浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1591-1601.DOI: 10.3969/j.issn.1004-1524.20231037
朱艳宇1(), 于文涛2,*(
), 高水练3, 吕水源2, 王攀1, 靳宛旻3, 贵文静1, 林浥1, 叶乃兴1,*(
)
收稿日期:
2023-08-31
出版日期:
2024-07-25
发布日期:
2024-08-05
作者简介:
朱艳宇(2002—),女,河南信阳人,硕士研究生,研究方向为茶树栽培育种。E-mail: zyy8585065@163.com
通讯作者:
*叶乃兴,E-mail: ynxtea@126.com;于文涛,E-mail: wtyu@foxmail.com
基金资助:
ZHU Yanyu1(), YU Wentao2,*(
), GAO Shuilian3, LYU Shuiyuan2, WANG Pan1, JIN Wanmin3, GUI Wenjing1, LIN Yi1, YE Naixing1,*(
)
Received:
2023-08-31
Online:
2024-07-25
Published:
2024-08-05
摘要:
为更好地保护、鉴定评价和利用安溪茶树种质资源,采用单核苷酸多态性(SNP)分子标记技术对安溪茶树种质资源的遗传多样性和铁观音衍生品种的遗传关系进行分析,并进行了主坐标分析、层次聚类树分析、种群结构分析和遗传距离分析,此外,还构建了铁观音及其衍生品种的DNA指纹图谱,并计算了其遗传相似系数。结果显示,共筛选出53个适用于鉴定安溪茶树种质资源基因分型的高多态性位点,观测杂合度平均值为0.322,期望杂合度平均值为0.281,说明安溪茶树种质具有较为丰富的遗传多样性;安溪4个乡镇产区茶树群体间的遗传距离在0.068~0.269。供试样品可分为2个组,组Ⅰ主要包括西坪、虎邱和湖上等产区的茶树种质,种质间交流频繁;组Ⅱ主要由福田乡产区的野生型地方茶树种质组成,福田乡茶树种质资源相对集中且独立。DNA指纹图谱可以精准鉴定铁观音及其衍生品种,铁观音衍生品种具有较为丰富的多样性,其中铁观音与金牡丹、紫玫瑰、新选211的遗传相似系数较大。综上,安溪县茶树种质资源多样性丰富,在铁观音衍生品种中,金牡丹、紫玫瑰和新选211与铁观音的遗传相似度更高。
中图分类号:
朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601.
ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601.
位点 Locus | 信息指数 Information index | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 固定指数 Fixation index | 位点 Locus | 信息指数 Information index | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 固定指数 Fixation index |
---|---|---|---|---|---|---|---|---|---|
cs1 cs115 cs13 cs15 cs167 cs3 cs5 cs84 cs10 cs130 cs170 cs202 cs218 cs30 cs51 cs104 cs131 cs207 cs219 cs31 cs44 cs88 cs105 cs118 cs132 cs157 cs180 | 0.663 0.396 0.263 0.387 0.557 0.385 0.451 0.514 0.644 0.640 0.580 0.612 0.161 0.300 0.608 0.468 0.431 0.556 0.282 0.547 0.526 0.544 0.294 0.422 0.197 0.294 0.370 | 0.595 0.235 0.203 0.246 0.460 0.250 0.313 0.296 0.732 0.491 0.440 0.547 0.088 0.107 0.489 0.289 0.211 0.397 0.133 0.415 0.425 0.427 0.283 0.315 0.140 0.283 0.199 | 0.470 0.253 0.163 0.256 0.384 0.251 0.302 0.360 0.452 0.448 0.407 0.426 0.089 0.193 0.418 0.318 0.266 0.374 0.175 0.337 0.348 0.389 0.191 0.279 0.116 0.191 0.247 | -0.268 0.011 -0.212 0.021 -0.168 0.030 -0.041 0.206 -0.603 -0.096 -0.074 -0.265 -0.010 0.359 -0.159 0.102 0.185 -0.052 0.067 -0.067 -0.200 -0.097 -0.365 -0.149 -0.141 -0.365 0.197 | cs208 cs32 cs45 cs54 cs9 cs134 cs16 cs23 cs33 cs55 cs76 cs112 cs163 cs36 cs198 cs213 cs39 cs48 cs66 cs124 cs146 cs20 cs215 cs4 cs81 cs95 | 0.251 0.386 0.558 0.555 0.554 0.640 0.354 0.420 0.546 0.502 0.324 0.414 0.293 0.572 0.151 0.400 0.497 0.225 0.573 0.202 0.324 