浙江农业学报 ›› 2021, Vol. 33 ›› Issue (12): 2348-2357.DOI: 10.3969/j.issn.1004-1524.2021.12.15
隋夕然1(), 王妍1,2,*(
), 刘云根1,2, 张雅洁1, 吴丽芳1
收稿日期:
2020-09-09
出版日期:
2021-12-25
发布日期:
2022-01-10
通讯作者:
王妍
作者简介:
* 王妍,E-mail: wycaf@126.com基金资助:
SUI Xiran1(), WANG Yan1,2,*(
), LIU Yungen1,2, ZHANG Yajie1, WU Lifang1
Received:
2020-09-09
Online:
2021-12-25
Published:
2022-01-10
Contact:
WANG Yan
摘要:
以中国西南典型喀斯特区云南松林地为研究对象,采用方差分析、冗余分析和高通量测序等方法,探究土壤养分与细菌群落组成和多样性对不同海拔的响应,为该地区石漠化治理工作和生态系统植被恢复提供参考依据。结果显示:随海拔升高,土壤全碳、全氮、全磷含量呈现先增大后减小的趋势;土壤全钾含量在海拔1 900 m处最高,在海拔1 600 m处最低;土壤速效氮和速效磷含量在海拔1 600 m处最高,分别在海拔1 300 m和海拔1 900 m处最低;速效钾含量在海拔1 900 m处最高,在海拔1 600 m处最低。Chao1指数、Shannon指数随海拔升高先增大后减小,而Simpson指标随海拔升高先减小后增大。在门分类水平上,优势菌门为变形菌门(Proteus)、酸杆菌门(Acidobacteria)、放线菌门(Actinomycetes)和绿弯菌门(Curvularia),分别占比33.37%、24.40%、19.82%、12.06%。其中,变形菌门和酸杆菌门的相对丰度总体随海拔升高先增多后减少,而绿弯菌门的总体变化趋势与之相反。放线菌门在海拔1 600 m的相对丰度最大,其余海拔的相对丰度无显著差异。在纲分类水平上,优势类群包括α-变形菌纲(Alphaproteobacteria)、酸杆菌纲(Acidobacteriia)、γ-变形菌纲(Gammaproteobacteria)、δ-变形菌纲(Deltaproteobacteria),分别占比18.46%、12.72%、7.88%、5.13%。其中,α-变形菌纲、γ-变形菌纲的相对丰度总体随海拔升高先增大后减小,酸杆菌纲的总体变化趋势与此相反,δ-变形菌纲在不同海拔梯度下无明显变化趋势。土壤pH值,及全碳、全氮、全磷、速效氮和速效磷含量与细菌多样性显著(P<0.05)相关,是细菌群落组成变化的主要驱动因子。
中图分类号:
隋夕然, 王妍, 刘云根, 张雅洁, 吴丽芳. 典型喀斯特区云南松林土壤养分和细菌群落对海拔的响应[J]. 浙江农业学报, 2021, 33(12): 2348-2357.
SUI Xiran, WANG Yan, LIU Yungen, ZHANG Yajie, WU Lifang. Responses of soil nutrients and microbial community to altitude in typical Pinus yunnanensis forest at rocky desertification region[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2348-2357.
