浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1694-1705.DOI: 10.3969/j.issn.1004-1524.20240734
收稿日期:
2024-08-13
出版日期:
2025-08-25
发布日期:
2025-09-03
作者简介:
师阳阳(1987—),女,山西长治人,硕士,讲师,主要从事林草生态及园林植物研究。E-mail: Kechengyj240323@126.com
通讯作者:
*吕丽霞,E-mail:llx08.06@163.com
基金资助:
SHI Yangyang1(), LYU Lixia2,*(
), TUO Dengfeng3
Received:
2024-08-13
Online:
2025-08-25
Published:
2025-09-03
Contact:
LYU Lixia
摘要:
以紫罗兰(Matthiola incana)为试材,比较了常温常光(温度20 ℃,光量子通量密度1 000 μmol·m-2·s-1)和低温弱光(温度5 ℃,光量子通量密度100 μmol·m-2·s-1)下接种丛枝菌根真菌(AMF)、植物根围促生细菌(PGPR)以及复合接种(AMF+PGPR)处理对紫罗兰生长、营养吸收以及激素代谢的影响,以期为低温弱光胁迫下应用AMF以及PGPR协同技术促进植物生长提供理论依据。结果表明,低温弱光胁迫抑制紫罗兰株高、叶面积以及植株鲜重的增加,光合色素含量下降,氮磷钾含量降低,而接种AMF或/和PGPR处理对紫罗兰生长均具有一定的促进作用。低温弱光胁迫下,AMF+PGPR处理的菌根侵染率较AMF处理增加了7.3百分点,但AMF+PGPR和AMF处理的丛枝着生率、侵入点位数和泡囊数无显著差异;与PGPR处理相比,AMF+PGPR处理的根围土壤中PGPR数量增加52.0%,根内PGPR数量增加50.0%。低温弱光下,与不接种处理相比,AMF+PGPR处理植株的叶片叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量分别增加62.7%、45.0%、59.8%和52.4%;地上部N含量、根系N含量、地上部P含量、根系P含量、地上部K含量、根系K含量分别增加63.3%、206.0%、89.4%、138.6%、108.0%和191.3%。与常温常光处理相比,低温弱光促进了脱落酸(ABA)含量的增加,但导致吲哚乙酸(IAA)含量下降,接种AMF或/和PGPR处理能增加IAA含量并降低ABA含量,其中AMF+PGPR处理下IAA含量增加8.9%,ABA含量下降6.5%;低温弱光下超氧化物歧化酶(SOD)、过氧化物酶(POD)活性下降,而丙二醛(MDA)和过氧化氢(H2O2)含量上升,接种AMF或/和PGPR处理有助于增加SOD、POD活性并降低MDA和H2O2含量,AMF+PGPR处理下SOD、POD活性增加42.6%和26.8%,MDA以及H2O2含量下降24.3%和30.9%。综上,AMF和PGPR具有协同作用,AMF促进PGPR根内和土壤内定殖数量,PGPR增加AMF菌根侵染率,AMF+PGPR处理提高紫罗兰对低温弱光抵抗性的效果优于单一AMF或PGPR处理。
中图分类号:
师阳阳, 吕丽霞, 脱登峰. 低温弱光胁迫下AMF和PGPR对紫罗兰生长及营养吸收的影响[J]. 浙江农业学报, 2025, 37(8): 1694-1705.
SHI Yangyang, LYU Lixia, TUO Dengfeng. Effects of AMF and PGPR on growth and nutrient absorption of Matthiola incana under low temperature and weak light stress[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1694-1705.