0.245 0.388 0.487 0.271 0.294 | 0.123 0.228 0.424 0.388 0.513 0.802 0.230 0.277 0.433 0.510 0.230 0.289 0.207 0.439 0.062 0.216 0.316 0.179 0.370 0.148 0.276 0.236 0.212 0.454 0.191 0.283 | 0.139 0.250 0.379 0.376 0.381 0.451 0.241 0.264 0.373 0.337 0.194 0.269 0.188 0.388 0.083 0.246 0.324 0.141 0.387 0.120 0.203 0.149 0.243 0.321 0.159 0.191 | 0.163 -0.005 -0.110 -0.059 -0.288 -0.724 0.041 -0.050 -0.152 -0.388 -0.171 -0.077 -0.056 -0.113 0.109 0.156 0.089 -0.189 0.010 -0.152 -0.242 -0.246 0.058 -0.327 -0.146 -0.365 |
表1 五十三个多态性SNP位点的等位基因信息
Table 1 Allele information of 53 polymorphic SNP loci
位点 Locus | 信息指数 Information index | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 固定指数 Fixation index | 位点 Locus | 信息指数 Information index | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 固定指数 Fixation index |
---|---|---|---|---|---|---|---|---|---|
cs1 cs115 cs13 cs15 cs167 cs3 cs5 cs84 cs10 cs130 cs170 cs202 cs218 cs30 cs51 cs104 cs131 cs207 cs219 cs31 cs44 cs88 cs105 cs118 cs132 cs157 cs180 | 0.663 0.396 0.263 0.387 0.557 0.385 0.451 0.514 0.644 0.640 0.580 0.612 0.161 0.300 0.608 0.468 0.431 0.556 0.282 0.547 0.526 0.544 0.294 0.422 0.197 0.294 0.370 | 0.595 0.235 0.203 0.246 0.460 0.250 0.313 0.296 0.732 0.491 0.440 0.547 0.088 0.107 0.489 0.289 0.211 0.397 0.133 0.415 0.425 0.427 0.283 0.315 0.140 0.283 0.199 | 0.470 0.253 0.163 0.256 0.384 0.251 0.302 0.360 0.452 0.448 0.407 0.426 0.089 0.193 0.418 0.318 0.266 0.374 0.175 0.337 0.348 0.389 0.191 0.279 0.116 0.191 0.247 | -0.268 0.011 -0.212 0.021 -0.168 0.030 -0.041 0.206 -0.603 -0.096 -0.074 -0.265 -0.010 0.359 -0.159 0.102 0.185 -0.052 0.067 -0.067 -0.200 -0.097 -0.365 -0.149 -0.141 -0.365 0.197 | cs208 cs32 cs45 cs54 cs9 cs134 cs16 cs23 cs33 cs55 cs76 cs112 cs163 cs36 cs198 cs213 cs39 cs48 cs66 cs124 cs146 cs20 cs215 cs4 cs81 cs95 | 0.251 0.386 0.558 0.555 0.554 0.640 0.354 0.420 0.546 0.502 0.324 0.414 0.293 0.572 0.151 0.400 0.497 0.225 0.573 0.202 0.324 0.245 0.388 0.487 0.271 0.294 | 0.123 0.228 0.424 0.388 0.513 0.802 0.230 0.277 0.433 0.510 0.230 0.289 0.207 0.439 0.062 0.216 0.316 0.179 0.370 0.148 0.276 0.236 0.212 0.454 0.191 0.283 | 0.139 0.250 0.379 0.376 0.381 0.451 0.241 0.264 0.373 0.337 0.194 0.269 0.188 0.388 0.083 0.246 0.324 0.141 0.387 0.120 0.203 0.149 0.243 0.321 0.159 0.191 | 0.163 -0.005 -0.110 -0.059 -0.288 -0.724 0.041 -0.050 -0.152 -0.388 -0.171 -0.077 -0.056 -0.113 0.109 0.156 0.089 -0.189 0.010 -0.152 -0.242 -0.246 0.058 -0.327 -0.146 -0.365 |