指标Index | 1 300 m | 1 600 m | 1 900 m | 2 100 m |
---|---|---|---|---|
经纬度 | 103°0'36″E,23°37'5″N | 103°3'28″E,23°35'5″N | 102°59'35″E,23°32'59″N | 102°56'19″E,23°29'12″N |
Latitude and longitude | ||||
坡向Aspect | 阳坡Sunny slope | 阳坡Sunny slope | 阳坡Sunny slope | 阳坡Sunny slope |
坡位Slope position | 中坡Middle slope | 中坡Middle slope | 中坡Middle slope | 中坡Middle slope |
坡度Slope/(°) | 15 | 20 | 20 | 18 |
岩性Lithology | 石灰岩Limestone | 石灰岩Limestone | 石灰岩Limestone | 石灰岩Limestone |
土壤类型 Soil type | 红色石灰土 Red lime soil | 红色石灰土 Red lime soil | 黑色石灰土 Black lime soil | 黑色石灰土 Black lime soil |
基岩裸露率 | 50~70 | 50~70 | 30~50 | 30~50 |
Bedrock exposure rate/% | ||||
主要植物 Main plants | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、鬼针草Bidens pilosa L. | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、车桑子Dodonaea viscosa(L.) Jacq. | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、车桑子Dodonaea viscosa (L.) Jacq.、鬼针草Bidens pilosa L.、苦刺Sophora davidii | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、鬼针草Bidens pilosa L. |
郁闭度Canopy density/% | 15 | 20 | 20 | 20 |
表1 不同海拔梯度的研究区概况
Table 1 Overview of research area by altitude
指标Index | 1 300 m | 1 600 m | 1 900 m | 2 100 m |
---|---|---|---|---|
经纬度 | 103°0'36″E,23°37'5″N | 103°3'28″E,23°35'5″N | 102°59'35″E,23°32'59″N | 102°56'19″E,23°29'12″N |
Latitude and longitude | ||||
坡向Aspect | 阳坡Sunny slope | 阳坡Sunny slope | 阳坡Sunny slope | 阳坡Sunny slope |
坡位Slope position | 中坡Middle slope | 中坡Middle slope | 中坡Middle slope | 中坡Middle slope |
坡度Slope/(°) | 15 | 20 | 20 | 18 |
岩性Lithology | 石灰岩Limestone | 石灰岩Limestone | 石灰岩Limestone | 石灰岩Limestone |
土壤类型 Soil type | 红色石灰土 Red lime soil | 红色石灰土 Red lime soil | 黑色石灰土 Black lime soil | 黑色石灰土 Black lime soil |
基岩裸露率 | 50~70 | 50~70 | 30~50 | 30~50 |
Bedrock exposure rate/% | ||||
主要植物 Main plants | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、鬼针草Bidens pilosa L. | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、车桑子Dodonaea viscosa(L.) Jacq. | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、车桑子Dodonaea viscosa (L.) Jacq.、鬼针草Bidens pilosa L.、苦刺Sophora davidii | 云南松Pinus yunnanensis、紫茎泽兰Eupatorium adenophora Spreng.、鬼针草Bidens pilosa L. |
郁闭度Canopy density/% | 15 | 20 | 20 | 20 |
图1 不同海拔的土壤养分含量 TC,全碳;TN,全氮;TP,全磷;TK,全钾;AN,速效氮;AP,速效磷;AK,速效钾。下同。
Fig. 1 Soil nutrients contents at different altitudes TC, Total carbon; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium. The same as below.
海拔 Altitude/m | 序列数 Reads quantity | OTU数 OTU quantity | 覆盖率 Coverage | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|---|---|
1 300 | 38 795 | 1 851 | 0.989 2 | 2 178 | 5.98 | 0.007 3 |
1 600 | 29 951 | 2 256 | 0.981 1 | 2 739 | 6.44 | 0.004 6 |
1 900 | 40 857 | 2 595 | 0.986 5 | 3 019 | 6.71 | 0.002 8 |
2 100 | 51 272 | 2 197 | 0.990 1 | 2 592 | 5.95 | 0.008 6 |
表2 不同海拔云南松林土壤的细菌丰度与多样性
Table 2 Abundance and diversity of bacteria in soil of Pinus yunnanensis forest at different altitudes
海拔 Altitude/m | 序列数 Reads quantity | OTU数 OTU quantity | 覆盖率 Coverage | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|---|---|
1 300 | 38 795 | 1 851 | 0.989 2 | 2 178 | 5.98 | 0.007 3 |
1 600 | 29 951 | 2 256 | 0.981 1 | 2 739 | 6.44 | 0.004 6 |
1 900 | 40 857 | 2 595 | 0.986 5 | 3 019 | 6.71 | 0.002 8 |
2 100 | 51 272 | 2 197 | 0.990 1 | 2 592 | 5.95 | 0.008 6 |
