浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1016-1027.DOI: 10.3969/j.issn.1004-1524.2023.05.05
宋雅萍1(), 雷召雄1, 赵毅昂1, 姜超1, 王兴平1,2, 罗仍卓么1,2, 马云1,2, 魏大为1,2,*(
)
收稿日期:
2022-01-06
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
宋雅萍(1999—),女,甘肃靖远人,硕士研究生,研究方向为动物遗传育种。E-mail:songyaping0905@163.com
通讯作者:
*魏大为,E-mail: weidaweiwdw@163.com
基金资助:
SONG Yaping1(), LEI Zhaoxiong1, ZHAO Yi’ang1, JIANG Chao1, WANG Xingping1,2, LUORENG Zhuoma1,2, MA Yun1,2, WEI Dawei1,2,*(
)
Received:
2022-01-06
Online:
2023-05-25
Published:
2023-06-01
摘要:
本试验旨在克隆牛叉头转录因子O1(Forkhead box O1,FoxO1)基因编码区序列并探究其在牛脂肪细胞分化过程中的表达规律。利用PCR扩增牛FoxO1基因CDS区序列,通过生物信息学方法预测牛FoxO1的理化特性和功能,并运用实时荧光定量PCR技术检测牛脂肪细胞不同分化阶段FoxO1和脂肪标志基因PPARγ、C/EBPα、C/EBPβ、FABP4和LPL的表达规律。结果显示,牛FoxO1基因的CDS区全长1 998 bp,编码665个氨基酸,其蛋白分子式为C3016H4711N871O979S35,理论等电点为6.38。预测发现,FoxO1与脂肪生长发育调控蛋白AKT1、AKT2、AKT3、SIRT1、PRKACA、CDK2和MAPK8等之间存在紧密互作关系。系统进化树结果显示,牛FoxO1进化保守,与亲缘关系较近的绵羊和山羊物种同源性最高。检测牛脂肪细胞不同分化时期基因的时序表达,结果显示,与分化第0天相比,牛FoxO1基因在第6天表达量达到峰值(P<0.01),随后下调;PPARγ和C/EBPβ均在第0天就有较高的表达量,且二者在诱导分化第4、6天表达量都极显著高于第0天(P<0.01);C/EBPα的表达量在分化第2、4、6和10天都极显著高于第0天(P<0.01);FABP4在分化第0、2天表达量较低,于分化第4天表达量上升达峰值(P<0.01),随后逐渐下调(P<0.05);LPL随分化进程推进其表达量不断上升,于分化第10天达到峰值(P<0.01)。以上研究结果可为进一步探究FoxO1调节牛脂肪生成的分子机制提供参考信息。
中图分类号:
宋雅萍, 雷召雄, 赵毅昂, 姜超, 王兴平, 罗仍卓么, 马云, 魏大为. 牛FoxO1基因CDS区克隆及其在脂肪细胞分化过程中的表达分析[J]. 浙江农业学报, 2023, 35(5): 1016-1027.
SONG Yaping, LEI Zhaoxiong, ZHAO Yi’ang, JIANG Chao, WANG Xingping, LUORENG Zhuoma, MA Yun, WEI Dawei. Cloning of CDS region of bovine FoxO1 gene and analysing expression pattern during adipocyte differentiation[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1016-1027.