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 菌根侵染率 Mycorrhizal colonization/% | 丛枝着生率 Arbuscule rate/% | 侵入点位数 Numbers of infection point/cm-1 | 泡囊数 Vesicles/cm-1 |
---|---|---|---|---|---|
NN | CK | 0 | 0 | 0 | 0 |
AMF | 49.3±0.6 bc | 26.5±0.9 ab | 7.3±1.2 ab | 12.3±0.3 ab | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 61.5±0.9 a | 29.2±1.6 a | 9.0±0.6 a | 14.7±0.3 a | |
LW | CK | 0 | 0 | 0 | 0 |
AMF | 45.2±0.2 c | 24.2±1.2 b | 6.3±0.7 b | 11.0±0.6 b | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 52.5±0.8 b | 27.5±0.8 ab | 7.6±0.3 ab | 12.7±0.3 ab |
表1 低温弱光下AMF和PGPR对紫罗兰菌根侵染的影响
Table 1 Effects of AMF and PGPR on mycorrhizal infection of M. incana under low temperature and weak light conditions
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 菌根侵染率 Mycorrhizal colonization/% | 丛枝着生率 Arbuscule rate/% | 侵入点位数 Numbers of infection point/cm-1 | 泡囊数 Vesicles/cm-1 |
---|---|---|---|---|---|
NN | CK | 0 | 0 | 0 | 0 |
AMF | 49.3±0.6 bc | 26.5±0.9 ab | 7.3±1.2 ab | 12.3±0.3 ab | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 61.5±0.9 a | 29.2±1.6 a | 9.0±0.6 a | 14.7±0.3 a | |
LW | CK | 0 | 0 | 0 | 0 |
AMF | 45.2±0.2 c | 24.2±1.2 b | 6.3±0.7 b | 11.0±0.6 b | |
PGPR | 0 | 0 | 0 | 0 | |
AMF+PGPR | 52.5±0.8 b | 27.5±0.8 ab | 7.6±0.3 ab | 12.7±0.3 ab |
图2 低温弱光下AMF对PGPR定殖数量的影响 柱上无相同字母的表示差异显著(p<0.05)。下同。
Fig.2 Effect of AMF on PGPR colonization under low temperature and weak light conditions Bars marked without the same letters indicate significant difference at p<0.05. The same as below.
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 株高 Plant height/cm | 叶面积 Leaf area/cm2 | 地上部干重 Dry weight of shoots/g | 根系干重 Dry weight of roots/g |
---|---|---|---|---|---|
NN | CK | 15.2±0.4 d | 671.0±20.1 de | 2.15±0.08 cd | 0.12±0.01 ef |
AMF | 16.9±0.3 ab | 855.3±28.9 c | 2.29±0.17 bc | 0.18±0.02 cd | |
PGPR | 17.1±0.2 ab | 1 036.4±22.6 b | 2.62±0.17 ab | 0.22±0.01 c | |
AMF+PGPR | 17.4±0.1 a | 1 305.8±47.4 a | 2.74±0.12 a | 0.48±0.01 a | |
LW | CK | 11.2±0.3 e | 589.1±7.4 e | 1.87±0.08 d | 0.09±0.01 f |
AMF | 15.3±0.3 d | 679.7±13.9 d | 2.18±0.16 cd | 0.15±0.01 de | |
PGPR | 16.1±0.2 cd | 828.2±20.9 c | 2.24±0.15 bcd | 0.19±0.02 cd | |
AMF+PGPR | 16.5±0.2 bc | 886.7±38.4 c | 2.32±0.16 bc | 0.28±0.02 b |
表2 低温弱光下AMF和PGPR对紫罗兰生长指标的影响
Table 2 Effects of AMF and PGPR on growth indexes of of M. incana under low temperature and weak light conditions
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 株高 Plant height/cm | 叶面积 Leaf area/cm2 | 地上部干重 Dry weight of shoots/g | 根系干重 Dry weight of roots/g |
---|---|---|---|---|---|
NN | CK | 15.2±0.4 d | 671.0±20.1 de | 2.15±0.08 cd | 0.12±0.01 ef |
AMF | 16.9±0.3 ab | 855.3±28.9 c | 2.29±0.17 bc | 0.18±0.02 cd | |
