[1] |
GUY C L. Cold acclimation and freezing stress tolerance: role of protein metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41: 187-223.
|
[2] |
DING Y L, SHI Y T, YANG S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222(4): 1690-1704.
|
[3] |
DING Y L, YANG S H. Surviving and thriving: how plants perceive and respond to temperature stress[J]. Developmental Cell, 2022, 57(8): 947-958.
|
[4] |
DONG C H, AGARWAL M, ZHANG Y Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21): 8281-8286.
|
[5] |
KUNKEL B N, BROOKS D M. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology, 2002, 5(4): 325-331.
|
[6] |
MIURA K, OHTA M. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation[J]. Journal of Plant Physiology, 2010, 167(7): 555-560.
|
[7] |
MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid[J]. Frontiers in Plant Science, 2014, 5: 4.
|
[8] |
SCOTT I M, CLARKE S M, WOOD J E, et al. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis[J]. Plant Physiology, 2004, 135(2): 1040-1049.
|
[9] |
OLATE E, JIMÉNEZ-GÓMEZ J M, HOLUIGUE L, et al. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors[J]. Nature Plants, 2018, 4(10): 811-823.
|
[10] |
韩永光, 马利刚, 赵乐, 等. 植物抗性基因NPR1研究进展[J]. 安徽农业科学, 2018, 46(26): 18-20.
|
|
HAN Y G, MA L G, ZHAO L, et al. Research progress on resistance gene NPR1 in plants[J]. Journal of Anhui Agricultural Sciences, 2018, 46(26): 18-20. (in Chinese with English abstract)
|
[11] |
WANG P, ZHAO Z, ZHANG Z, et al. Genome-wide identification and analysis of NPR family genes in Brassica juncea var. tumida[J]. Gene, 2021, 769(4): 145210.
|
[12] |
BAN Q Y, WANG X W, PAN C, et al. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants[J]. PLoS One, 2017, 12(12): e0188514.
|
[13] |
HAO X Y, TANG H, WANG B, et al. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant[J]. Tree Physiology, 2018, 38(11): 1655-1671.
|
[14] |
PENG J, LI N N, DI T M, et al. The interaction of CsWRKY4 and CsOCP3 with CsICE1 regulates CsCBF1/3 and mediates stress response in tea plant (Camellia sinensis)[J]. Environmental and Experimental Botany, 2022, 199: 104892.
|
[15] |
周旋, 申璐, 金媛, 等. 外源水杨酸对盐胁迫下茶树生长及主要生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 161-167.
|
|
ZHOU X, SHEN L, JIN Y, et al. Effects of exogenous salicylic acid on growth and physiological characteristics of tea plant(Camellia sinensis)under salt stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(7): 161-167. (in Chinese with English abstract)
|
[16] |
XIA E H, TONG W, HOU Y, et al. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026.
|
[17] |
WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158.
|
[18] |
SUNG D Y, KAPLAN F, LEE K J, et al. Acquired tolerance to temperature extremes[J]. Trends in Plant Science, 2003, 8(4): 179-187.
|
[19] |
WU Y, ZHANG D, CHU J Y, et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1(6): 639-647.
|
[20] |
BACKER R, MAHOMED W, REEKSTING B J, et al. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana(Mill.)[J]. Frontiers in Plant Science, 2015, 6: 300.
|
[21] |
CAO H, LI X, DONG X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6531-6536.
|
[22] |
ZHANG J K, JIAO P, ZHANG C, et al. Apple NPR1 homologs and their alternative splicing forms may contribute to SA and disease responses[J]. Tree Genetics & Genomes, 2016, 12(5): 1-14.
|
[23] |
BOYLE P, LE SU E, ROCHON A, et al. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function[J]. The Plant Cell, 2009, 21(11): 3700-3713.
|
[24] |
江慎秀, 尚海, 李涛, 等. 油桐NPR1家族全基因组鉴定及表达模式分析[J]. 植物遗传资源学报, 2021, 22(2): 521-531.
|
|
JIANG S X, SHANG H, LI T, et al. Genome-wide identification and expression pattern analysis of NPR1 family in Vernicia fordii[J]. Journal of Plant Genetic Resources, 2021, 22(2): 521-531. (in Chinese with English abstract)
|
[25] |
YOCGO R E, GEZA E, CHIMUSA E R, et al. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1[J]. BMC Plant Biology, 2017, 17(1): 218.
|
[26] |
MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6): 1209-1221.
|
[27] |
DUAN D D, ZHANG H M. A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice[J]. Science China Life Sciences, 2015, 58(8): 827-828.
|