图2 不同海拔土壤细菌在门(A)、纲(B)水平上的相对丰度 Proteobacteria,变形菌门;Acidobacteria,酸杆菌门;Chloroflexi,绿弯菌门;Actinobacteria,放线菌门;Verrucomicrobia,疣微菌门;Gemmatimonadetes,芽单胞菌门;Rokubacteria,棒状杆菌门;Bacteroidetes,拟杆菌门;Latescibacteria,匿杆菌门。Blastocatellia (Subgroup 4),母链菌纲;Bacteroidia,拟杆菌纲;Actinobacteria,放线菌纲;Deltaproteobacteria,δ-变形菌纲;Rubrobacteria,红杆菌纲;Acidimicrobiia,酸微菌纲;Chloroflexia,绿弯菌纲;Gemmatimonadetes,芽单胞菌纲;Thermoleophilia,嗜热油菌纲;Verrucomicrobiae,疣微菌纲;Gammaproteobacteria,γ-变形菌纲;Ktedonobacteria,纤线杆菌纲;Alphaproteobacteria,α-变形菌纲;Acidobacteriia,酸杆菌纲。
Fig.2 Relative abundance of soil bacteria at phylum (A) and class (B) level at different altitudes
指标Index | pH | TC | TN | TP | TK | AN | AP | AK |
---|---|---|---|---|---|---|---|---|
Chao1指数Chao1 index | -0.864** | 0.985** | 0.947** | 0.940** | 0.262 | 0.949** | 0.945** | 0.363 |
Shannon指数Shannon index | -0.748** | 0.848** | 0.709** | 0.901** | 0.406 | 0.724** | 0.905** | 0.521 |
Simpson指数Simpson index | 0.665* | -0.752** | -0.589* | -0.836** | -0.438 | -0.607* | -0.837** | -0.550 |
表3 土壤理化性质与细菌丰富度指数、多样性指数的相关性
Table 3 Correlation within soil physiochemical properties and bacterial richness index and diversity indexes
指标Index | pH | TC | TN | TP | TK | AN | AP | AK |
---|---|---|---|---|---|---|---|---|
Chao1指数Chao1 index | -0.864** | 0.985** | 0.947** | 0.940** | 0.262 | 0.949** | 0.945** | 0.363 |
Shannon指数Shannon index | -0.748** | 0.848** | 0.709** | 0.901** | 0.406 | 0.724** | 0.905** | 0.521 |
Simpson指数Simpson index | 0.665* | -0.752** | -0.589* | -0.836** | -0.438 | -0.607* | -0.837** | -0.550 |
图3 细菌门分类群落与养分指标的冗余分析 Proteobacteria,变形菌门;Acidobacteria,酸杆菌门;Chloroflexi,绿弯菌门;Actinobacteria,放线菌门;Verrucomicrobia,疣微菌门;Gemmatimonadetes,芽单胞菌门;Rokubacteria,棒状杆菌门;Bacteroidetes,拟杆菌门;Latescibacteria,匿杆菌门。
Fig.3 Redundancy analysis of phylum taxa and nutrients indexes
[1] | 单志杰, 于洋, 殷哲, 等. 蒙自断陷盆地不同土地利用方式土壤养分特征[J]. 中南林业科技大学学报, 2019, 39(7): 85-91. |
SHAN Z J, YU Y, YIN Z, et al. Soil nutrient characteristics in different land use of Mengzi gabin basin[J]. Journal of Central South University of Forestry & Technology, 2019, 39(7): 85-91.(in Chinese with English abstract) | |
[2] | 吴应红, 陈学敏. 云南省喀斯特山区石漠化现状与治理措施[J]. 云南水力发电, 2017, 33(3): 57-60. |
WU Y H, CHEN X M. Present situation and control measures of rocky desertification in karst mountainous area of Yunnan Province[J]. Yunnan Water Power, 2017, 33(3): 57-60.(in Chinese) | |
[3] | 王宇, 杨世瑜, 袁道先. 云南岩溶石漠化状况及治理规划要点[J]. 中国岩溶, 2005, 24(3): 206-211. |
WANG Y, YANG S Y, YUAN D X. The status quo of Karst rocky desertification and the key points for harnessing rocky desertification in Yunnan Province[J]. Carsologica Sinica, 2005, 24(3): 206-211.(in Chinese with English abstract) | |
[4] | 韩晓阳, 张丽霞, 黄晓琴, 等. 氮素转化菌对茶树根际土壤微生物群落和养分含量的影响[J]. 茶叶科学, 2015, 35(5): 405-414. |
HAN X Y, ZHANG L X, HUANG X Q, et al. Effect of nitrogen transformation bacteria on microbial community and nutrient contents in rhizosphere soil of tea plant[J]. Journal of Tea Science, 2015, 35(5): 405-414.(in Chinese with English abstract) | |
[5] | 常佳丽. 不同种植年限水稻土中甲烷及氮循环相关微生物群落的研究[D]. 北京: 中国农业大学, 2014. |
CHANG J L. CH4-and N-cycling related microbial communities in paddy soils with different paddy ages[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
[6] | 尹娜. 中国北方主要草地类型土壤细菌群落结构和多样性变化[D]. 长春: 东北师范大学, 2014. |
YIN N. Changes in structure and diversity of soil microbial communities across the main grasslands in northern China[D]. Changchun: Northeast Normal University, 2014. (in Chinese with English abstract) | |
