浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 249-258.DOI: 10.3969/j.issn.1004-1524.2023.02.01
收稿日期:2021-07-20
出版日期:2023-02-25
发布日期:2023-03-14
作者简介:*汪保华,E-mail: bhwang@ntu.edu.cn通讯作者:
汪保华
基金资助:
JI Meijun(
), CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua(
)
Received:2021-07-20
Online:2023-02-25
Published:2023-03-14
Contact:
WANG Baohua
摘要:
核碱基阳离子转运蛋白-1(NCS1)家族是一个次级活性转运蛋白家族,由细菌、古菌、真菌和植物等2 500多个序列成员组成。在其他研究中发现,该蛋白与溶质特异性转运相关,进而影响植物的生长发育,本研究拟通过分析揭示核碱基阳离子转运蛋白在棉花生长发育中的作用。通过全基因组序列分析鉴定陆地棉NCS1基因家族成员;在此基础上,对这些基因进行定位、结构分析、进化发育分析,并开展启动子顺式作用元件鉴定的系统研究。本研究在全基因组水平一共鉴定出4个陆地棉NCS1基因,染色体定位发现,这些基因分布在A09和D09两条染色体上,motif 结果显示所有NCS1蛋白质中都有NCS1结构域的存在,基因结构分析发现,外显子、内含子结构和长度在亚组表现一致。棉花、拟南芥、水稻、玉米等物种的系统发育分析比较表明,该基因家族在物种进化过程中出现了明显的分化。启动子序列分析则表明,该基因家族中存在有大量与脱落酸、赤霉素反应相关的顺式作用元件。取开花后17和21 d的棉花纤维开展qRT-PCR验证实验,结果表明,NCS1基因家族成员在纤维发育过程中具有显著的调节作用。本研究是首次在陆地棉中对NCS1家族进行全基因组的鉴定分析,为进一步探索核碱基阳离子转运蛋白对棉花生长发育的影响提供理论基础。
中图分类号:
季美君, 曹孜怡, 王翌婷, 陆静茹, 汪保华. 陆地棉NCS1基因家族的全基因组成员鉴定及分析[J]. 浙江农业学报, 2023, 35(2): 249-258.
JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258.
| 基因名称 Gene name | 上游引物 Forward primers(5'→3') | 下游引物 Reverse primers(5'→3') |
|---|---|---|
| histidine3 | GCCAAGCGTGTCACAATTATG | ACATCACATTGAACCTACCACTACC |
| Gh_A09G1345 | GGTGGCATAGTCTTAGCA | CTGAAACCGACGATAGAA |
| Gh_A09G1346 | TGGCATCTTCAGGTCAAT | AACCAACCAAGGCTCTAA |
| Gh_D09G1347 | ACGATGACCTCAAGCCGACAA | CGCCAGGACAGGGAAAGA |
| Gh_D09G1348 | AATGATGACCTCAAGCCGACAA | CACCCACAACAAACCAAAGCA |
表1 qRT-PCR引物
Table 1 Primers for qRT-PCR
| 基因名称 Gene name | 上游引物 Forward primers(5'→3') | 下游引物 Reverse primers(5'→3') |
|---|---|---|
| histidine3 | GCCAAGCGTGTCACAATTATG | ACATCACATTGAACCTACCACTACC |
| Gh_A09G1345 | GGTGGCATAGTCTTAGCA | CTGAAACCGACGATAGAA |
| Gh_A09G1346 | TGGCATCTTCAGGTCAAT | AACCAACCAAGGCTCTAA |
| Gh_D09G1347 | ACGATGACCTCAAGCCGACAA | CGCCAGGACAGGGAAAGA |
| Gh_D09G1348 | AATGATGACCTCAAGCCGACAA | CACCCACAACAAACCAAAGCA |
| 物种 Species | 基因名 Gene name | 基因ID Gene ID | 氨基酸数量 Amino acid length | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|
| 陆地棉 | GhNCS1 | Gh_A09G1345 | 570 | 叶绿体,线粒体Chloroplast,mitochondrion |
| Gossypium hirsutum | GhNCS2 | Gh_A09G1346 | 557 | 叶绿体,质膜Chloroplast, plasma membrane |