主坐标 Principal coordinate | 贡献率 Contribution rate | 累计贡献率 Cumulative contribution rate |
---|---|---|
第1主坐标 The first principal coordinate | 41.37 | 41.37 |
第2主坐标 The second principal coordinate | 9.92 | 51.29 |
第3主坐标 The third principal coordinate | 6.17 | 57.46 |
表2 七十六份安溪茶树种质资源样品的主坐标贡献率
Table 2 Contribution rate of principal coordinate of 76 Anxi tea plant germplasm samples %
主坐标 Principal coordinate | 贡献率 Contribution rate | 累计贡献率 Cumulative contribution rate |
---|---|---|
第1主坐标 The first principal coordinate | 41.37 | 41.37 |
第2主坐标 The second principal coordinate | 9.92 | 51.29 |
第3主坐标 The third principal coordinate | 6.17 | 57.46 |
图2 七十六份安溪茶树种质资源样品的PCoA图 编号1~76为安溪茶树种质资源样品编号。图4同。
Fig.2 PCoA plot of 76 Anxi tea plant germplasm samples Numbers 1-76 were Anxi tea plant germplasm resource sample numbers. The same as in Figure 4.
地区 Area | 西坪 Xiping | 虎邱 Huqiu | 湖上 Hushang | 福田 Futian |
---|---|---|---|---|
虎邱Huqiu | 0.081 | |||
湖上Hushang | 0.072 | 0.068 | ||
福田Futian | 0.269 | 0.101 | 0.231 | |
其他Other | 0.047 | 0.039 | 0.032 | 0.170 |
表3 安溪县乡镇产区茶树种质资源群体间遗传距离
Table 3 Genetic distance between tea populations in township producing areas of Anxi County, China
地区 Area | 西坪 Xiping | 虎邱 Huqiu | 湖上 Hushang | 福田 Futian |
---|---|---|---|---|
虎邱Huqiu | 0.081 | |||
湖上Hushang | 0.072 | 0.068 | ||
福田Futian | 0.269 | 0.101 | 0.231 | |
其他Other | 0.047 | 0.039 | 0.032 | 0.170 |
品种 Variety | 铁观音 Tieguan- yin | 黄观音 Huang- guanyin | 金观音 Jinguan- yin | 紫玫瑰 Zimeigui | 金牡丹 Jinmu- dan | 春桃香 Chuntaoxiang | 新选205 Xinxuan 205 | 新选206 Xinxuan 206 | 新选209 Xinxuan 209 | 新选211 Xinxuan 211 | 新选212 Xinxuan 212 | 金玫瑰 Jinmei- gui | 紫牡丹 Zimudan | 春兰 Chunlan | 凤圆春 Fengyuan- chun | 金茗早 Jinming- zao |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
黄观音 | 0.545 | |||||||||||||||
Huangguanyin | ||||||||||||||||
金观音 | 0.600 | 0.527 | ||||||||||||||
Jinguanyin | ||||||||||||||||
紫玫瑰 | 0.655 | 0.509 | 0.618 | |||||||||||||
Zimeigui | ||||||||||||||||
金牡丹 | 0.655 | 0.491 | 0.655 | 0.782 | ||||||||||||
Jinmudan | ||||||||||||||||
春桃香 | 0.509 | 0.436 | 0.582 | 0.509 | 0.545 | |||||||||||
Chuntaoxiang | ||||||||||||||||
新选205 | 0.618 | 0.491 | 0.800 | 0.636 | 0.727 | 0.564 | ||||||||||
Xinxuan 205 | ||||||||||||||||
新选206 | 0.600 | 0.473 | 0.782 | 0.636 | 0.764 | 0.600 | 0.709 | |||||||||
Xinxuan 206 | ||||||||||||||||
新选209 | 0.600 | 0.473 | 0.655 | 0.745 | 0.673 | 0.545 | 0.600 | 0.709 | ||||||||
Xinxuan 209 | ||||||||||||||||
新选211 | 0.691 | 0.491 | 0.618 | 0.782 | 0.655 | 0.509 | 0.582 | 0.709 | 0.782 | |||||||