[7] | 戴雅婷, 侯向阳, 闫志坚, 等. 库布齐沙地两种植被恢复类型根际土壤微生物群落功能多样性研究[J]. 草业学报, 2016, 25(10): 56-65. |
DAI Y T, HOU X Y, YAN Z J, et al. Rhizosphere microbial functional diversity affected by vegetation restoration in the Hobq Sand Land, Inner Mongolia, China[J]. Acta Prataculturae Sinica, 2016, 25(10): 56-65.(in Chinese with English abstract) | |
[8] | 韩亚飞, 伊文慧, 王文波, 等. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(5): 1-6. |
HAN Y F, YI W H, WANG W B, et al. Soil bacteria diversity in continuous cropping poplar plantation by high throughput sequencing[J]. Journal of Shandong University (Natural Science), 2014, 49(5): 1-6.(in Chinese with English abstract) | |
[9] | 柳春林, 左伟英, 赵增阳, 等. 鼎湖山不同演替阶段森林土壤细菌多样性[J]. 微生物学报, 2012, 52(12): 1489-1496. |
LIU C L, ZUO W Y, ZHAO Z Y, et al. Bacterial diversity of different successional stage forest soils in Dinghushan[J]. Acta Microbiologica Sinica, 2012, 52(12): 1489-1496.(in Chinese with English abstract) | |
[10] | 张清, 肖桂英, 李乡旺, 等. 云南省建水县岩溶石漠化治理对策初探[J]. 湖南林业科技, 2019, 46(5): 77-83. |
ZHANG Q, XIAO G Y, LI X W, et al. A preliminary study on the countermeasures of Karst rocky desertification management in Jianshui County in Yunnan Province[J]. Hunan Forestry Science & Technology, 2019, 46(5): 77-83.(in Chinese with English abstract) | |
[11] | 张晓伦, 邵妍妍, 杨永平, 等. 滇东南岩溶山区地质环境特性遥感探测分析[J]. 昆明冶金高等专科学校学报, 2020, 36(3): 34-44. |
ZHANG X L, SHAO Y Y, YANG Y P, et al. Analysis of geological environment characteristics by remote sensing detection in Karst mountain area, southeast Yunnan[J]. Journal of Kunming Metallurgy College, 2020, 36(3): 34-44.(in Chinese with English abstract) | |
[12] | 陈晨, 杨苑君, 陈奇伯, 等. 典型石漠化区土壤理化性质对其抗剪性能的影响[J]. 西部林业科学, 2020, 49(2): 91-98. |
CHEN C, YANG Y J, CHEN Q B, et al. Effect of soil physi-chemical properties on shear resistance in typical rocky desert areas[J]. Journal of West China Forestry Science, 2020, 49(2): 91-98.(in Chinese with English abstract) | |
[13] | 鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2000. |
[14] | 刘强, 穆兴民, 高鹏, 等. 土壤水力侵蚀对土壤质量理化指标影响的研究综述[J]. 水土保持研究, 2020, 27(6): 386-392. |
LIU Q, MU X M, GAO P, et al. Review of studies on the effects of soil water erosion on physical and chemical properties of soil quality[J]. Research of Soil and Water Conservation, 2020, 27(6): 386-392.(in Chinese with English abstract) | |
[15] | 王艳艳, 赵伟明, 赵科理, 等. 海拔高度对山核桃林地土壤pH值和有效养分的影响[J]. 现代农业科技, 2012(17): 224-225. |
WANG Y Y, ZHAO W M, ZHAO K L, et al. Effects of altitude on pH value and available nutrients in Chinese hickory orchards[J]. Modern Agricultural Science and Technology, 2012(17): 224-225.(in Chinese with English abstract) | |
[16] | 喻理飞, 朱守谦, 叶镜中, 等. 退化喀斯特森林自然恢复评价研究[J]. 林业科学, 2000, 36(6): 12-19. |
YU L F, ZHU S Q, YE J Z, et al. A study on evaluation of natural restoration for degraded Karst forest[J]. Scientia Silvae Sinicae, 2000, 36(6): 12-19.(in Chinese with English abstract) | |
[17] | 吴玥, 赵盼盼, 林开淼, 等. 戴云山黄山松林土壤碳组分的海拔变化特征及影响因素[J]. 生态学报, 2020, 40(16): 5761-5770. |
WU Y, ZHAO P P, LIN K M, et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain[J]. Acta Ecologica Sinica, 2020, 40(16): 5761-5770.(in Chinese with English abstract) | |
[18] | 林开淼, 徐建国, 李文周, 等. 戴云山黄山松林森林群落类型分类及环境梯度解释[J]. 内蒙古林业调查设计, 2018, 41(6): 51-58. |
LIN K M, XU J G, LI W Z, et al. Classification of forest community types and the environmental gradient interpretation of Huangshan pinewoods in Daiyun Mountain[J]. Inner Mongolia Forestry Investigation and Design, 2018, 41(6): 51-58.(in Chinese with English abstract) | |
