1.061 1x+4.520 7 | 2.829 6 | 0.985 2 | y=1.111 1x+4.504 8 | 2.790 8 | 0.976 8 | y=1.155 6x+4.556 0 | 2.422 1 | 0.982 9 |
pyraclostrobin | |||||||||
戊唑醇tebuconazole | y=0.533 9x+4.712 5 | 3.455 6 | 0.982 2 | y=0.661 8x+4.682 6 | 3.017 2 | 0.989 9 | y=0.553 2x+4.715 8 | 3.264 1 | 0.971 2 |
多菌灵carbendazim | y=0.983 3x+3.619 0 | 25.373 3 | 0.855 0 | y=1.037 1x+3.625 7 | 21.137 0 | 0.872 1 | y=1.007 3x+3.503 0 | 24.527 2 | 0.871 0 |
异菌脲iprodione | y=1.067 1x+4.736 0 | 1.767 5 | 0.915 8 | y=0.949 8x+4.802 7 | 1.613 2 | 0.921 9 | y=1.046 0x+5.040 1 | 0.915 4 | 0.941 1 |
表2 七种杀菌剂对安徽舒城菌株的室内毒力测定
Table 2 Determination of the virulence of seven fungicides to Stagonosporopsis citrulli strains from Shucheng, Anhui
杀菌剂 Fungicide | SC1-1 | SC2-1 | SC3-1 | ||||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | EC50/ (μg· mL-1) | 决定系数 R2 | 回归方程 Regression equation | EC50/ (μg· mL-1) | 决定系数 R2 | 回归方程 Regression equation | EC50/ (μg· mL-1) | 决定系数 R2 | |
啶酰菌胺boscalid | y=0.420 2x+5.571 0 | 0.043 8 | 0.956 2 | y=0.880 6x+6.282 0 | 0.035 0 | 0.994 4 | y=0.917 0x+6.392 0 | 0.035 0 | 0.973 7 |
咪鲜胺prochloraz | y=0.468 3x+5.906 6 | 0.011 6 | 0.978 4 | y=0.880 6x+5.953 7 | 0.035 0 | 0.984 2 | y=0.917 0x+5.918 9 | 0.030 3 | 0.971 8 |
苯醚甲环唑 | y=0.802 5x+4.995 1 | 1.014 0 | 0.984 9 | y=0.755 2x+5.046 6 | 0.867 5 | 0.985 3 | y=0.733 0x+5.027 9 | 0.916 2 | 0.983 6 |
difenoconazole | |||||||||
吡唑醚菌酯 | y=1.061 1x+4.520 7 | 2.829 6 | 0.985 2 | y=1.111 1x+4.504 8 | 2.790 8 | 0.976 8 | y=1.155 6x+4.556 0 | 2.422 1 | 0.982 9 |
pyraclostrobin | |||||||||
戊唑醇tebuconazole | y=0.533 9x+4.712 5 | 3.455 6 | 0.982 2 | y=0.661 8x+4.682 6 | 3.017 2 | 0.989 9 | y=0.553 2x+4.715 8 | 3.264 1 | 0.971 2 |
多菌灵carbendazim | y=0.983 3x+3.619 0 | 25.373 3 | 0.855 0 | y=1.037 1x+3.625 7 | 21.137 0 | 0.872 1 | y=1.007 3x+3.503 0 | 24.527 2 | 0.871 0 |
异菌脲iprodione | y=1.067 1x+4.736 0 | 1.767 5 | 0.915 8 | y=0.949 8x+4.802 7 | 1.613 2 | 0.921 9 | y=1.046 0x+5.040 1 | 0.915 4 | 0.941 1 |
杀菌剂 Fungicide | CH1-1 | CH2-1 | ||||
---|---|---|---|---|---|---|
回归方程 Regression equation | EC50/ (μg·mL-1) | 决定系数 R2 | 回归方程 Regression equation | EC50/ (μg·mL-1) | 决定系数 R2 | |
啶酰菌胺boscalid | y=0.951 9x+6.410 3 | 0.033 0 | 0.999 2 | y=0.845 9x+6.692 7 | 0.029 6 | 0.996 7 |
咪鲜胺prochloraz | y=0.463 9x+5.911 6 | 0.010 8 | 0.977 5 | y=0.467 1x+5.922 3 | 0.010 6 | 0.967 4 |
苯醚甲环唑difenoconazole | y=0.813 4x+4.975 7 | 1.071 1 | 0.966 4 | y=0.784 8x+5.015 7 | 0.954 9 | 0.972 6 |