PGPR | 17.1±0.2 ab | 1 036.4±22.6 b | 2.62±0.17 ab | 0.22±0.01 c | |
AMF+PGPR | 17.4±0.1 a | 1 305.8±47.4 a | 2.74±0.12 a | 0.48±0.01 a | |
LW | CK | 11.2±0.3 e | 589.1±7.4 e | 1.87±0.08 d | 0.09±0.01 f |
AMF | 15.3±0.3 d | 679.7±13.9 d | 2.18±0.16 cd | 0.15±0.01 de | |
PGPR | 16.1±0.2 cd | 828.2±20.9 c | 2.24±0.15 bcd | 0.19±0.02 cd | |
AMF+PGPR | 16.5±0.2 bc | 886.7±38.4 c | 2.32±0.16 bc | 0.28±0.02 b |
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | |||
---|---|---|---|---|---|---|---|
地上部Shoot | 根Root | 地上部Shoot | 根Root | 地上部Shoot | 根Root | ||
NN | CK | 28.1±2.2 de | 11.6±1.0 f | 55.2±1.2 e | 27.7±1.1 f | 11.5±0.3 e | 3.0±0.2 f |
AMF | 30.8±1.0 cde | 27.0±0.9 cd | 76.9±0.7 b | 38.1±0.2 d | 13.1±0.6 d | 4.2±0.1 d | |
PGPR | 41.9±2.0 ab | 30.9±1.3 b | 94.9±1.8 a | 40.6±0.6 c | 21.6±0.5 a | 5.2±0.1 c | |
AMF+PGPR | 45.9±4.1 a | 35.5±0.9 a | 97.6±2.1 a | 55.3±1.1 a | 21.4±0.7 a | 8.4±0.2 a | |
LW | CK | 26.3±3.0 e | 11.4±0.5 f | 41.5±1.4 f | 20.7±0.5 g | 8.7±0.5 f | 2.3±0.1 g |
AMF | 28.9±0.5 de | 22.6±1.3 e | 61.6±1.2 d | 33.8±0.9 e | 16.3±0.5 c | 3.4±0.1 e | |
PGPR | 35.7±1.1 bcd | 24.6±0.6 de | 71.6±1.7 c | 36.5±0.5 d | 16.5±0.3 c | 4.2±0.1 d | |
AMF+PGPR | 38.9±2.1 bc | 29.6±0.9 bc | 78.6±1.8 b | 49.4±1.3 b | 18.1±0.3 b | 6.7±0.1 b |
表3 低温弱光下AMF和PGPR对紫罗兰氮、磷、钾含量的影响
Table 3 Effects of AMF and PGPR on N, P, and K content of of M. incana under low temperature and weak light conditions mg·kg-1
胁迫处理 Stress treatment | 接种处理 Inoculation treatment | 氮含量 N content | 磷含量 P content | 钾含量 K content | |||
---|---|---|---|---|---|---|---|
地上部Shoot | 根Root | 地上部Shoot | 根Root | 地上部Shoot | 根Root | ||
NN | CK | 28.1±2.2 de | 11.6±1.0 f | 55.2±1.2 e | 27.7±1.1 f | 11.5±0.3 e | 3.0±0.2 f |
AMF | 30.8±1.0 cde | 27.0±0.9 cd | 76.9±0.7 b | 38.1±0.2 d | 13.1±0.6 d | 4.2±0.1 d | |
PGPR | 41.9±2.0 ab | 30.9±1.3 b | 94.9±1.8 a | 40.6±0.6 c | 21.6±0.5 a | 5.2±0.1 c | |
AMF+PGPR | 45.9±4.1 a | 35.5±0.9 a | 97.6±2.1 a | 55.3±1.1 a | 21.4±0.7 a | 8.4±0.2 a | |
LW | CK | 26.3±3.0 e | 11.4±0.5 f | 41.5±1.4 f | 20.7±0.5 g | 8.7±0.5 f | 2.3±0.1 g |
AMF | 28.9±0.5 de | 22.6±1.3 e | 61.6±1.2 d | 33.8±0.9 e | 16.3±0.5 c | 3.4±0.1 e | |
PGPR | 35.7±1.1 bcd | 24.6±0.6 de | 71.6±1.7 c | 36.5±0.5 d | 16.5±0.3 c | 4.2±0.1 d | |
AMF+PGPR | 38.9±2.1 bc | 29.6±0.9 bc | 78.6±1.8 b | 49.4±1.3 b | 18.1±0.3 b | 6.7±0.1 b |
图4 低温弱光下AMF和PGPR对紫罗兰吲哚乙酸(IAA)和脱落酸(ABA)含量的影响
Fig.4 Effect of AMF and PGPR on indole-3-acetic acid (IAA) and abscisic acid (ABA) content of M. incana under low temperature and weak light conditions
图5 低温弱光下AMF和PGPR对紫罗兰细胞膜代谢及抗氧化酶活性的影响
Fig.5 Effect of AMF and PGPR on cell membrane metabolism and antioxidant enzyme activity of M. incana under low temperature and weak light conditions SOD,Superoxide dismutase;POD, Peroxidase; MDA, Malondialdehyde.