[19] | 马剑, 刘贤德, 金铭, 等. 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征[J]. 水土保持学报, 2019, 33(2): 207-213. |
MA J, LIU X D, JIN M, et al. Soil physicochemical properties and enzyme activities along the altitudinal gradients in Picea crassifolia of Qilian mountains[J]. Journal of Soil and Water Conservation, 2019, 33(2): 207-213.(in Chinese with English abstract) | |
[20] | 马维伟, 王辉, 王跃思, 等. 甘南尕海草甸湿地不同海拔高度土壤性状研究[J]. 草地学报, 2012, 20(6): 1044-1050. |
MA W W, WANG H, WANG Y S, et al. Soil properties of meadow wetlands for different altitudes in Gahai of Gannan[J]. Acta Agrestia Sinica, 2012, 20(6): 1044-1050.(in Chinese with English abstract) | |
[21] | 胡宗达, 刘世荣, 史作民, 等. 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征[J]. 林业科学研究, 2012, 25(3): 261-268. |
HU Z D, LIU S R, SHI Z M, et al. Variations of soil nitrogen and microbial biomass carbon and nitrogen of Quercus aquifolioides forest at different attitudes in Balangshan, Sichuan[J]. Forest Research, 2012, 25(3): 261-268.(in Chinese with English abstract) | |
[22] | 曹建华, 邓艳, 杨慧, 等. 喀斯特断陷盆地石漠化演变及治理技术与示范[J]. 生态学报, 2016, 36(22): 7103-7108. |
CAO J H, DENG Y, YANG H, et al. Rocky desertification evolution, treatment technology and demonstration in Karst faulted basins, southwest China[J]. Acta Ecologica Sinica, 2016, 36(22): 7103-7108.(in Chinese with English abstract) | |
[23] |
FIERER N, MCCAIN C M, MEIR P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4): 797-804.
DOI URL |
[24] | BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(Supplement 1): 11505-11511. |
[25] | 林耀奔, 杨建辉, 叶艳妹. 盐碱地不同土地利用方式下土壤细菌群落结构多样性差异分析[J]. 环境科学学报, 2019, 39(4): 1266-1273. |
LIN Y B, YANG J H, YE Y M. Analysis on diversity of soil bacterial community under different land use patterns in saline-alkali land[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1266-1273.(in Chinese with English abstract) | |
[26] | 杨立宾, 朱道光, 崔福星, 等. 寒温带兴安落叶松林不同林型土壤微生物群落特征[J]. 东北林业大学学报, 2017, 45(9): 66-72. |
YANG L B, ZHU D G, CUI F X, et al. Soil microbial community characteristics of the different forest types of Larix gmelini forest in cold temperate zone[J]. Journal of Northeast Forestry University, 2017, 45(9): 66-72.(in Chinese with English abstract) | |
[27] |
赵爱花, 杜晓军, 臧婧, 等. 宝天曼落叶阔叶林土壤细菌多样性[J]. 生物多样性, 2015, 23(5): 649-657.
DOI |
ZHAO A H, DU X J, ZANG J, et al. Soil bacterial diversity in the Baotianman deciduous broad-leaved forest[J]. Biodiversity Science, 2015, 23(5): 649-657.(in Chinese with English abstract)
DOI URL |
|
[28] | 李艳春, 林忠宁, 陆烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响[J]. 福建农业学报, 2019, 34(6): 690-696. |
LI Y C, LIN Z N, LU Z, et al. Microbial diversity and community structure in soil under tea bushes-Ganoderma lucidum intercropping[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 690-696.(in Chinese with English abstract) | |
[29] |
JANGID K, WILLIAMS M A, FRANZLUEBBERS A J, et al. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties[J]. Soil Biology and Biochemistry, 2011, 43(10): 2184-2193.
DOI URL |
[30] | FIERER N, LEFF J W, ADAMS B J, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21390-21395. |
[31] |
YUAN Y L, SI G C, WANG J, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2014, 87(1): 121-132.
DOI URL |
[32] |
LIU J J, SUI Y Y, YU Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014, 70: 113-122.