吡唑醚菌酯pyraclostrobin | y=0.876 0x+0.083 6 | 4.076 5 | 0.982 6 | y=0.788 4x+3.983 1 | 4.222 7 | 0.980 7 |
戊唑醇tebuconazole | y=0.588 9x+4.723 0 | 2.953 6 | 0.962 9 | y=0.590 3x+4.701 6 | 3.201 9 | 0.952 6 |
多菌灵carbendazim | y=1.539 6x+2.522 2 | 40.677 7 | 0.851 0 | y=1.382 7x+2.845 4 | 36.165 2 | 0.809 5 |
异菌脲iprodione | y=1.357 1x+4.930 5 | 1.125 1 | 0.936 0 | y=1.053 9x+4.824 2 | 1.468 2 | 0.941 7 |
表3 七种杀菌剂对安徽巢湖菌株的室内毒力测定
Table 3 Determination of the virulence of seven fungicides to Stagonosporopsis citrulli strains from Chaohu, Anhui
杀菌剂 Fungicide | CH1-1 | CH2-1 | ||||
---|---|---|---|---|---|---|
回归方程 Regression equation | EC50/ (μg·mL-1) | 决定系数 R2 | 回归方程 Regression equation | EC50/ (μg·mL-1) | 决定系数 R2 | |
啶酰菌胺boscalid | y=0.951 9x+6.410 3 | 0.033 0 | 0.999 2 | y=0.845 9x+6.692 7 | 0.029 6 | 0.996 7 |
咪鲜胺prochloraz | y=0.463 9x+5.911 6 | 0.010 8 | 0.977 5 | y=0.467 1x+5.922 3 | 0.010 6 | 0.967 4 |
苯醚甲环唑difenoconazole | y=0.813 4x+4.975 7 | 1.071 1 | 0.966 4 | y=0.784 8x+5.015 7 | 0.954 9 | 0.972 6 |
吡唑醚菌酯pyraclostrobin | y=0.876 0x+0.083 6 | 4.076 5 | 0.982 6 | y=0.788 4x+3.983 1 | 4.222 7 | 0.980 7 |
戊唑醇tebuconazole | y=0.588 9x+4.723 0 | 2.953 6 | 0.962 9 | y=0.590 3x+4.701 6 | 3.201 9 | 0.952 6 |
多菌灵carbendazim | y=1.539 6x+2.522 2 | 40.677 7 | 0.851 0 | y=1.382 7x+2.845 4 | 36.165 2 | 0.809 5 |
异菌脲iprodione | y=1.357 1x+4.930 5 | 1.125 1 | 0.936 0 | y=1.053 9x+4.824 2 | 1.468 2 | 0.941 7 |
[1] | 徐彦刚, 羊杏平, 李良俊. 瓜类作物抗蔓枯病研究进展[J]. 江苏农业科学, 2020, 48(3): 49-55. |
XU Y G, YANG X P, LI L J. Research progress on resistance of cucurbit crops to gummy stem blight[J]. Jiangsu Agricultural Sciences, 2020, 48(3): 49-55. (in Chinese with English abstract) | |
[2] | WEHNER T C, SHETTY N V. Screening the cucumber germplasm collection for resistance to gummy stem blight in north Carolina field tests[J]. HortScience, 2000, 35(6): 1132-1140. |
[3] | WAKO T, SAKATA Y, SUGIYAMA M, et al. Identification of melon accessions resistant to gummy stem blight and genetic analysis of the resistance using an efficient technique for seedling test[J]. Acta Horticulturae, 2002(588): 161-164. |
[4] | TSUTSUMI C Y, DA SILVA N. Screening of melon populations for resistance to Didymella bryoniae in greenhouse and plastic tunnel conditions[J]. Brazilian Archives of Biology and Technology, 2004, 47(2): 171-177. |
[5] | WYSZOGRODZKA A J, WILLIAMS P H, PETERSON C E. Search for resistance to gummy stem blight (Didymella bryoniae) in cucumber (Cucumis sativus L.)[J]. Euphytica, 1986, 35(2): 603-613. |