[1] | 陈保冬, 付伟, 伍松林, 等. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
CHEN B D, FU W, WU S L, et al. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling[J]. Chinese Journal of Plant Ecology, 2024, 48(1): 1-20. (in Chinese with English abstract) | |
[2] | AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505(7484): 543-545. |
[3] | ROSMIM A T, ÍRIS V, SÓNIA V G, et al. Arbuscular mycorrhizal fungi (AMF) promote the growth of the pioneer dune plant of coastal areas[J]. African Journal of Microbiology Research, 2020, 14(10): 579-586. |
[4] | GUNES H, DEMIR S, ERDINC C, et al. Effects of arbuscular mycorrhizal fungi (AMF) and biochar on the growth of pepper (Capsicum annuum L.) under salt stress[J]. Gesunde Pflanzen, 2023, 75(6): 2669-2681. |
[5] | 杨娅琳, 武自强, 刘丽, 等. 油茶炭疽病发生与丛枝菌根真菌(AMF)关系研究[J]. 生物学杂志, 2023, 40(5): 35-40. |
YANG Y L, WU Z Q, LIU L, et al. The relationship between arbuscular mycorrhizal fungi (AMF) and anthracnose occurrence in Camellia oleifera[J]. Journal of Biology, 2023, 40(5): 35-40. (in Chinese with English abstract) | |
[6] | SAMMAMA H, MAZRI M A, OUAHMANE L, et al. Microbial inoculation improves soil properties, nutrient uptake, and plant growth in soft wheat-faba bean intercropping[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(4): 5159-5173. |
[7] | 陈笑莹, 宋凤斌, 朱先灿, 等. 低温胁迫下丛枝菌根真菌对玉米幼苗形态、生长和光合的影响[J]. 华北农学报, 2014, 29(S1): 155-161. |
CHEN X Y, SONG F B, ZHU X C, et al. Effect of arbuscular mycorrhizal fungus on morphology, growth and photosynthetic characteristics in maize seedlings under low temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(S1): 155-161. | |
[8] | LI S X, YANG W Y, GUO J H, et al. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi[J]. Plant Physiology and Biochemistry, 2020, 154: 1-10. |
[9] | 谢雪曼, 王凯渊, 余兰, 等. 接种AM真菌改善龙眼幼苗抗寒生理的研究[J]. 西南大学学报(自然科学版), 2023, 45(2): 76-85. |
XIE X M, WANG K Y, YU L, et al. Inoculation of AM fungi improves the cold resistance physiology of Longan seedings[J]. Journal of Southwest University(Natural Science Edition), 2023, 45(2): 76-85. (in Chinese with English abstract) | |
[10] | 任禛, 陈泽斌, 胡昳, 等. 弱光胁迫下接种Glomus mosseae对玉米生长生理指标的影响[J]. 玉米科学, 2016, 24(2): 160-165. |
REN Z, CHEN Z B, HU D, et al. Effect of Glomus mosseae inoculation on growth and physiological indexes of maize under low-light stress[J]. Journal of Maize Sciences, 2016, 24(2): 160-165. (in Chinese with English abstract) | |
[11] | BHAT M A, KUMAR V, AHMAD BHAT M, et al. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress[J]. Frontiers in Microbiology, 2020, 11: 1952. |
[12] | 沈甜, 王琼瑶, 崔永亮, 等. 植物根际促生细菌对蒲儿根富集铜及土壤理化性质的影响[J]. 农业环境科学学报, 2020, 39(3): 572-580. |
SHEN T, WANG Q Y, CUI Y L, et al. Effects of plant growth-promoting rhizobacteria on the copper enrichment ability of Sinosenecio oldhamianus and physicochemical properties of soil[J]. Journal of Agro-Environment Science, 2020, 39(3): 572-580. (in Chinese with English abstract) | |
[13] | SINGH R P, SHELKE G M, KUMAR A, et al. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants[J]. Frontiers in Microbiology, 2015, 6: 937. |
