浙江农业学报 ›› 2020, Vol. 32 ›› Issue (4): 742-752.DOI: 10.3969/j.issn.1004-1524.2020.04.22
• 综述 • 上一篇
李维芳, 王春蕾, 王妮, 邓雨正, 姚彦东, 魏丽娟, 廖伟彪*
收稿日期:
2019-10-10
出版日期:
2020-04-25
发布日期:
2020-04-26
通讯作者:
*廖伟彪,E-mail: 作者简介:
李维芳(1994—),男,甘肃武威人,硕士,研究方向为蔬菜栽培生理学。E-mail: 1912019360@qq.com
基金资助:
LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao*
Received:
2019-10-10
Online:
2020-04-25
Published:
2020-04-26
摘要: 近年来,一氧化氮(NO)作为一种气态信号小分子,在植物中的研究越来越多,尤其是植物NO的产生机理及其在植物不定根发生中的作用机制研究取得了很大突破。本文概括了NO在植物体内的产生途径,详细阐述了NO及其与其他信号分子互作对植物不定根发生的影响,总结了植物不定根发生过程中NO调控的相关基因表达;最后,展望了NO参与植物不定根发生的研究趋势,以期为NO在植物不定根发生的应用研究提供理论参考。
中图分类号:
李维芳, 王春蕾, 王妮, 邓雨正, 姚彦东, 魏丽娟, 廖伟彪. 一氧化氮影响植物不定根发生的研究进展[J]. 浙江农业学报, 2020, 32(4): 742-752.
LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao. Research progress on effect of nitric oxide on adventitious root formation in plants[J]. , 2020, 32(4): 742-752.
[1] WANG P C, ZHU J K, LANG Z B.Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins[J]. Plant Signaling & Behavior, 2015, 10(6): e1031939. [2] SANZ L, ALBERTOS P, MATEOS I, et al.Nitric oxide (NO) and phytohormones crosstalk during early plant development[J]. Journal of Experimental Botany, 2015, 66(10): 2857-2868. [3] KONG X Q, WANG T, LI W J, et al.Exogenous nitric oxide delays salt-induced leaf senescence in cotton ( [4] FANCY N N, BAHLMANN A K, LOAKE G J.Nitric oxide function in plant abiotic stress[J]. [5] GEISS G, GUTIERREZ L, BELLINI C.Adventitious root formation: new insights and perspectives[J]. Annual Plant Reviews, 2018, 127-156. [6] KEVERS C, HAUSMAN J F, FAIVRE-RAMPANT O, et al.Hormonal control of adventitious rooting: progress and questions[J]. Journal of Applied Botany, 1997, 71(3/4): 71-79. [7] RICCI A, ROLLI E, DRAMIS L, et al.N, N'-bis-(2, 3-Methylenedioxyphenyl)urea and N, N'-bis-(3, 4-methylenedioxyphenyl)urea enhance adventitious rooting in [8] GUAN L, MURPHY A S, PEER W A, et al.Physiological and molecular regulation of adventitious root formation[J]. Critical Reviews in Plant Sciences, 2015, 34(5): 506-521. [9] LIU J, SHENG L, XU Y, et al. [10] WANG X F, HE F F, MA X X, et al. [11] ZHAO Y, CHENG S F, SONG Y L, et al.The interaction between rice [12] STEFFENS B, RASMUSSEN A.The physiology of adventitious roots[J]. Plant Physiology, 2016, 170(2): 603-617. [13] 张焕欣, 董春娟, 李福凯, 等. 植物不定根发生机理的研究进展[J]. 西北植物学报, 2017, 37(7): 1457-1464. ZHANG H X, DONG C J, LI F K, et al.Progress on the regulatory mechanism of adventitious rooting[J]. [14] HARTMANN H T, KESTER D E.Plant propagation[J]. Soil Science, 1963, 95(1): 89. [15] 廖伟彪, 黄高宝, 郁继华, 等. NO和H2O2在IBA诱导万寿菊不定根形成中的作用[J]. 园艺学报, 2011, 38(5): 939-946. LIAO W B, HUANG G B, YU J H, et al.Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root formation of marigold[J]. [16] LIAO W B, ZHANG M L, HUANG G B, et al.Ca2+ and CaM are involved in NO-and H2O2-induced adventitious root development in marigold[J]. Journal of Plant Growth Regulation, 2012, 31(2): 253-264. [17] XU X T, JIN X, LIAO W B, et al.Nitric oxide is involved in ethylene-induced adventitious root development in cucumber ( [18] JIN X, LIAO W B, YU J H, et al. Nitric oxide is involved in ethylene-induced adventitious rooting in marigold[J]. [19] LANTERI M L, LAXALT A M, LAMATTINA L.Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber[J]. Plant Physiology, 2008, 147(1): 188-198. [20] 黄爱霞, 佘小平. 