[6] | STEWART J E, TURNER A N, BREWER M T. Evolutionary history and variation in host range of three Stagonosporopsis species causing gummy stem blight of cucurbits[J]. Fungal Biology, 2015, 119(5): 370-382. |
[7] | LI H X, BREWER M T. Spatial genetic structure and population dynamics of gummy stem blight fungi within and among watermelon fields in the southeastern United States[J]. Phytopathology, 2016, 106(8): 900-908. |
[8] | 秦健, 陈振东, 宋焕忠, 等. 广西苦瓜蔓枯病的病原分离与鉴定[J]. 植物病理学报, 2018, 48(2): 280-284. |
QIN J, CHEN Z D, SONG H Z, et al. Identification of causal organism of gummy stem blight of balsam pear in Guangxi[J]. Acta Phytopathologica Sinica, 2018, 48(2): 280-284. (in Chinese with English abstract) | |
[9] | 陈悦, 孙东晗, 孙于淼, 等. 吉林省西瓜蔓枯病病原鉴定及室内药剂筛选[J]. 北方园艺, 2020(23): 16-23. |
CHEN Y, SUN D H, SUN Y M, et al. Pathogen identification and screening of the fungicides of Citrullus lanatus gummy stem blight in Jilin Province[J]. Northern Horticulture, 2020(23): 16-23. (in Chinese with English abstract) | |
[10] | 胡锐, 邢彩云, 杨爱华, 等. 郑州市西瓜蔓枯病的发生及防治措施[J]. 中国瓜菜, 2010, 23(6): 46-47. |
HU R, XING C Y, YANG A H, et al. Occurrence and control measures of watermelon stem blight in Zhengzhou city[J]. China Cucurbits and Vegetables, 2010, 23(6): 46-47. (in Chinese with English abstract) | |
[11] | 陈开端, 韩翠婷, 戴峥峰, 等. 浅谈西甜瓜蔓枯病和枯萎病的诊断与防治[J]. 中国蔬菜, 2019(8): 104-105. |
CHEN K D, HAN C T, DAI Z F, et al. Diagnosis and control of watermelon blight and Fusarium wilt[J]. China Vegetables, 2019(8): 104-105. (in Chinese with English abstract) | |
[12] | ZHANG Z G, ZHANG J Y, WANG Y C, et al. Molecular detection of Fusarium oxysporum f.sp. niveum and Mycosphaerella melonis in infected plant tissues and soil[J]. FEMS Microbiology Letters, 2005, 249(1): 39-47. |
[13] | 方中达. 植病研究方法[M]. 3版. 北京: 中国农业出版社, 1998: 122-142. |
[14] | 李英, 张永兵, JOSEPH N WOLUKAU, 等. 甜瓜蔓枯病菌子实体法分离及A型菌株产孢条件研究[J]. 果树学报, 2007, 24(1): 84-88. |
LI Y, ZHANG Y B, WOLUKAU J, et al. Fruit-body isolation of Didymella bryoniae and sporulation conditions of its A stain[J]. Journal of Fruit Science, 2007, 24(1): 84-88. (in Chinese with English abstract) | |
[15] | O’DONNELL K, CIGELNIK E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the FungusFusariumAre nonorthologous[J]. Molecular Phylogenetics and Evolution, 1997, 7(1): 103-116. |