| GhNCS3 | Gh_D09G1347 | 573 | 叶绿体,线粒体Chloroplast,mitochondrion | |
| GhNCS4 | Gh_D09G1348 | 554 | 叶绿体,质膜Chloroplast, plasma membrane | |
| 拟南芥Arabidopsis thaliana | ATNCS1 | AT5G03555 | 599 | 质膜Plasma membrane |
| 番茄Lycopersicon esculentum | SlNCS1 | Solyc09g008550.3 | 501 | 质膜Plasma membrane |
| 水稻Oryza sativa | OsNCS1 | Os02g0666700 | 538 | 叶绿体,质膜Chloroplast, plasma membrane |
| 玉米Zea mays | ZmNCS1 | Zm00001d017531 | 541 | 质膜,叶绿体,细胞质 |
| Plasma membrane, chloroplast, cytoplasm | ||||
| 可可Theobroma cacao | TcNCS1 | EOY08031 | 579 | 叶绿体Chloroplast |
| 葡萄Vitis vinifera | VvNCS1 | VIT_08s0007g04550.t01 | 511 | 叶绿体Chloroplast |
| 高粱Sorghum bicolor | SBNCS1 | KXG31048 | 544 | 质膜Plasma membrane |
表2 NCS1家族基因基本理化性质
Table 2 Basic information of NCS1 gene family
| 物种 Species | 基因名 Gene name | 基因ID Gene ID | 氨基酸数量 Amino acid length | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|
| 陆地棉 | GhNCS1 | Gh_A09G1345 | 570 | 叶绿体,线粒体Chloroplast,mitochondrion |
| Gossypium hirsutum | GhNCS2 | Gh_A09G1346 | 557 | 叶绿体,质膜Chloroplast, plasma membrane |
| GhNCS3 | Gh_D09G1347 | 573 | 叶绿体,线粒体Chloroplast,mitochondrion | |
| GhNCS4 | Gh_D09G1348 | 554 | 叶绿体,质膜Chloroplast, plasma membrane | |
| 拟南芥Arabidopsis thaliana | ATNCS1 | AT5G03555 | 599 | 质膜Plasma membrane |
| 番茄Lycopersicon esculentum | SlNCS1 | Solyc09g008550.3 | 501 | 质膜Plasma membrane |
| 水稻Oryza sativa | OsNCS1 | Os02g0666700 | 538 | 叶绿体,质膜Chloroplast, plasma membrane |
| 玉米Zea mays | ZmNCS1 | Zm00001d017531 | 541 | 质膜,叶绿体,细胞质 |
| Plasma membrane, chloroplast, cytoplasm | ||||
| 可可Theobroma cacao | TcNCS1 | EOY08031 | 579 | 叶绿体Chloroplast |
| 葡萄Vitis vinifera | VvNCS1 | VIT_08s0007g04550.t01 | 511 | 叶绿体Chloroplast |
| 高粱Sorghum bicolor | SBNCS1 | KXG31048 | 544 | 质膜Plasma membrane |
图2 陆地棉NCS1家族基因的共线性分析 灰线代表不同基因组内的共线关系,红线代表NCS1家族中的共线基因对
Fig.2 The collinearity of NCS1 family genes in the upland cotton The gray lines represent collinear relationships within different genomes, and the red lines represent collinear gene pairs in the NCS1 family
图5 NCS1基因家族成员的系统发育树 Gh,陆地棉;Tc,可可;Vv,葡萄;Sl,番茄;AT,拟南芥;Os,水稻;Sb,高粱;Zm,玉米。
Fig.5 Phylogenetic tree of NCS1 gene family members Gh, upland cotton; Tc, cocoa; Vv, grape; Sl, tomato; AT, Arabidopsis; Os, rice; Sb, sorghum; Zm, maize.