一氧化氮在萘乙酸诱导不定根形成过程中的作用研究[J]. 陕西师范大学学报(自然科学版), 2011, 39(4): 60-64. HUANG A X, SHE X P.The role of nitric oxide in 1-naphthylacetic acid-induced adventitious roots formation[J]. [21] NEILL S, BRIGHT J, DESIKAN R, et al.Nitric oxide evolution and perception[J]. Journal of Experimental Botany, 2008, 59(1):25-35. [22] MEDINA-ANDRÉS R, SOLANO-PERALTA A, SAUCEDO-VÁZQUEZ J P, et al. The nitric oxide production in the moss [23] GUPTA K J, FERNIE A R, KAISER W M, et al.On the origins of nitric oxide[J]. Trends in Plant Science, 2011, 16(3): 160-168. [24] WILKINSON J Q, CRAWFORD N M.Identification and characterization of a chlorate-resistant mutant of [25] MODOLO L V, AUGUSTO O, ALMEIDA I M G, et al. Decreased arginine and nitrite levels in nitrate reductase-deficient [26] BRIGHT J, DESIKAN R, HANCOCK J T, et al.ABA-induced NO generation and stomatal closure in [27] DOMINGOS P, PRADO A M, WONG A, et al.Nitric oxide: a multitasked signaling gas in plants[J]. Molecular Plant, 2015, 8(4): 506-520. [28] YU M D, LAMATTINA L, SPOEL S H, et al.Nitric oxide function in plant biology: a redox cue in deconvolution[J]. New Phytologist, 2014, 202(4): 1142-1156. [29] MOREAU M, LINDERMAYR C, DURNER J, et al.NO synthesis and signaling in plants-where do we stand?[J]. Physiologia Plantarum, 2010, 138(4): 372-383. [30] ROCKEL P, STRUBE F, ROCKEL A, et al.Regulation of nitric oxide (NO) production by plant nitrate reductase [31] ALDERTON W K, COOPER C E, KNOWLES R G.Nitric oxide synthases: structure, function and inhibition[J]. Biochemical Journal, 2001, 357(3): 593-615. [32] CRAWFORD N M, GALLI M, TISCHNER R, et al.Response to Zemojtel et Al: Plant nitric oxide synthase: back to square one[J]. Trends in Plant Science, 2006, 11(11): 526-527. [33] GUO F Q, OKAMOTO M, CRAWFORD N M.Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science, 2003, 302(5642): 100-103. [34] FLORYSZAK-WIECZOREK J, ARASIMOWICZ-JELONEK M, IZBIAŃSKA K. The combined nitrate reductase and nitrite-dependent route of NO synthesis in potato immunity to [35] PROCHÁZKOVÁ D, HAISEL D, PAVLÍKOVÁ D. Nitric oxide biosynthesis in plants: the short overview[J]. [36] MAMAEVA A S, FOMENKOV A A, NOSOV A V, et al.Regulatory role of nitric oxide in plants[J]. Russian Journal of Plant Physiology, 2015, 62(4): 427-440. [37] URARTE E, ESTEBAN R, MORAN J F, et al.Established and proposed roles of xanthine oxidoreductase in oxidative and reductive pathways in plants[M]//BALUSKA F, VIVANCO J. Signaling and communication in plants. Springer International Publishing, 2014: 15-42. [38] CORPAS F J, PALMA J M, SANDALIO L M, et al.Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea ( [39] MAIA L, MOURA J J G. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases[J]. JBIC Journal of Biological Inorganic Chemistry, 2015, 20(2): 403-433. [40] STÖHR C, STRUBE F, MARX G, et al. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite[J]. Planta, 2001, 212(5/6): 835-841. [41] STÖHR C, STREMLAU S. Formation and possible roles of nitric oxide in plant roots[J]. Journal of Experimental Botany, 2006, 57(3): 463-470. [42] BESSON-BARD A, PUGIN A, WENDEHENNE D.New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology, 2008, 59(1): 21-39. [43] COONEY R V, HARWOOD P J, CUSTER L J, et al.Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids[J]. Environmental Health Perspectives, 1994, 102(5): 460-462. [44] WANG X G, HARGROVE M S.Nitric oxide in plants: the roles of ascorbate and hemoglobin[J]. PLoS One, 2013, 8(12): e82611. [45] BETHKE P C, BADGER M R, JONES R L.Apoplastic synthesis of nitric oxide by plant tissues[J]. The Plant Cell, 2004, 16(2): 332-341. [46] GUPTA K J, STOIMENOVA M, KAISER W M.In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, [47] WENDEHENNE D, PUGIN A, KLESSIG D F, et al.Nitric oxide: comparative synthesis and signaling in animal and plant cells[J]. Trends in Plant Science, 2001, 6(4): 177-183. [48] GAUPELS F, FURCH A C U, WILL T, et al. Nitric oxide generation in [49] RUMER S, GUPTA K J, KAISER W M.Plant cells oxidize hydroxylamines to NO[J]. Journal of Experimental Botany, 2009, 60(7): 2065-2072. [50] BAQUE M A, HAHN E J, PAEK K Y.Induction mechanism of adventitious root from leaf explants of [51] VIDOZ M L, LORETI E, MENSUALI A, et al.Hormonal interplay during adventitious root formation in flooded tomato plants[J]. The Plant Journal, 2010, 63(4): 551-562. [52] HU B, ZHU C G, LI F, et al.LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115. [53] DRUEGE U, FRANKEN P, LISCHEWSKI S, et al.Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in [54] SHE X P, HUANG A X.Change of nitric oxide and NADPH-diaphorase during the generation and the development of adventitious roots in mung bean hypocotyl cuttings[J]. Acta Botanica Sinica, 2004, 46(9): 1049-1055. [55] XUAN W, XU S, LI M Y, et al.Nitric oxide is involved in hemin-induced cucumber adventitious rooting process[J]. Journal of Plant Physiology, 2012, 169(11): 1032-1039. [56] YADAV S, DAVID A, BALUŠKA F, et al. Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls[J]. Plant Signaling & Behavior, 2013, 8(3): e23196. [57] SHARMA S, SINGH H P, BATISH D R, et al.Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of [58] WU C H, TEWARI R K, HAHN E J, et al.Nitric oxide elicitation induces the accumulation of secondary metabolites and antioxidant defense in adventitious roots of [59] KUNDU P, GILL R, AHLAWAT S, et al.Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops[M]// WANI S H. Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. New York: Academic Press, 2018: 151-220. [60] KAYA C, HIGGS D, ASHRAF M, et al. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper ( [61] LI S W, LI Y, LENG Y, et al.Nitric oxide donor improves adventitious rooting in mung bean hypocotyl cuttings exposed to cadmium and osmotic stresses[J]. Environmental and Experimental Botany, 2019, 164: 114-123. [62] XUAN W, ZHU F Y, XU S, et al.The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process[J]. Plant Physiology, 2008, 148(2): 881-893. [63] ZHU Y C, LIAO W B, NIU L J, et al.Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber[J]. BMC Plant Biology, 2016, 16: 146. [64] PAGNUSSAT G C, LANTERI M L, LAMATTINA L.Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process[J]. Plant Physiology, 2003, 132(3): 1241-1248. [65] PAGNUSSAT G C, LANTERI M L, LOMBARDO M C, et al.Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development[J]. Plant Physiology, 2004, 135(1): 279-286. [66] WEN D, GONG B, SUN S S, et al.Promoting roles of melatonin in adventitious root development of [67] DELLA ROVERE F, FATTORINI L, D'ANGELI S, et al. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of [68] KONG D D, JU C L, PARIHAR A, et al. [69] TANG R J, ZHAO F G, GARCIA V J, et al.Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in [70] LANTERI M L, PAGNUSSAT G C, LAMATTINA L.Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber[J]. Journal of Experimental Botany, 2006, 57(6): 1341-1351. [71] 李春兰, 牛丽涓, 胡琳莉, 等. 干旱条件下钙离子对一氧化氮诱导黄瓜不定根发生的影响[J]. 应用生态学报, 2017, 28(11): 3619-3626. LI C L, NIU L J, HU L L, et al.Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress[J]. [72] QI F, XIANG Z X, KOU N H, et al.Nitric oxide is involved in methane-induced adventitious root formation in cucumber[J]. Physiologia Plantarum, 2017, 159(3): 366-377. [73] LIAO W B, XIAO H L, ZHANG M L.Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover [74] 张美玲, 廖伟彪, 肖洪浪. 一氧化氮和过氧化氢对万寿菊不定根形成的影响[J]. 中国沙漠, 2012, 32(1): 105-111. ZHANG M L, LIAO W B, XIAO H L.Effect of nitric oxide and hydrogen peroxide on adventitious root development of marigold[J]. [75] LIAO W B, HUANG G B, YU J H, et al.Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold[J]. The Journal of Horticultural Science and Biotechnology, 2011, 86(2): 159-165. [76] BAI X G, TODD C D, DESIKAN R, et al.N-3-oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide-and nitric oxide-dependent cyclic GMP signaling in mung bean[J]. Plant Physiology, 2012, 158(2): 725-736. [77] LI S W, XUE L G.The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings[J]. In Vitro Cellular & Developmental Biology-Plant, 2010, 46(2): 142-148. [78] LI M Y, CAO Z Y, SHEN W B, et al.Molecular cloning and expression of a cucumber ( [79] ZHU Y C, LIAO W B, WANG M, et al.Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber[J]. Journal of Plant Physiology, 2016, 195: 50-58. |
[1] | 程晶, 刘济明, 王姝, 王灯, 李丽霞, 徐国瑞, 陈梦, 黄路婷. 喀斯特特有植物罗甸小米核桃响应土壤水分的表型可塑性[J]. 浙江农业学报, 2021, 33(2): 259-269. |
[2] | 黄咏明, 宋放, 王策, 姚京磊, 王志静, 何利刚, 吴黎明, 蒋迎春. 根系修剪对枳生长及相关基因表达的影响[J]. 浙江农业学报, 2021, 33(2): 270-277. |
[3] | 徐秀红, 刘金亮, 李栋成, 刘仁祥. 不同类型烟草种质的烟碱含量变化与相关基因表达水平[J]. 浙江农业学报, 2020, 32(9): 1555-1563. |
[4] | 陈天, 包宁颖, 杜崇宣, 刘云根. 不同砷污染程度下香蒲生长与砷富集特征[J]. 浙江农业学报, 2020, 32(9): 1672-1682. |
[5] | 刘坤举, 张小辉, 庞有志, 赵淑娟, 祁艳霞, 王乾昆. 朝鲜鹌鹑GNAS基因表达、克隆及其多态性与羽色的相关性[J]. 浙江农业学报, 2020, 32(8): 1369-1377. |
[6] | 岳建华, 董艳, 李文杨, 李蒙, 张琰. pH对百子莲体胚诱导期生理特性的影响[J]. 浙江农业学报, 2020, 32(8): 1405-1414. |
[7] | 牛素贞, 赵支飞, 宋勤飞, 陈正武. 贵州野生茶树种质资源立地环境多样性[J]. 浙江农业学报, 2020, 32(7): 1223-1232. |
[8] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[9] | 柯义强, 郭鹏辉, 马洪鑫, 杨许花, 高丹丹, 刘湘君, 马忠仁, 丁功涛. 兰州百合组培快繁体系的构建[J]. 浙江农业学报, 2020, 32(6): 1000-1008. |
[10] | 万志前, 陈晨. 植物新品种名称保护的再思考[J]. 浙江农业学报, 2020, 32(6): 1103-1111. |
[11] | 李秋玲, 齐颖, 王琛, 张一名, 王新妤, 尚校兰, 贾永红, 李美茹, 储明星. 热应激对中国荷斯坦牛乳腺组织基因表达及信号通路的影响[J]. 浙江农业学报, 2020, 32(5): 770-778. |
[12] | 卢祎, 高有领, 王水涛, 何盛盛. MicroRNA-499对中华鳖脂类代谢相关基因表达的影响[J]. 浙江农业学报, 2020, 32(5): 798-803. |
[13] | 秦玲, 张鑫, 荣春笑, 莫传园, 范露, 闫婕, 孟莹, 张满让. 苹果多胺氧化酶(PAO)基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(2): 262-273. |
[14] | 张雷鸣, 原居林, 倪蒙, 刘梅, 郭爱环, 练青平, 王海洋, 顾志敏. 两种池塘养殖模式水质因子和浮游植物群落比较分析[J]. 浙江农业学报, 2020, 32(2): 317-326. |
[15] | 耿艳飞, 吕明芳. 植物富含半胱氨酸类受体激酶家族研究进展[J]. 浙江农业学报, 2020, 32(12): 2303-2312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||