[16] | CHEN Q, JIANG J R, ZHANG G Z, et al. Resolving the Phoma enigma[J]. Studies in Mycology, 2015, 82: 137-217. |
[17] | VALENZUELA-LOPEZ N, CANO-LIRA J F, GUARRO J, et al. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae[J]. Studies in Mycology, 2018, 90: 1-69. |
[18] | SEBLANI R, KEINATH A P, MUNKVOLD G. Gummy stem blight: one disease, three pathogens[J]. Molecular Plant Pathology, 2023, 24(8): 825-837. |
[19] | LI H X, GOTTILLA T M, BREWER M T. Organization and evolution of mating-type genes in three Stagonosporopsis species causing gummy stem blight of cucurbits and leaf spot and dry rot of papaya[J]. Fungal Biology, 2017, 121(10): 849-857. |
[20] | DE GRUYTER J, AVESKAMP M M, WOUDENBERG J H C, et al. Molecular phylogeny of Phoma and allied anamorph Genera: towards a reclassification of the Phoma complex[J]. Mycological Research, 2009, 113(4): 508-519. |
[21] | DE GRUYTER J, WOUDENBERG J H C, AVESKAMP M M, et al. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma[J]. Mycologia, 2010, 102(5): 1066-1081. |
[22] | ZHANG Y, SCHOCH C L, FOURNIER J, et al. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation[J]. Studies in Mycology, 2009, 64: 85-102. |
[23] | HOU L W, GROENEWALD J Z, PFENNING L H, et al. The Phoma-like dilemma[J]. Studies in Mycology, 2020, 96: 309-396. |
[24] | CHEN Q, HOU L W, DUAN W J, et al. Didymellaceae revisited[J]. Studies in Mycology, 2017, 87: 105-159. |
[25] | AVESKAMP M M, DE GRUYTER J, WOUDENBERG J H C, et al. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean Genera[J]. Studies in Mycology, 2010, 65: 1-60. |
[26] | RENNBERGER G, KEINATH A P. Susceptibility of fourteen new cucurbit species to gummy stem blight caused by Stagonosporopsis citrulli under field conditions[J]. Plant Disease, 2018, 102(7): 1365-1375. |
[27] | KEINATH A P. Differential susceptibility of nine cucurbit species to the foliar blight and crown canker phases of gummy stem blight[J]. Plant Disease, 2014, 98(2): 247-254. |
[28] | HUANG C J, LAI Y R. First report of Stagonosporopsis citrulli causing gummy stem blight of watermelon in Taiwan[J]. Plant Disease, 2018, 101(2): 417. |
[29] | 谭蕊. 西南地区西瓜蔓枯病菌群体遗传结构研究[D]. 重庆: 西南大学, 2018. |
TAN R. Population genetic structure of gummy stem blight fungi in southwest China[D]. Chongqing: Southwest University, 2018. (in Chinese with English abstract) | |
[30] | 李雨, 王少秋, 谭蕊, 等. 西瓜蔓枯病有效药剂筛选及药效评价[J]. 农药, 2016, 55(6): 460-462. |