Xinxuan 211 | ||||||||||||||||
新选212 | 0.636 | 0.491 | 0.691 | 0.673 | 0.655 | 0.545 | 0.673 | 0.691 | 0.709 | 0.709 | ||||||
Xinxuan 212 | ||||||||||||||||
金玫瑰 | 0.491 | 0.400 | 0.582 | 0.673 | 0.600 | 0.636 | 0.655 | 0.618 | 0.655 | 0.618 | 0.564 | |||||
Jinmeigui | ||||||||||||||||
紫牡丹 | 0.509 | 0.673 | 0.509 | 0.545 | 0.655 | 0.491 | 0.491 | 0.509 | 0.509 | 0.509 | 0.455 | 0.455 | ||||
Zimudan | ||||||||||||||||
春兰 | 0.509 | 0.491 | 0.473 | 0.382 | 0.345 | 0.436 | 0.418 | 0.509 | 0.564 | 0.455 | 0.455 | 0.382 | 0.364 | |||
Chunlan | ||||||||||||||||
凤圆春 | 0.527 | 0.400 | 0.473 | 0.400 | 0.473 | 0.418 | 0.582 | 0.527 | 0.582 | 0.527 | 0.491 | 0.473 | 0.455 | 0.436 | ||
Fengyuanchun | ||||||||||||||||
金茗早 | 0.400 | 0.418 | 0.491 | 0.455 | 0.473 | 0.527 | 0.418 | 0.527 | 0.418 | 0.418 | 0.491 | 0.455 | 0.418 | 0.436 | 0.345 | |
Jinmingzao | ||||||||||||||||
黄玫瑰 | 0.509 | 0.636 | 0.636 | 0.600 | 0.564 | 0.436 | 0.582 | 0.527 | 0.600 | 0.618 | 0.564 | 0.491 | 0.673 | 0.418 | 0.582 | 0.455 |
Huangmeigui |
表4 铁观音及其衍生品种的遗传相似系数
Table 4 Genetic similarity coefficients of ‘Tieguanyin’ and its derived varieties
品种 Variety | 铁观音 Tieguan- yin | 黄观音 Huang- guanyin | 金观音 Jinguan- yin | 紫玫瑰 Zimeigui | 金牡丹 Jinmu- dan | 春桃香 Chuntaoxiang | 新选205 Xinxuan 205 | 新选206 Xinxuan 206 | 新选209 Xinxuan 209 | 新选211 Xinxuan 211 | 新选212 Xinxuan 212 | 金玫瑰 Jinmei- gui | 紫牡丹 Zimudan | 春兰 Chunlan | 凤圆春 Fengyuan- chun | 金茗早 Jinming- zao |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
黄观音 | 0.545 | |||||||||||||||
Huangguanyin | ||||||||||||||||
金观音 | 0.600 | 0.527 | ||||||||||||||
Jinguanyin | ||||||||||||||||
紫玫瑰 | 0.655 | 0.509 | 0.618 | |||||||||||||
Zimeigui | ||||||||||||||||
金牡丹 | 0.655 | 0.491 | 0.655 | 0.782 | ||||||||||||
Jinmudan | ||||||||||||||||
春桃香 | 0.509 | 0.436 | 0.582 | 0.509 | 0.545 | |||||||||||
Chuntaoxiang | ||||||||||||||||
新选205 | 0.618 | 0.491 | 0.800 | 0.636 | 0.727 | 0.564 | ||||||||||
Xinxuan 205 | ||||||||||||||||
新选206 | 0.600 | 0.473 | 0.782 | 0.636 | 0.764 | 0.600 | 0.709 | |||||||||
Xinxuan 206 | ||||||||||||||||
新选209 | 0.600 | 0.473 | 0.655 | 0.745 | 0.673 | 0.545 | 0.600 | 0.709 | ||||||||
Xinxuan 209 | ||||||||||||||||
新选211 | 0.691 | 0.491 | 0.618 | 0.782 | 0.655 | 0.509 | 0.582 | 0.709 | 0.782 | |||||||
Xinxuan 211 | ||||||||||||||||
新选212 | 0.636 | 0.491 | 0.691 | 0.673 | 0.655 | 0.545 | 0.673 | 0.691 | 0.709 | 0.709 | ||||||
Xinxuan 212 | ||||||||||||||||
金玫瑰 | 0.491 | 0.400 | 0.582 | 0.673 | 0.600 | 0.636 | 0.655 | 0.618 | 0.655 | 0.618 | 0.564 | |||||