基因 Gene | 引物序列 Primer sequence(5'→3') | 退火温度 Tm/℃ | 扩增片段长度 Product length/bp | NCBI登录号 GenBank No. | 用途 Purpose |
---|---|---|---|---|---|
FoxO1 | F: ATGGCCGAAGCGCCCCAGGTGGT | 61.5 | 1 998 | XM_025000053.1 | 克隆Clone |
R: TCAGCCTGACACCCAGCTGTGTGTT | |||||
FoxO1 | F: CAGATTTACGAGTGGATG | 60.0 | 96 | XM_025000053.1 | 实时荧光定量PCR |
R: CAGATTATGACGAATTGAAT | (qRT-PCR) | ||||
PPARγ | F: AGGATGGGGTCCTCATATCC | 60.0 | 121 | NM_181024.2 | qRT-PCR |
R: GCGTTGAACTTCACAGCAAA | |||||
C/EBPα | F: TGGACAAGAACAGCAACGAG | 60.0 | 130 | NM_176784 | qRT-PCR |
R: TTGTCACTGGTCAGCTCCAG | |||||
C/EBPβ | F: TTCCTCTCCGACCTCTTCTC | 60.0 | 79 | NM_176788 | qRT-PCR |
R: CCAGACTCACGTAGCCGTACT | |||||
FABP4 | F: AAGTCAAGAGCATCGTAA | 60.0 | 111 | NM_174314.2 | qRT-PCR |
R: CCAGCACCATCTTATCAT | |||||
LPL | F: ACGATTATTGCTCAGCATGG | 60.0 | 130 | NM_001075120.1 | qRT-PCR |
R: ACTTTGTACAGGCACAACCG | |||||
GAPDH | F: CCAACGTGTCTGTTGTGGAT | 60.0 | 80 | NM_001034034.2 | qRT-PCR |
R: CTGCTTCACCACCTTCTTGA |
表1 引物信息
Table 1 Primer information
基因 Gene | 引物序列 Primer sequence(5'→3') | 退火温度 Tm/℃ | 扩增片段长度 Product length/bp | NCBI登录号 GenBank No. | 用途 Purpose |
---|---|---|---|---|---|
FoxO1 | F: ATGGCCGAAGCGCCCCAGGTGGT | 61.5 | 1 998 | XM_025000053.1 | 克隆Clone |
R: TCAGCCTGACACCCAGCTGTGTGTT | |||||
FoxO1 | F: CAGATTTACGAGTGGATG | 60.0 | 96 | XM_025000053.1 | 实时荧光定量PCR |
R: CAGATTATGACGAATTGAAT | (qRT-PCR) | ||||
PPARγ | F: AGGATGGGGTCCTCATATCC | 60.0 | 121 | NM_181024.2 | qRT-PCR |
R: GCGTTGAACTTCACAGCAAA | |||||
C/EBPα | F: TGGACAAGAACAGCAACGAG | 60.0 | 130 | NM_176784 | qRT-PCR |
R: TTGTCACTGGTCAGCTCCAG | |||||
C/EBPβ | F: TTCCTCTCCGACCTCTTCTC | 60.0 | 79 | NM_176788 | qRT-PCR |
R: CCAGACTCACGTAGCCGTACT | |||||
FABP4 | F: AAGTCAAGAGCATCGTAA | 60.0 | 111 | NM_174314.2 | qRT-PCR |
R: CCAGCACCATCTTATCAT | |||||
LPL | F: ACGATTATTGCTCAGCATGG | 60.0 | 130 | NM_001075120.1 | qRT-PCR |
R: ACTTTGTACAGGCACAACCG | |||||
GAPDH | F: CCAACGTGTCTGTTGTGGAT | 60.0 | 80 | NM_001034034.2 | qRT-PCR |
R: CTGCTTCACCACCTTCTTGA |
分析内容 Analysis of the content | 分析软件或者网址 Analysis software and online tool |
---|---|
理化性质分析Analysis of physical and chemical properties | http://www.expasy.org/tools/protparam.html |
亚细胞定位Subcellular localization | https://psort.hgc.jp/form2.html |
信号肽剪切位点预测Prediction of signal peptide splicing sites | http://www.cbs.dtu.dk/services/SignalP-3.0/ |
跨膜螺旋结构预测Prediction of transmembrane helical structure | http://www.cbs.dtu.dk/services/TMHMM |
保守结构域分析Conservative domain analysis | http://smart.embl-heidelberg.de/ |
亲疏水性分析Hydrophilic and hydrophobic analysis | http://ca.expasy.org/tools/protscale.html |
磷酸化位点Phosphorylation site | http://www.cbs.dtu.dk/services/net-Phos/ |
二级结构预测Secondary structure prediction | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html |
三级结构预测Prediction of tertiary structure | https://www.swissmodel.expasy.org/ |
互作蛋白预测Interaction protein prediction | https://string-db.org/ |
系统进化树Phylogenetic tree | MEGA software |
表2 牛FoxO1基因的生物信息学分析软件及在线工具
Table 2 Bioinformatics analysis software and online tool of bovine FoxO1 gene
分析内容 Analysis of the content | 分析软件或者网址 Analysis software and online tool |
---|---|