LI Y, WANG S Q, TAN R, et al. Evaluation of fungicides for control of gummy stem blight caused by Didymella bryoniae[J]. Agrochemicals, 2016, 55(6): 460-462. (in Chinese with English abstract) | |
[31] | THOMAS A, LANGSTON D B JR, SANDERS H F, et al. Relationship between fungicide sensitivity and control of gummy stem blight of watermelon under field conditions[J]. Plant Disease, 2012, 96(12): 1780-1784. |
[32] | KEINATH A P. Differential sensitivity to boscalid in conidia and ascospores of Didymella bryoniae and frequency of boscalid-insensitive isolates in south Carolina[J]. Plant Disease, 2012, 96(2): 228-234. |
[33] | KEINATH A P. Soil amendment with cabbage residue and crop rotationto reduce gummy stem blight and increase growth and yield of watermelon[J]. Plant Disease, 1996, 80(5): 564. |
[34] | KEINATH A. Polyoxin D and other biopesticides reduce gummy stem blight but not anthracnose on melon seedlings[J]. Plant Health Progress, 2016, 17: 177-181. |
[1] | 王祥云, 王卢燕, 张昌朋, 李艳杰, 赵学平, 蒋金花. 三唑和甲氧基丙烯酸酯类杀菌剂的复配制剂登记现状分析[J]. 浙江农业学报, 2023, 35(9): 2121-2129. |
[2] | 班学, 马翔宇, 张飞鹏, 张王斌. 梨火疫病防治用药对意大利蜜蜂的急性毒性与风险评价[J]. 浙江农业学报, 2023, 35(9): 2160-2168. |
[3] | 寿伟松, 何艳军, 沈佳, 许昕阳. 甜瓜SWEET基因家族的全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2023, 35(7): 1591-1603. |
[4] | 李苹芳, 姚协丰, 徐锦华, 朱凌丽, 羊杏平. 甜瓜果实发育相关SWEET糖转运蛋白基因的鉴定与功能初步分析[J]. 浙江农业学报, 2023, 35(2): 308-318. |
[5] | 方明雅, 余宏伟, 武雅娴, 韩文炎, 李鑫, 刘海河. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
[6] | 刘娜, 范翘楚, 周佳, 宋雅静, 张古文, 冯志娟, 卜远鹏, 王斌, 龚亚明. 菜用大豆炭疽病病原菌的分离鉴定与防治[J]. 浙江农业学报, 2022, 34(12): 2682-2688. |
[7] | 吕露, 吴声敢, 王强, 赵学平, 徐明飞. 几种杀菌剂对葡萄园典型陆生生物的初级风险评估[J]. 浙江农业学报, 2022, 34(11): 2512-2521. |
[8] | 熊雪, 赵丽娜, 杨森林, SAMIAH Arif, 张屹东. 甜瓜CmCIPK家族全基因组鉴定和逆境条件下的表达分析[J]. 浙江农业学报, 2021, 33(9): 1625-1639. |
[9] | 孙彩霞, 欧阳志周, 刘玉红, 于国光. 西兰花中3种杀菌剂的残留动态与风险评估[J]. 浙江农业学报, 2021, 33(7): 1292-1299. |
[10] | 王国荣, 冯晓晓, 吴慧明, 曹婷婷, 李倩, 郑永利. 芹菜茎基腐病病原菌鉴定、消长动态调查与防治药剂筛选[J]. 浙江农业学报, 2021, 33(4): 661-669. |
[11] | 岳文俊, 何文学, 丁春梅, 柏宇, 周英杰, 奚辉. 不同滴灌水肥处理对温室甜瓜养分吸收、产量和品质的影响[J]. 浙江农业学报, 2021, 33(12): 2370-2380. |
[12] | 徐雪芬, 倪春辉, 李惠霞, 李焕宇, 李文豪, 陈垣, 胡芳弟. 党参根腐病病原菌鉴定及其室内毒力测定[J]. 浙江农业学报, 2021, 33(1): 96-103. |
[13] | 吴燕, 乔晓燕, 葛伟强, 高青海. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429. |
[14] | 汪炳良, 海睿, 金炳胜, 江建红, 施星仁, 林玉泉, 叶红霞. 嫁接方法对甜瓜嫁接工效及嫁接苗生长和果实品质的影响[J]. 浙江农业学报, 2020, 32(10): 1809-1815. |
[15] | 章丽君, 章虎, 徐明飞, 林春绵, 吴慧珍, 徐杰, 钱鸣蓉. 葡萄酿制过程中5种杀菌剂的残留变化[J]. 浙江农业学报, 2019, 31(1): 149-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||