Jinmeigui | ||||||||||||||||
紫牡丹 | 0.509 | 0.673 | 0.509 | 0.545 | 0.655 | 0.491 | 0.491 | 0.509 | 0.509 | 0.509 | 0.455 | 0.455 | ||||
Zimudan | ||||||||||||||||
春兰 | 0.509 | 0.491 | 0.473 | 0.382 | 0.345 | 0.436 | 0.418 | 0.509 | 0.564 | 0.455 | 0.455 | 0.382 | 0.364 | |||
Chunlan | ||||||||||||||||
凤圆春 | 0.527 | 0.400 | 0.473 | 0.400 | 0.473 | 0.418 | 0.582 | 0.527 | 0.582 | 0.527 | 0.491 | 0.473 | 0.455 | 0.436 | ||
Fengyuanchun | ||||||||||||||||
金茗早 | 0.400 | 0.418 | 0.491 | 0.455 | 0.473 | 0.527 | 0.418 | 0.527 | 0.418 | 0.418 | 0.491 | 0.455 | 0.418 | 0.436 | 0.345 | |
Jinmingzao | ||||||||||||||||
黄玫瑰 | 0.509 | 0.636 | 0.636 | 0.600 | 0.564 | 0.436 | 0.582 | 0.527 | 0.600 | 0.618 | 0.564 | 0.491 | 0.673 | 0.418 | 0.582 | 0.455 |
Huangmeigui |
图5 基于SNP技术构建的铁观音及其衍生品种DNA指纹图谱 XY、XX、YY表示SNP位点的基因型,XY为杂合子,XX、YY为纯合子。
Fig.5 DNA fingerprinting of ‘Tieguanyin’ and its derivative varieties based on SNP XY, XX, YY denoted the genotypes of SNP loci, XY was heterozygous, XX, YY were homozygote.
[1] | 叶乃兴. 茶学概论[M]. 2版. 北京: 中国农业出版社, 2021. |
[2] | 林道华. 福建省安溪县茶山生态修复探索[J]. 亚热带水土保持, 2019, 31(1): 56-57. |
LIN D H. Exploration in the ecological restoration of tea mountain, Anxi County of Fujian Province[J]. Subtropical Soil and Water Conservation, 2019, 31(1): 56-57.(in Chinese with English abstract) | |
[3] | 李旭云. 安溪县茶树种苗繁育及种质资源保护利用[J]. 福建茶叶, 2020, 42(11): 11-12. |
LI X Y. Tea seedling breeding and germplasm resources protection and utilization in Anxi County[J]. Tea in Fujian, 2020, 42(11): 11-12.(in Chinese) | |
[4] | 刘建福, 王文建, 黄昆. 中国乌龙茶种质资源图鉴[M]. 厦门: 厦门大学出版社, 2018. |
[5] | 王鹏杰, 杨江帆, 张兴坦, 等. 茶树基因组与测序技术的研究进展[J]. 茶叶科学, 2021, 41(6): 743-752. |
WANG P J, YANG J F, ZHANG X T, et al. Research advance of tea plant genome and sequencing technologies[J]. Journal of Tea Science, 2021, 41(6): 743-752.(in Chinese with English abstract) | |
[6] | 班骞. 苦荬菜种质资源发掘利用及分子遗传多样性研究[D]. 雅安: 四川农业大学, 2016. |
BAN Q. Germplasm exploration, utilization and molecular genetic diversity research of Ixeris polycephala[D]. Ya’an: Sichuan Agricultural University, 2016.(in Chinese with English abstract) | |
[7] | BUCKLER E S, THORNSBERRY J M. Plant molecular diversity and applications to genomics[J]. Current Opinion in Plant Biology, 2002, 5(2): 107-111. |
[8] | FANG W P, MEINHARDT L W, TAN H W, et al. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers[J]. Horticulture Research, 2014, 1: 14035. |