| 基因 Gene | 非同义替换率 Ka | 同义替换率 Ks | 选择压力比值 Ka/Ks |
|---|---|---|---|
| GhNCS2&GhNCS4 | 0.991436 | 1.02657 | 0.965776 |
| GhNCS2&GhNCS1 | 0.982483 | 1.05538 | 0.930925 |
| GhNCS2&GhNCS3 | 0.978506 | 1.0674 | 0.91672 |
| GhNCS4&GhNCS1 | 0.983082 | 1.0533 | 0.933336 |
| GhNCS4&GhNCS3 | 0.979421 | 1.06429 | 0.920259 |
| GhNCS1&GhNCS3 | 0.006621 | 0.037711 | 0.175571 |
表3 陆地棉NCS1基因家族核苷酸替换率
Table 3 Nucleotide replacement rate of upland cotton NCS1 gene family
| 基因 Gene | 非同义替换率 Ka | 同义替换率 Ks | 选择压力比值 Ka/Ks |
|---|---|---|---|
| GhNCS2&GhNCS4 | 0.991436 | 1.02657 | 0.965776 |
| GhNCS2&GhNCS1 | 0.982483 | 1.05538 | 0.930925 |
| GhNCS2&GhNCS3 | 0.978506 | 1.0674 | 0.91672 |
| GhNCS4&GhNCS1 | 0.983082 | 1.0533 | 0.933336 |
| GhNCS4&GhNCS3 | 0.979421 | 1.06429 | 0.920259 |
| GhNCS1&GhNCS3 | 0.006621 | 0.037711 | 0.175571 |
| [1] | KRYPOTOU E, EVANGELIDIS T, BOBONIS J, et al. Origin, diversification and substrate specificity in the family of NCS1/FUR transporters[J]. Molecular Microbiology, 2015, 96(5): 927-950. |
| [2] | SIOUPOULI G, LAMBRINIDIS G, MIKROS E, et al. Cryptic purine transporters in Aspergillus nidulans reveal the role of specific residues in the evolution of specificity in the NCS1 family[J]. Molecular Microbiology, 2017, 103(2):319-332. |
| [3] | MA P, PATCHING S G, IVANOVA E, et al. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity[J]. Microbiology (Reading, England), 2016, 162(5):823-836. |
| [4] | SAIER M H, YEN M R, NOTO K, et al. The transporter classification database: recent advances[J]. Nucleic Acids Research, 2009, 37(suppl_1): D274-D278. |
| [5] | JACKSON S M, PATCHING S G, IVONOVA E, et al. Mhp1, the Na+-hydantoin membrane transport protein[M]//Encyclopedia of biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1514-1521. |
| [6] | KAZMIER K, CLAXTON D P, MCHAOURAB H S. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes[J]. Current Opinion in Structural Biology, 2017, 45:100-108. |
| [7] | SHIMAMURA T, WEYAND S, BECKSTEIN O, et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1[J]. Science, 2010, 328(5977): 470-473. |
| [8] | MOFFATT B A, ASHIHARA H. Purine and pyrimidine nucleotide synthesis and metabolism[J]. Frontiers in Bioscience, 2002, 1: e0018. |
| [9] | KAFER C, ZHOU L, SANTOSO D, et al. Regulation of pyrimidine metabolism in plants[J]. Frontiers in Bioscience: a Journal and Virtual Library, 2004, 9:1611-1625. |
| [10] | ZRENNER R, STITT M, SONNEWALD U, et al. Pyrimidine and purine biosynthesis and degradation in plants[J]. Annual Review of Plant Biology, 2006, 57:805-836. |
| [11] | ASHIHARA H, SANO H, CROZIER A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69(4): 841-856. |
| [12] | FRÉBORT I, KOWALSKA M, HLUSKA T, et al. Evolution of cytokinin biosynthesis and degradation[J]. Journal of Experimental Botany, 2011, 62(8): 2431-2452. |
| [13] | GILLISSEN B, BÜRKLE L, ANDRÉ B, et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis[J]. The Plant Cell, 2000, 12(2): 291-300. |
| [14] | BÜRKLE L, CEDZICH A, DÖPKE C, et al. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis[J]. The Plant Journal, 2003, 34(1): 13-26. |