[14] | ALSHEGAIHI R M, ALATAWI A, ALENEZI M A. Ameliorative effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on Cu stress in maize (Zea mays L.) with a focus on oxidative damage, antioxidant responses, and gene expression[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(2): 2437-2455. |
[15] | 李文彬, 宁楚涵, 李伟, 等. 菲和芘胁迫下AMF和PGPR对高羊茅生理生态的响应[J]. 草业学报, 2019, 28(8): 84-94. |
LI W B, NING C H, LI W, et al. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress[J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. (in Chinese with English abstract) | |
[16] | 刘贵猛, 谭树朋, 孙文献, 等. AMF和PGPR对生姜青枯病的影响[J]. 菌物研究, 2017, 15(1): 1-7. |
LIU G M, TAN S P, SUN W X, et al. Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on bacterial wilt of ginger[J]. Journal of Fungal Research, 2017, 15(1): 1-7. (in Chinese with English abstract) | |
[17] | CHEN Q, DENG X H, ELZENGA J T M, et al. Effect of soil bacteriomes on mycorrhizal colonization by Rhizophagus irregularis: interactive effects on maize (Zea mays L.) growth under salt stress[J]. Biology and Fertility of Soils, 2022, 58(5): 515-525. |
[18] | PAN J, HUANG C H, PENG F, et al. Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum Bobr. under saline soil conditions[J]. Research in Cold and Arid Regions, 2022, 14(6): 393-402. |
[19] | 韩亚楠, 刘润进, 李敏. AM真菌和PGPR菌剂组合对低温胁迫下黄瓜生长及防御酶活性的影响[J]. 中国蔬菜, 2014(7): 35-39. |
HAN Y N, LIU R J, LI M. Effects of arbuscular mycorrhizal fungi and PGPR combination agents on growth and defense enzyme activity of cucumber under low temperature stress[J]. China Vegetables, 2014(7): 35-39. (in Chinese with English abstract) | |
[20] | 龚仲幸, 何勇, 朱祝军. 水杨酸对低温胁迫下紫罗兰的生理效应[J]. 江苏农业科学, 2015, 43(6): 150-154. |
GONG Z X, HE Y, ZHU Z J. Physiological effects of salicylic acid on violet under low temperature stress[J]. Jiangsu Agricultural Sciences, 2015, 43(6): 150-154. (in Chinese with English abstract) | |
[21] | 罗红艺, 刘璇, 李思思, 等. 无机盐对紫罗兰切花的保鲜效应[J]. 华中师范大学学报(自然科学版), 2015, 49(5): 763-766. |
LUO H Y, LIU X, LI S S, et al. Effects of fresh preservative agents with different inorganic ions on cut flowers of Matthiola incana[J]. Journal of Central China Normal University(Natural Sciences), 2015, 49(5): 763-766. (in Chinese with English abstract) | |
[22] | 姚汉央, 弓雅婧, 苏宏鼎, 等. 紫罗兰挥发物化学成分分析及促生活性物质鉴定[J]. 云南农业大学学报(自然科学), 2022, 37(5): 842-852. |
YAO H Y, GONG Y J, SU H D, et al. Chemical constituents and effective growth promoting compounds in Matthiola incana volatiles[J]. Journal of Yunnan Agricultural University(Natural Science), 2022, 37(5): 842-852. (in Chinese with English abstract) | |
[23] | NOORASYIKIN M N, ZAINAB M. PGPR by bacillus in vetiver grass’s root enhance strength of soil-root matrix system toward slope stabilization in malaysia[J]. Journal of Engineering and Applied Sciences, 2017, 12(12): 3051-3054. |
[24] | 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. |
[25] | 王学奎. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015. |
[26] | ORDOOKHANI K, KHAVAZI K, MOEZZI A, et al. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato[J]. African Journal of Agricultural Research, 2010, 5(10): 1108-1116. |
[27] | ABKENAR M B, MOZAFARI H, KARIMZADEH K, et al. Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) as an alternative to mineral fertilizers to improve the growth, essential oil profile, and phenolic content of Satureja macrantha L.[J]. Journal of Crop Health, 2024, 76(1): 347-356. |
