浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 249-258.DOI: 10.3969/j.issn.1004-1524.2023.02.01
• 作物科学 • 下一篇
收稿日期:
2021-07-20
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
汪保华
作者简介:
*汪保华,E-mail: bhwang@ntu.edu.cn基金资助:
JI Meijun(), CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua(
)
Received:
2021-07-20
Online:
2023-02-25
Published:
2023-03-14
Contact:
WANG Baohua
摘要:
核碱基阳离子转运蛋白-1(NCS1)家族是一个次级活性转运蛋白家族,由细菌、古菌、真菌和植物等2 500多个序列成员组成。在其他研究中发现,该蛋白与溶质特异性转运相关,进而影响植物的生长发育,本研究拟通过分析揭示核碱基阳离子转运蛋白在棉花生长发育中的作用。通过全基因组序列分析鉴定陆地棉NCS1基因家族成员;在此基础上,对这些基因进行定位、结构分析、进化发育分析,并开展启动子顺式作用元件鉴定的系统研究。本研究在全基因组水平一共鉴定出4个陆地棉NCS1基因,染色体定位发现,这些基因分布在A09和D09两条染色体上,motif 结果显示所有NCS1蛋白质中都有NCS1结构域的存在,基因结构分析发现,外显子、内含子结构和长度在亚组表现一致。棉花、拟南芥、水稻、玉米等物种的系统发育分析比较表明,该基因家族在物种进化过程中出现了明显的分化。启动子序列分析则表明,该基因家族中存在有大量与脱落酸、赤霉素反应相关的顺式作用元件。取开花后17和21 d的棉花纤维开展qRT-PCR验证实验,结果表明,NCS1基因家族成员在纤维发育过程中具有显著的调节作用。本研究是首次在陆地棉中对NCS1家族进行全基因组的鉴定分析,为进一步探索核碱基阳离子转运蛋白对棉花生长发育的影响提供理论基础。
中图分类号:
季美君, 曹孜怡, 王翌婷, 陆静茹, 汪保华. 陆地棉NCS1基因家族的全基因组成员鉴定及分析[J]. 浙江农业学报, 2023, 35(2): 249-258.
JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258.
基因名称 Gene name | 上游引物 Forward primers(5'→3') | 下游引物 Reverse primers(5'→3') |
---|---|---|
histidine3 | GCCAAGCGTGTCACAATTATG | ACATCACATTGAACCTACCACTACC |
Gh_A09G1345 | GGTGGCATAGTCTTAGCA | CTGAAACCGACGATAGAA |
Gh_A09G1346 | TGGCATCTTCAGGTCAAT | AACCAACCAAGGCTCTAA |
Gh_D09G1347 | ACGATGACCTCAAGCCGACAA | CGCCAGGACAGGGAAAGA |
Gh_D09G1348 | AATGATGACCTCAAGCCGACAA | CACCCACAACAAACCAAAGCA |
表1 qRT-PCR引物
Table 1 Primers for qRT-PCR
基因名称 Gene name | 上游引物 Forward primers(5'→3') | 下游引物 Reverse primers(5'→3') |
---|---|---|
histidine3 | GCCAAGCGTGTCACAATTATG | ACATCACATTGAACCTACCACTACC |
Gh_A09G1345 | GGTGGCATAGTCTTAGCA | CTGAAACCGACGATAGAA |
Gh_A09G1346 | TGGCATCTTCAGGTCAAT | AACCAACCAAGGCTCTAA |
Gh_D09G1347 | ACGATGACCTCAAGCCGACAA | CGCCAGGACAGGGAAAGA |
Gh_D09G1348 | AATGATGACCTCAAGCCGACAA | CACCCACAACAAACCAAAGCA |
物种 Species | 基因名 Gene name | 基因ID Gene ID | 氨基酸数量 Amino acid length | 亚细胞定位 Subcellular localization |
---|---|---|---|---|
陆地棉 | GhNCS1 | Gh_A09G1345 | 570 | 叶绿体,线粒体Chloroplast,mitochondrion |
Gossypium hirsutum | GhNCS2 | Gh_A09G1346 | 557 | 叶绿体,质膜Chloroplast, plasma membrane |
GhNCS3 | Gh_D09G1347 | 573 | 叶绿体,线粒体Chloroplast,mitochondrion | |
GhNCS4 | Gh_D09G1348 | 554 | 叶绿体,质膜Chloroplast, plasma membrane | |
拟南芥Arabidopsis thaliana | ATNCS1 | AT5G03555 | 599 | 质膜Plasma membrane |
番茄Lycopersicon esculentum | SlNCS1 | Solyc09g008550.3 | 501 | 质膜Plasma membrane |
水稻Oryza sativa | OsNCS1 | Os02g0666700 | 538 | 叶绿体,质膜Chloroplast, plasma membrane |
玉米Zea mays | ZmNCS1 | Zm00001d017531 | 541 | 质膜,叶绿体,细胞质 |
Plasma membrane, chloroplast, cytoplasm | ||||
可可Theobroma cacao | TcNCS1 | EOY08031 | 579 | 叶绿体Chloroplast |
葡萄Vitis vinifera | VvNCS1 | VIT_08s0007g04550.t01 | 511 | 叶绿体Chloroplast |
高粱Sorghum bicolor | SBNCS1 | KXG31048 | 544 | 质膜Plasma membrane |
表2 NCS1家族基因基本理化性质
Table 2 Basic information of NCS1 gene family
物种 Species | 基因名 Gene name | 基因ID Gene ID | 氨基酸数量 Amino acid length | 亚细胞定位 Subcellular localization |
---|---|---|---|---|
陆地棉 | GhNCS1 | Gh_A09G1345 | 570 | 叶绿体,线粒体Chloroplast,mitochondrion |
Gossypium hirsutum | GhNCS2 | Gh_A09G1346 | 557 | 叶绿体,质膜Chloroplast, plasma membrane |
GhNCS3 | Gh_D09G1347 | 573 | 叶绿体,线粒体Chloroplast,mitochondrion | |
GhNCS4 | Gh_D09G1348 | 554 | 叶绿体,质膜Chloroplast, plasma membrane | |
拟南芥Arabidopsis thaliana | ATNCS1 | AT5G03555 | 599 | 质膜Plasma membrane |
番茄Lycopersicon esculentum | SlNCS1 | Solyc09g008550.3 | 501 | 质膜Plasma membrane |
水稻Oryza sativa | OsNCS1 | Os02g0666700 | 538 | 叶绿体,质膜Chloroplast, plasma membrane |