| [15] | CEDZICH A, STRANSKY H, SCHULZ B, et al. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures[J]. Plant Physiology, 2008, 148(4):1857-1867. |
| [16] | MANSFIELD T A, SCHULTES N P, MOURAD G S. AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis[J]. FEBS Letters, 2009, 583(2): 481-486. |
| [17] | RAPP M, SCHEIN J, HUNT K A, et al. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility[J]. Protoplasma, 2016, 253(2):611-623. |
| [18] | FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285. |
| [19] | VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity, 2002, 93(1):77-78. |
| [20] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. |
| [21] | BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(suppl_2): W369-W373. |
| [22] | HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297. |
| [23] | ZHANG C H, RAIKHEL N V, HICKS G R. CLASPing microtubules and auxin transport[J]. Developmental Cell, 2013, 24(6): 569-571. |
| [24] | TAMURA K, STECHER G, PATERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. |
| [25] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327. |
| [26] | FRILLINGOS S. Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ[J]. International Journal of Biochemistry and Molecular Biology, 2012, 3(3): 250-272. |
| [27] | DIALLINAS G, GOURNAS C. Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems[J]. Channels (Austin, Tex), 2008, 2(5): 363-372. |
| [28] | SCHEIN J R, HUNT K A, MINTON J A, et al. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile[J]. Plant Physiology and Biochemistry, 2013, 70: 52-60. |
| [29] | YOUND J D, YAO S Y M, BALDWIN J M, et al. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29[J]. Molecular Aspects of Medicine, 2013, 34(2/3): 529-547. |
| [30] | PAN W C, ZHENG P P, ZHANG C, et al. The effect of abre binding factor 4-mediated fyve 1 on salt stress tolerance in Arabidopsis[J]. Plant Science, 2020, 296:110489. |
| [31] | IMAN A, HUNTLEY R B, MOURAD G S, et al. Apple nucleobase cation symporter 1 transports guanine and the toxic guanine analog 6-thioguanine[J]. Physiological and Molecular Plant Pathology, 2020, 111:101492. |
| [1] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [2] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
| [3] | 崔博文, 张思懿, 王佳玲, 王竞红, 蔺吉祥, 杨青杰. 宽叶苔草WRKY家族成员生物信息学分析与耐旱基因挖掘[J]. 浙江农业学报, 2025, 37(10): 2087-2103. |
| [4] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
| [5] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
| [6] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [7] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
| [8] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
| [9] | 薛承进, 赵兰馨, 赵德刚, 黄小贞. 茶树NPR基因家族成员鉴定与表达分析及冷诱导CsNPR3的基因克隆[J]. 浙江农业学报, 2023, 35(7): 1511-1522. |
| [10] | 张丽, 王媛媛, 王瑞, 刘丽霞. 牦牛DRA基因克隆测序及生物信息学分析[J]. 浙江农业学报, 2023, 35(7): 1564-1570. |
| [11] | 李必聪, 李慧英, 肖遥, 罗莎, 周庆红, 黄英金, 朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析[J]. 浙江农业学报, 2023, 35(7): 1604-1616. |
| [12] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
| [13] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
| [14] | 宋雅萍, 雷召雄, 赵毅昂, 姜超, 王兴平, 罗仍卓么, 马云, 魏大为. 牛FoxO1基因CDS区克隆及其在脂肪细胞分化过程中的表达分析[J]. 浙江农业学报, 2023, 35(5): 1016-1027. |
| [15] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||