DOI URL |
[33] | 任启文, 王鑫, 李联地, 等. 小五台山不同海拔土壤理化性质垂直变化规律[J]. 水土保持学报, 2019, 33(1): 241-247. |
REN Q W, WANG X, LI L D, et al. Vertical variation of soil physical and chemical properties at different altitudes in Xiaowutai Mountain[J]. Journal of Soil and Water Conservation, 2019, 33(1): 241-247.(in Chinese with English abstract) | |
[34] | 徐志霞, 王璇, 李慧敏, 等. 不同林龄木麻黄林地土壤细菌及与土壤因子的相关性分析[J]. 基因组学与应用生物学, 2018, 37(2): 780-788. |
XU Z X, WANG X, LI H M, et al. Correlative analysis of soil factors and soil bacteria in Casuarina equisetifolia woodlands at different stand ages[J]. Genomics and Applied Biology, 2018, 37(2): 780-788.(in Chinese with English abstract) | |
[35] |
SAIT M, DAVIS K E R, JANSSEN P H. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil[J]. Applied and Environmental Microbiology, 2006, 72(3): 1852-1857.
DOI URL |
[36] |
YANG J K, ZHANG J J, YU H Y, et al. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1449-1458.
DOI URL |
[37] |
BOWMAN K S, NOBRE M F, DA COSTA M S, et al. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_4): 1492-1498.
DOI URL |
[38] | 戴雅婷, 闫志坚, 解继红, 等. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J]. 土壤学报, 2017, 54(3): 735-748. |
DAI Y T, YAN Z J, XIE J H, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica, 2017, 54(3): 735-748.(in Chinese with English abstract) |
[1] | 贾生强, 范惠珊, 陈喜靖, 喻曼, 沈阿林, 苏瑶. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 2021, 33(9): 1686-1699. |
[2] | 赵虎, 张越亭, 刘永华. 糖分含量对番茄叶片Pst DC3000抗性的影响及其机理[J]. 浙江农业学报, 2021, 33(6): 1001-1011. |
[3] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[4] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[5] | 季权安, 刘燕, 肖琛闻, 黄叶娥, 李科, 韦强, 鲍国连. 兔流行性腹胀病病原分离鉴定与防治[J]. 浙江农业学报, 2021, 33(11): 2034-2040. |
[6] | 熊廷浩, 黄益国, 周旋, 鲁艳红, 资涛, 胡宇倩, 宋海星. 湖南省油菜主产区土壤养分含量与重金属污染风险评价[J]. 浙江农业学报, 2021, 33(10): 1904-1912. |
[7] | 陈贵, 鲁晨妮, 石艳平, 倪雄伟, 程旺大, 张红梅, 王保君, 张丽萍, 孙达. 不同缓控释肥搭配脲铵对水稻产量、氮素利用效率和土壤养分的影响[J]. 浙江农业学报, 2021, 33(1): 122-130. |
[8] | 李金武, 郁继华, 吕剑, 冯致, 杨海兴, 车旭升, 秦启杰, 张洋, 金宁. 不同覆盖方式对高原夏季露地松花菜产量、品质和土壤养分的影响[J]. 浙江农业学报, 2020, 32(9): 1626-1633. |
[9] | 江宇航, 李宏伟, 蔡赛波, 林连兵, 张棋麟. 马尾松毛虫肠道细菌的分离鉴定与产蛋白酶细菌的筛选[J]. 浙江农业学报, 2020, 32(8): 1446-1456. |
[10] | 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析[J]. 浙江农业学报, 2020, 32(6): 1019-1028. |
[11] | 牛素贞, 安红卫, 宋勤飞, 陈正武. 贵州野生茶树立地土壤养分状况分析及综合评价[J]. 浙江农业学报, 2020, 32(6): 1039-1048. |
[12] | 刘紫英, 袁斌, 肖花美, 吴永飞, 刘小林, 胡祥飞. 马铃薯致病疫霉及其拮抗菌的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 840-848. |
[13] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
[14] | 张珏锋, 俞叶飞, 李芳, 钟海英, 陈建明. 采用MiSeq测序技术分析3种飞虱中肠内容物的菌群结构[J]. 浙江农业学报, 2020, 32(12): 2192-2200. |
[15] | 赖家豪, 宋水林, 刘冰. 三株柑橘溃疡病生防内生细菌对脐橙感染溃疡病后几种防御酶活性的影响[J]. 浙江农业学报, 2020, 32(11): 1994-2000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||