理化性质分析Analysis of physical and chemical properties | http://www.expasy.org/tools/protparam.html |
亚细胞定位Subcellular localization | https://psort.hgc.jp/form2.html |
信号肽剪切位点预测Prediction of signal peptide splicing sites | http://www.cbs.dtu.dk/services/SignalP-3.0/ |
跨膜螺旋结构预测Prediction of transmembrane helical structure | http://www.cbs.dtu.dk/services/TMHMM |
保守结构域分析Conservative domain analysis | http://smart.embl-heidelberg.de/ |
亲疏水性分析Hydrophilic and hydrophobic analysis | http://ca.expasy.org/tools/protscale.html |
磷酸化位点Phosphorylation site | http://www.cbs.dtu.dk/services/net-Phos/ |
二级结构预测Secondary structure prediction | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html |
三级结构预测Prediction of tertiary structure | https://www.swissmodel.expasy.org/ |
互作蛋白预测Interaction protein prediction | https://string-db.org/ |
系统进化树Phylogenetic tree | MEGA software |
物种名称 The name of the species | 登录号 GenBank No. |
---|---|
牛Bos taurus | XP_024855821.1 |
猪Sus scrofa | NP_999179.3 |
绵羊Ovis aries | XP_027829397.1 |
山羊Capra hircus | QYC62012.1 |
人Homo sapiens | NP_002006.2 |
小鼠Mus musculus | NP_062713.2 |
瘤牛Bos indicus | XP_019827292 |
长臂猿Hylobates moloch | XP_032006629.1 |
表3 牛FoxO1和其他物种系统进化树序列信息
Table 3 Phylogenetic tree sequence information of bovine FoxO1 and other species
物种名称 The name of the species | 登录号 GenBank No. |
---|---|
牛Bos taurus | XP_024855821.1 |
猪Sus scrofa | NP_999179.3 |
绵羊Ovis aries | XP_027829397.1 |
山羊Capra hircus | QYC62012.1 |
人Homo sapiens | NP_002006.2 |
小鼠Mus musculus | NP_062713.2 |
瘤牛Bos indicus | XP_019827292 |
长臂猿Hylobates moloch | XP_032006629.1 |
图1 牛FoxO1基因的CDS区克隆 M泳道为DL4500 Maker,1泳道为目的片段。
Fig.1 Cloning of CDS region of Bovine FoxO1 gene Lane M is DL4500 Maker, lane 1 is the destination segment.
图2 牛FoxO1结构预测及其与其他物种同源性分析 A,二级结构,蓝色竖线表示α-螺旋,红色竖线表示延伸链,绿色竖线表示β-转角,紫色竖线表示无规则卷曲;B,三级结构;C, 互作蛋白;D,系统进化树。
Fig.2 Prediction of FoxO1 structure in bovine and analysis of homology with other species A, Secondary structure. The blue vertical lines represent the α-helix. The red vertical lines represent extended chains. The green vertical lines represent the β-rotation angle. The purple vertical lines represent random curls; B, Tertiary structures; C, Interacting proteins; D, Phylogenetic trees.
图3 牛FoxO1 蛋白功能预测 A,跨膜区;B,磷酸化位点;C,信号肽;D,亲/疏水性;E,结构域。
Fig.3 Functional prediction of bovine FoxO1 protein A, Transmembrane region; B, Phosphorylation sites; C, Signal peptide; D, Hydrophilic/hydrophobic; E, Domain.
亚细胞定位Subcellular localization | 概率Probability/% |
---|---|
细胞核Cell nucleus 质膜Plasma membrane 细胞质Cytoplasm 囊泡分泌系统Vesicles of secretory system 高尔基体Golgi apparatus | 69.6 13.0 8.7 4.3 4.3 |
表4 牛FoxO1亚细胞定位预测结果
Table 4 Prediction results of subcellular localization of bovine FoxO1 protein
亚细胞定位Subcellular localization | 概率Probability/% |
---|---|
细胞核Cell nucleus 质膜Plasma membrane 细胞质Cytoplasm 囊泡分泌系统Vesicles of secretory system 高尔基体Golgi apparatus | 69.6 13.0 8.7 4.3 4.3 |
图4 牛脂肪细胞第0、10天分化情况 A,未分化前细胞;B,诱导分化后第10天油红O染色;C,510 nm 处D值。“**”,P<0.01;“*”,P<0.05。下同。
Fig.4 Differentiation of bovine adipocytes at 0 and 10 days A, Pre-differentiated cells; B, Oil red O staining 10 days after induced differentiation; C. D value at 510 nm. “**”, P<0.01;“*”, P<0.05. The same as below.