[28] | AROCA R, PORCEL R, RUIZ-LOZANO J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?[J]. New Phytologist, 2007, 173(4): 808-816. |
[29] | 杜红, 李玉鹏, 程文, 等. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
DU H, LI Y P, CHENG W, et al. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. (in Chinese with English abstract) | |
[30] | 曹克友, 魏佑营, 吴静, 等. 低温弱光胁迫对辣椒CMS三系幼苗光合特性与叶绿素含量的影响[J]. 山东农业科学, 2008, 40(6): 13-16, 19. |
CAO K Y, WEI Y Y, WU J, et al. Effects of low temperature and weak light on photosynthetic characteristics and chlorophyll content in seedlings of hot pepper CMS three-lines[J]. Shandong Agricultural Sciences, 2008, 40(6): 13-16, 19. (in Chinese with English abstract) | |
[31] | 闫妍, 孙超, 于贤昌, 等. 低温胁迫对接种丛枝菌根真菌番茄幼苗生理特性的影响[J]. 中国农业大学学报, 2011, 16(6): 64-69. |
YAN Y, SUN C, YU X C, et al. Effects of arbuscular mycorrhizal fungi on physiological properties of tomato seedlings under low temperature stress[J]. Journal of China Agricultural University, 2011, 16(6): 64-69. (in Chinese with English abstract) | |
[32] | 刘爱荣, 陈双臣, 刘燕英, 等. 丛枝菌根真菌对低温下黄瓜幼苗光合生理和抗氧化酶活性的影响[J]. 生态学报, 2011, 31(12): 3497-3503. |
LIU A R, CHEN S C, LIU Y Y, et al. Effects of AM fungi on leaf photosynthetic physiological parameters and antioxidant enzyme activities under low temperature[J]. Acta Ecologica Sinica, 2011, 31(12): 3497-3503. (in Chinese with English abstract) | |
[33] | 黄志, 许炜萍, 郁昉斌, 等. 接种AMF对弱光环境及盐胁迫下甜瓜光合特性的影响[J]. 西北植物学报, 2018, 38(2): 307-315. |
HUANG Z, XU W P, YU F B, et al. Photosynthesis responses of Cucumis melo seedlings to Glomus under low light and salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(2): 307-315. (in Chinese with English abstract) | |
[34] | 艾星梅, 郑舒媛, 杨艳余, 等. 弱光下PGPR对重瓣百合开花期光合特性及生长的影响[J]. 西南林业大学学报(自然科学), 2017, 37(5): 72-79. |
AI X M, ZHENG S Y, YANG Y Y, et al. Effects of plant growth promoting rhizobacteria on photosynthetic characteristics and growth of ‘Carolina’ before and after florescence under low light[J]. Journal of Southwest Forestry University(Natural Sciences), 2017, 37(5): 72-79. (in Chinese with English abstract) | |
[35] | 李文英, 彭智平, 杨少海, 等. 植物根际促生菌对香蕉幼苗生长及抗枯萎病效应研究[J]. 园艺学报, 2012, 39(2): 234-242. |
LI W Y, PENG Z P, YANG S H, et al. Effects of plant growth-promoting rhizobacteria on growth and controlling Fusarium-wilt disease of banana seedlings[J]. Acta Horticulturae Sinica, 2012, 39(2): 234-242. (in Chinese with English abstract) | |
[36] | LV J H, ZHENG T, SONG Z L, et al. Strawberry proteome responses to controlled hot and cold stress partly mimic post-harvest storage temperature effects on fruit quality[J]. Frontiers in Nutrition, 2021, 8: 812666. |
[37] | 马俊卿. 基于多组学方法研究AMF共生诱导的玉米根系分泌物变化及变化机理[D]. 南宁: 广西大学, 2022. |
MA J Q. Investigation of AMF symbiosis induced changes and mechanisms of changes in root exudates of maize based on multi omics approaches[D]. Nanning: Guangxi University, 2022. (in Chinese with English abstract) | |
[38] | MAHESHWARI D K. Bacterial metabolites in sustainable agroecosystem[M]. Cham: Springer International Publishing, 2015. |