[9] | WANG B Y, TAN H W, FANG W P, et al. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of Longan (Dimocarpus longan) germplasm[J]. Horticulture Research, 2015, 2: 14065. |
[10] | LIN Y, YU W T, ZHOU L, et al. Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers[J]. Tree Genetics & Genomes, 2019, 16(1): 3. |
[11] | 罗祥宗, 胡云飞, 吴淋慧, 等. 茶树叶绿体基因组SNP分子标记的初步研究[J]. 茶叶科学, 2022, 42(6): 768-778. |
LUO X Z, HU Y F, WU L H, et al. Preliminary study on SNP molecular markers in tea chloroplast genome[J]. Journal of Tea Science, 2022, 42(6): 768-778.(in Chinese with English abstract) | |
[12] | LIN Y, YU W T, CAI C P, et al. Rapid varietal authentication of oolong tea products by microfluidic-based SNP genotyping[J]. Food Research International, 2022, 162(Pt A): 111970. |
[13] | 樊晓静, 于文涛, 王泽涵, 等. 基于EST-SNP的福鼎大白茶及其衍生品种的遗传关系分析[J/OL]. 分子植物育种, (2022-01-13)[2024-05-22]. http://kns.cnki.net/kcms/detail/46.1068.S.20220112.1947.014.html. |
FAN X J, YU W T, WANG Z H, et al. Genetic analysis of Camellia sinensis ‘Fuding Dabaicha’ and its derived cultivars using EST-SNP markers[J/OL]. Molecular Plant Breeding, (2022-01-13)[2024-05-22]. http://kns.cnki.net/kcms/detail/46.1068.S.20220112.1947.014.html.(in Chinese with English abstract) | |
[14] | 王泽涵, 于文涛, 方德音, 等. 基于EST-SNP的福建云霄茶树种质资源遗传多样性分析[J]. 福建农业学报, 2021, 36(12): 1431-1438. |
WANG Z H, YU W T, FANG D Y, et al. EST-SNP marker-based genetic analysis on tea germplasms of Yunxiao in Fujian[J]. Fujian Journal of Agricultural Sciences, 2021, 36(12): 1431-1438.(in Chinese with English abstract) | |
[15] | LIU C G, YU W T, CAI C P, et al. Genetic diversity of tea plant [Camellia sinensis(L.) Kuntze] germplasm resources in Wuyi Mountain of China based on single nucleotide polymorphism (SNP) markers[J]. Horticulturae, 2022, 8(10): 932. |
[16] | 陈志丹, 孙威江, 项丽慧, 等. 应用ISSR指纹图谱鉴定铁观音茶树[J]. 分子植物育种, 2015, 13(12): 2803-2810. |
CHEN Z D, SUN W J, XIANG L H, et al. Identification of Tie Guan Yin tea Plant (Camellia sinensis cv. Tieguanyin) using ISSR fingerprinting[J]. Molecular Plant Breeding, 2015, 13(12): 2803-2810.(in Chinese with English abstract) | |
[17] | 陈志丹, 王安莉, 孙威江. 铁观音及黄棪半同胞系种质遗传多样性的ISSR分析[J]. 福建农业学报, 2016, 31(10): 1059-1064. |
CHEN Z D, WANG A L, SUN W J. Genetic diversity of Tieguanyin and Huangdan half-sib tea cultivars determined by using ISSR markers[J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1059-1064.(in Chinese with English abstract) | |
[18] | 陈志辉, 林郑和, 游小妹, 等. 铁观音和黄棪杂交品种遗传多样性分析[J]. 核农学报, 2018, 32(6): 1097-1105. |