玉米Zea mays | ZmNCS1 | Zm00001d017531 | 541 | 质膜,叶绿体,细胞质 |
Plasma membrane, chloroplast, cytoplasm | ||||
可可Theobroma cacao | TcNCS1 | EOY08031 | 579 | 叶绿体Chloroplast |
葡萄Vitis vinifera | VvNCS1 | VIT_08s0007g04550.t01 | 511 | 叶绿体Chloroplast |
高粱Sorghum bicolor | SBNCS1 | KXG31048 | 544 | 质膜Plasma membrane |
图2 陆地棉NCS1家族基因的共线性分析 灰线代表不同基因组内的共线关系,红线代表NCS1家族中的共线基因对
Fig.2 The collinearity of NCS1 family genes in the upland cotton The gray lines represent collinear relationships within different genomes, and the red lines represent collinear gene pairs in the NCS1 family
图5 NCS1基因家族成员的系统发育树 Gh,陆地棉;Tc,可可;Vv,葡萄;Sl,番茄;AT,拟南芥;Os,水稻;Sb,高粱;Zm,玉米。
Fig.5 Phylogenetic tree of NCS1 gene family members Gh, upland cotton; Tc, cocoa; Vv, grape; Sl, tomato; AT, Arabidopsis; Os, rice; Sb, sorghum; Zm, maize.
基因 Gene | 非同义替换率 Ka | 同义替换率 Ks | 选择压力比值 Ka/Ks |
---|---|---|---|
GhNCS2&GhNCS4 | 0.991436 | 1.02657 | 0.965776 |
GhNCS2&GhNCS1 | 0.982483 | 1.05538 | 0.930925 |
GhNCS2&GhNCS3 | 0.978506 | 1.0674 | 0.91672 |
GhNCS4&GhNCS1 | 0.983082 | 1.0533 | 0.933336 |
GhNCS4&GhNCS3 | 0.979421 | 1.06429 | 0.920259 |
GhNCS1&GhNCS3 | 0.006621 | 0.037711 | 0.175571 |
表3 陆地棉NCS1基因家族核苷酸替换率
Table 3 Nucleotide replacement rate of upland cotton NCS1 gene family
基因 Gene | 非同义替换率 Ka | 同义替换率 Ks | 选择压力比值 Ka/Ks |
---|---|---|---|
GhNCS2&GhNCS4 | 0.991436 | 1.02657 | 0.965776 |
GhNCS2&GhNCS1 | 0.982483 | 1.05538 | 0.930925 |
GhNCS2&GhNCS3 | 0.978506 | 1.0674 | 0.91672 |
GhNCS4&GhNCS1 | 0.983082 | 1.0533 | 0.933336 |
GhNCS4&GhNCS3 | 0.979421 | 1.06429 | 0.920259 |
GhNCS1&GhNCS3 | 0.006621 | 0.037711 | 0.175571 |
[1] | KRYPOTOU E, EVANGELIDIS T, BOBONIS J, et al. Origin, diversification and substrate specificity in the family of NCS1/FUR transporters[J]. Molecular Microbiology, 2015, 96(5): 927-950. |
[2] | SIOUPOULI G, LAMBRINIDIS G, MIKROS E, et al. Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family[J]. Molecular Microbiology, 2017, 103(2):319-332. |
[3] | MA P, PATCHING S G, IVANOVA E, et al. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity[J]. Microbiology (Reading, England), 2016, 162(5):823-836. |
[4] | SAIER M H, YEN M R, NOTO K, et al. The transporter classification database: recent advances[J]. Nucleic Acids Research, 2009, 37(suppl_1): D274-D278. |
[5] | JACKSON S M, PATCHING S G, IVONOVA E, et al. Mhp1, the Na+-hydantoin membrane transport protein[M]//Encyclopedia of biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1514-1521. |
[6] | KAZMIER K, CLAXTON D P, MCHAOURAB H S. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes[J]. Current Opinion in Structural Biology, 2017, 45:100-108. |
[7] | SHIMAMURA T, WEYAND S, BECKSTEIN O, et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1[J]. Science, 2010, 328(5977): 470-473. |
[8] | MOFFATT B A, ASHIHARA H. Purine and pyrimidine nucleotide synthesis and metabolism[J]. Frontiers in Bioscience, 2002, 1: e0018. |
[9] | KAFER C, ZHOU L, SANTOSO D, et al. Regulation of pyrimidine metabolism in plants[J]. Frontiers in Bioscience: a Journal and Virtual Library, 2004, 9:1611-1625. |
[10] | ZRENNER R, STITT M, SONNEWALD U, et al. Pyrimidine and purine biosynthesis and degradation in plants[J]. Annual Review of Plant Biology, 2006, 57:805-836. |
[11] | ASHIHARA H, SANO H, CROZIER A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69(4): 841-856. |
[12] | FRÉBORT I, KOWALSKA M, HLUSKA T, et al. Evolution of cytokinin biosynthesis and degradation[J]. Journal of Experimental Botany, 2011, 62(8): 2431-2452. |