[39] | KHALLOUFI M, MARTÍNEZ-ANDÚJAR C, LACHAÂL M, et al. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance[J]. Journal of Plant Physiology, 2017, 214: 134-144. |
[40] | ZUBAIR M, HANIF A, FARZAND A, et al. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat[J]. Microorganisms, 2019, 7(9): 337. |
[41] | 陈蕾太, 孙爱清, 杨敏, 等. 逆境条件下小麦种子活力与种子萌发相关酶活性及其基因表达的关系[J]. 应用生态学报, 2017, 28(2): 609-619. |
CHEN L T, SUN A Q, YANG M, et al. Relationships of wheat seed vigor with enzyme activities and gene expression related to seed germination under stress conditions[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 609-619. (in Chinese with English abstract) | |
[42] | 黄丽芳, 刘建汀, 王彬, 等. 低温弱光对西葫芦幼苗生长生理指标的影响[J]. 福建农业科技, 2018, 49(7): 11-16. |
HUANG L F, LIU J T, WANG B, et al. Effects of low temperature and weak illumination on physiological indices of summer squash seedlings[J]. Fujian Agricultural Science and Technology, 2018, 49(7): 11-16. (in Chinese with English abstract) | |
[43] | 徐雅梅, 褚希彤, 吴叶, 等. 接种丛枝菌根真菌对低温胁迫下垂穗披碱草影响的研究[J]. 草地学报, 2016, 24(5): 1009-1015. |
XU Y M, CHU X T, WU Y, et al. Effect of arbuscular mycorrhiza inoculation on cold resistance in Elymus nutans[J]. Acta Agrestia Sinica, 2016, 24(5): 1009-1015. (in Chinese with English abstract) | |
[44] | 赵友学, 杨燕波, 朱宇峰, 等. 内生细菌Pantoea alhagi NX-11及其胞外多糖对低温胁迫下水稻苗的促生效应[J]. 江苏农业学报, 2022, 38(2): 296-303. |
ZHAO Y X, YANG Y B, ZHU Y F, et al. Effects of endophytic bacterium Pantoea alhagi NX-11 and its extracellular polysaccharides on the growth of paddy rice seedlings under low temperature stress[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(2): 296-303. (in Chinese with English abstract) | |
[45] | 刘耀臣, 陈可, 于伟红, 等. 水杨酸和AM真菌增强黄瓜耐低温的效应[J]. 北方园艺, 2020(10): 10-15. |
LIU Y C, CHEN K, YU W H, et al. Effects of salicylic acid and AM fungi on cucumber tolerance to low temperature[J]. Northern Horticulture, 2020(10): 10-15. (in Chinese with English abstract) |
[1] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. |
[2] | 曾洪学, 屈兴红. 低温胁迫对3份葛种质萌发过程中脯氨酸和抗坏血酸-谷胱甘肽循环代谢的影响[J]. 浙江农业学报, 2024, 36(7): 1558-1568. |
[3] | 刘博华, 张庆霞, 祁亮, 吴玉霞, 王延秀. 甜樱桃PP2C家族全基因组鉴定与表达分析[J]. 浙江农业学报, 2024, 36(10): 2204-2218. |
[4] | 李颀, 李煜哲. 弱光条件下猪舍清洗目标检测[J]. 浙江农业学报, 2023, 35(9): 2240-2249. |
[5] | 赵云燕, 孙建, 梁俊超, 王郅琪, 颜廷献, 颜小文, 危文亮, 乐美旺. 低温胁迫对芝麻芽期幼苗生长的影响与耐低温材料筛选[J]. 浙江农业学报, 2023, 35(4): 752-768. |
[6] | 聂玮, 孟科, 荣轩, 强浩, 郭晨浩, 陶毛孩, 冯登侦. 绵羊GRM1基因多态性及其与肉质性状的相关性[J]. 浙江农业学报, 2023, 35(4): 799-808. |
[7] | 刘晓芬, 凌晓祺, 向理理, 余璐, 沈宏, 李方. 温度和赤霉素对春兰开花的调控[J]. 浙江农业学报, 2023, 35(2): 355-363. |
[8] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[9] | 李文翔, 王芳, 王舰. 马铃薯miR397的克隆及靶基因筛选[J]. 浙江农业学报, 2022, 34(6): 1141-1151. |
[10] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[11] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[12] | 唐卫东, 刘振文, 刘冬生, 胡雪华. 低温弱光胁迫对设施黄瓜叶片面积与干物质量的影响[J]. 浙江农业学报, 2022, 34(3): 517-524. |
[13] | 王一然, 康志超, 朱国鹏, 王洋, 其格其, 于洪文. 耐低温玉米秸秆降解菌群的优化及其效果[J]. 浙江农业学报, 2022, 34(12): 2720-2727. |
[14] | 黄长兵, 程培蕾, 杨绍宗, 张焕朝, 姜正之, 金立敏. 萱草根茎低温胁迫转录组分析[J]. 浙江农业学报, 2021, 33(8): 1445-1460. |
[15] | 冯欣欣, 李凤兰, 徐永清, 李磊, 贺付蒙, 冯艳忠, 袁强, 刘娣. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468-1476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||