CHEN Z H, LIN Z H, YOU X M, et al. Genetic diversity analysis of Tieguanyin and Huangdan hybrid cultivars[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(6): 1097-1105.(in Chinese with English abstract) | |
[19] | 王泽涵. 闽粤相邻地区茶树种质资源遗传多样性及秃房野生茶花器官研究[D]. 福州: 福建农林大学, 2022. |
WANG Z H. Genetic diversity of tea plant germplasm resources in the border area between Fujian and Guangdong and research on the floral organs of ovary-glabrous wild tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022.(in Chinese with English abstract) | |
[20] | REIF J C, MELCHINGER A E, FRISCH M. Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management[J]. Crop Science, 2005, 45(1): cropsci2005.0001. |
[21] | 丁一, 郑旭霞, 黄海涛, 等. 浙江4个主要茶树群体种资源表型性状及遗传多样性分析[J]. 浙江农业学报, 2023, 35(2): 364-372. |
DING Y, ZHENG X X, HUANG H T, et al. Analysis of agronomic traits and genetic diversity of four major tea populations in Zhejiang Province, China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 364-372.(in Chinese with English abstract) | |
[22] | 侯炳豪, 高婷, 魏月德, 等. 基于高深度基因组重测序的‘铁观音’茶树无性繁殖后代遗传变异研究[J]. 园艺学报, 2023, 50(7): 1505-1517. |
HOU B H, GAO T, WEI Y D, et al. Studies on genetic variation of ‘Tieguanyin’ tea trees asexual reproduction based on high-depth genome resequencing[J]. Acta Horticulturae Sinica, 2023, 50(7): 1505-1517.(in Chinese with English abstract) | |
[23] | GOMES S, MARTINS-LOPES P, LOPES J, et al. Assessing genetic diversity in Olea europaea L. using ISSR and SSR markers[J]. Plant Molecular Biology Reporter, 2009, 27(3): 365-373. |
[24] | DÍAZ A, DE LA ROSA R, MARTÍN A, et al. Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationship studies[J]. Tree Genetics & Genomes, 2006, 2(3): 165-175. |
[25] | HANSSON B, WESTERBERG L. On the correlation between heterozygosity and fitness in natural populations[J]. Molecular Ecology, 2002, 11(12): 2467-2474. |
[26] | 郭灿, 皮发娟, 吴昌敏, 等. 基于GBS测序的全基因组SNP揭示贵州地方茶组植物资源的亲缘关系[J]. 南方农业学报, 2021, 52(3): 660-670. |
GUO C, PI F J, WU C M, et al. Genome-wide SNP developed by genotyping-by-sequencing revealed the phylogenetic relationship of Sect. Thea (L.) Dyer resources in Guizhou[J]. Journal of Southern Agriculture, 2021, 52(3): 660-670.(in Chinese with English abstract) | |
[27] | LUONG N H, LINH L H, SHIM K C, et al. Genetic structure and geographical differentiation of traditional rice (Oryza sativa L.) from northern Vietnam[J]. Plants, 2021, 10(10): 2094. |
[28] | 叶乃兴. 乌龙茶种质资源的利用与品种创新[J]. 福建茶叶, 2006, 28(3): 2-4. |