[13] | GILLISSEN B, BÜRKLE L, ANDRÉ B, et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis[J]. The Plant Cell, 2000, 12(2): 291-300. |
[14] | BÜRKLE L, CEDZICH A, DÖPKE C, et al. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis[J]. The Plant Journal, 2003, 34(1): 13-26. |
[15] | CEDZICH A, STRANSKY H, SCHULZ B, et al. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures[J]. Plant Physiology, 2008, 148(4):1857-1867. |
[16] | MANSFIELD T A, SCHULTES N P, MOURAD G S. AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis[J]. FEBS Letters, 2009, 583(2): 481-486. |
[17] | RAPP M, SCHEIN J, HUNT K A, et al. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility[J]. Protoplasma, 2016, 253(2):611-623. |
[18] | FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285. |
[19] | VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity, 2002, 93(1):77-78. |
[20] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. |
[21] | BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(suppl_2): W369-W373. |
[22] | HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297. |
[23] | ZHANG C H, RAIKHEL N V, HICKS G R. CLASPing microtubules and auxin transport[J]. Developmental Cell, 2013, 24(6): 569-571. |
[24] | TAMURA K, STECHER G, PATERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. |
[25] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327. |
[26] | FRILLINGOS S. Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ[J]. International Journal of Biochemistry and Molecular Biology, 2012, 3(3): 250-272. |
[27] | DIALLINAS G, GOURNAS C. Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems[J]. Channels (Austin, Tex), 2008, 2(5): 363-372. |
[28] | SCHEIN J R, HUNT K A, MINTON J A, et al. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile[J]. Plant Physiology and Biochemistry, 2013, 70: 52-60. |
[29] | YOUND J D, YAO S Y M, BALDWIN J M, et al. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29[J]. Molecular Aspects of Medicine, 2013, 34(2/3): 529-547. |
[30] | PAN W C, ZHENG P P, ZHANG C, et al. The effect of abre binding factor 4-mediated fyve 1 on salt stress tolerance in Arabidopsis[J]. Plant Science, 2020, 296:110489. |
[31] | IMAN A, HUNTLEY R B, MOURAD G S, et al. Apple nucleobase cation symporter 1 transports guanine and the toxic guanine analog 6-thioguanine[J]. Physiological and Molecular Plant Pathology, 2020, 111:101492. |
[1] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[2] | 向淅, 王思悦, 蒲俊宏, 唐雯璐, 陈清. 低温短日照诱导五叶草莓成花诱导的机理研究[J]. 浙江农业学报, 2022, 34(8): 1661-1668. |
[3] | 楚志刚, 田云芳. 蕙兰一个PEBP家族基因的克隆及生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1679-1691. |
[4] | 刘鹏程, 张继, 邱淦远, 龚俞, 李雪松, 李维, 张依裕, 刘若余. 关岭牛TBC1D7基因单核苷酸多态性筛查及生物信息学分析[J]. 浙江农业学报, 2022, 34(7): 1402-1411. |
[5] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[6] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[7] | 夏煜琪, 孙宇, 刘志鑫, 孙瑞青, 杨楠, 蒲金基, 张贺. 杧果转录因子BES1s家族全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2022, 34(5): 984-994. |
[8] | 余艳玲, 罗洪林, 罗辉, 冯鹏霏, 潘传燕, 宋漫玲, 肖蕊, 张永德. 卵形鲳鲹生肌调节因子基因家族的鉴定及在胚胎中的表达[J]. 浙江农业学报, 2022, 34(4): 695-705. |
[9] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
[10] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[11] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[12] | 杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336. |
[13] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[14] | 蔡方阳, 赵懿琛, 李义, 赵德刚. 杜仲ABC转运蛋白基因家族成员鉴定与分析[J]. 浙江农业学报, 2021, 33(9): 1581-1591. |
[15] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 680
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||