YE N X. Utilization of Oolong tea germplasm resource and innovation of its cultivars[J]. Tea in Fujian, 2006, 28(3): 2-4.(in Chinese) | |
[29] | 李力, 罗盛财, 王飞权, 等. 基于GBS-SNP的武夷茶树(Camellia sinensis, Synonym: Thea bohea L.)遗传分析及标记开发[J]. 茶叶科学, 2023, 43(3): 310-324. |
LI L, LUO S C, WANG F Q, et al. Genetic analysis and marker development for Wuyi tea (Camellia sinensis, Synonym: Thea bohea L.) based on GBS-SNP[J]. Journal of Tea Science, 2023, 43(3): 310-324.(in Chinese with English abstract) | |
[30] | 王子康, 苏江硕, 张雪峰, 等. 32个百合品种遗传多样性分析和DNA指纹图谱构建[J]. 植物资源与环境学报, 2022, 31(5): 58-65. |
WANG Z K, SU J S, ZHANG X F, et al. Analysis on genetic diversity and construction of DNA fingerprinting of 32 Lilium spp. cultivars[J]. Journal of Plant Resources and Environment, 2022, 31(5): 58-65.(in Chinese with English abstract) | |
[31] | 张安世, 司清亮, 齐秀娟, 等. 猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建[J]. 江苏农业学报, 2018, 34(1): 138-144. |
ZHANG A S, SI Q L, QI X J, et al. Genetic diversity and fingerprints of Actinidia germplasm resource based on SRAP markers[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 138-144.(in Chinese with English abstract) |
[1] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
[2] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
[3] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
[4] | 李慧, 谭晓琴, 唐茜, 杨洋, 陈玮. 疏花对紫嫣茶树产量及品质成分的影响[J]. 浙江农业学报, 2024, 36(7): 1602-1615. |
[5] | 韩清宇, 程林润, 李月红, 仇智灵, 后猛, 楼兵干. 六十份甘薯种质资源对基腐病的抗性评价与抗病相关指标分析[J]. 浙江农业学报, 2024, 36(7): 1616-1625. |
[6] | 向进, 王春源, 吴燕, 谭元成, 杨酸, 张依裕. 柯乐猪CRISP3基因SNP鉴定及其对繁殖性状的影响[J]. 浙江农业学报, 2024, 36(6): 1270-1278. |
[7] | 柴荣耀, 游雨欣, 邱海萍, 郭峻宁, 张震, 李斌, 沈升法, 王艳丽. 甘薯抗茎腐病鉴定技术的建立及种质资源抗性分析[J]. 浙江农业学报, 2024, 36(3): 569-578. |
[8] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
[9] | 杨天文, 王静, 李炯, 徐彬其, 程蛟文, 洪宇, 曹毅, 崔竣杰. 大顶苦瓜种质资源的遗传多样性分析与指纹图谱构建[J]. 浙江农业学报, 2024, 36(1): 103-114. |
[10] | 吴倩, 汤紫依, 田盛野, 何海叶, 潘伟伟, 王军峰, 鲍洪华, 张慧娟, 蒋明. 基于SRAP分子标记的华顶杜鹃遗传多样性[J]. 浙江农业学报, 2024, 36(1): 127-133. |
[11] | 张小利, 朱灵龙, 李付振, 唐秀梅, 夏友霖, 游宇, 钟瑞春. 115份花生种质资源农艺与品质性状鉴评及分析[J]. 浙江农业学报, 2023, 35(9): 2033-2044. |
[12] | 袁晔, 刘睿, 王凌云, 沈盟, 叶雪莲, 权新华, 王瑞森, 姚祥坦. 江浙地区菱品种遗传多样性的SLAF-seq分析[J]. 浙江农业学报, 2023, 35(8): 1773-1781. |
[13] | 徐悦, 吴筱萌, 王国庆, 邹运鼎, 毕守东. 茶园广翅蜡蝉数量与茶叶中生化物质关系分析[J]. 浙江农业学报, 2023, 35(8): 1834-1843. |
[14] | 潘攀, 张建华, 郑晓明, 周国民, 胡林, 冯全, 柴秀娟. 深度学习在作物及其近缘种抗病性智能鉴定上的研究进展[J]. 浙江农业学报, 2023, 35(8): 1993-2012. |
[15] | 薛承进, 赵兰馨, 赵德刚, 黄小贞. 茶树NPR基因家族成员鉴定与表达分析及冷诱导CsNPR3的基因克隆[J]. 浙江农业学报, 2023, 35(7): 1511-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||