[1] | 王如玉, 肖海峰. 中国肉类产品进口市场结构变动及效应分析[J]. 世界农业, 2020(12): 4-11, 127. |
WANG R Y, XIAO H F. Analysis of structural changes and effects of China’s meat import market[J]. World Agriculture, 2020(12): 4-11, 127. (in Chinese with English abstract) | |
[2] |
NAKAE J, CAO Y H, OKI M, et al. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure[J]. Diabetes, 2008, 57(3): 563-576.
DOI PMID |
[3] |
CHEN X Y, RAZA S H A, CHENG G, et al. Bta-miR-376a targeting KLF15 interferes with adipogenesis signaling pathway to promote differentiation of Qinchuan beef cattle preadipocytes[J]. Animals, 2020, 10(12): 2362.
DOI URL |
[4] |
SCOLLAN N D, PRICE E M, MORGAN S A, et al. Can we improve the nutritional quality of meat?[J]. The Proceedings of the Nutrition Society, 2017, 76(4): 603-618.
DOI PMID |
[5] |
LI Y X, CHENG G, YAMADA T, et al. Effect of expressions and SNPs of candidate genes on intramuscular fat content in Qinchuan cattle[J]. Animals: an Open Access Journal from MDPI, 2020, 10(8): 1370.
DOI URL |
[6] | COWHERD R M, LYLE R E, MCGEHEE R E. Molecular regulation of adipocyte differentiation[J]. Seminars in Cell & Developmental Biology, 1999, 10(1): 3-10. |
[7] |
ZHANG J, TANG H J, ZHANG Y Q, et al. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation[J]. International Journal of Molecular Medicine, 2014, 33(5): 1209-1218.
DOI PMID |
[8] | LEE J E, SCHMIDT H, LAI B, et al. Transcriptional and epigenomic regulation of adipogenesis[J]. Molecular and Cellular Biology, 2019, 39(11): e00601-e00618. |
[9] | 雷召雄, 魏大为, 汪书哲, 等. 牛PLIN1基因CDS区扩增及时序表达[J]. 西北农业学报, 2020, 29(10): 1472-1478. |
LEI Z X, WEI D W, WANG S Z, et al. Coding region sequence and temporal expression of bovine PLIN1 gene[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(10): 1472-1478. (in Chinese with English abstract) | |
[10] |
HU X, TANG J, HU X, et al. miR-27b impairs adipocyte differentiation of human adipose tissue-derived mesenchymal stem cells by targeting LPL[J]. Cellular Physiology and Biochemistry, 2018, 47(2): 545-555.
DOI PMID |
[11] | 贾夏丽, 潘洋洋, 乔利英, 等. 脂肪分化相关信号通路及microRNA调节研究进展[J]. 畜牧兽医学报, 2015, 46(4): 518-525. |
JIA X L, PAN Y Y, QIAO L Y, et al. Research progress in signaling pathways and microRNA regulation of adipocyte differentiation[J]. Chinese Journal of Animal and Veterinary Sciences, 2015, 46(4): 518-525. (in Chinese with English abstract) | |
[12] |
TANG R Q, MA F F, LI W, et al. miR-206-3p inhibits 3T3-L1 cell adipogenesis via the c-met/PI3K/Akt pathway[J]. International Journal of Molecular Sciences, 2017, 18(7): 1510.
DOI URL |
[13] |
HAEFLIGER S, GENEVAY M, BIHL M, et al. FOXO1 gene involvement in a non-rhabdomyosarcomatous neoplasm[J]. Virchows Archiv: an International Journal of Pathology, 2021, 479(5): 1031-1036.
DOI |
[14] | 张稳稳, 岳岩磊, 马振玲, 等. FoxO1在病毒感染和炎症发生中的作用[J]. 病毒学报, 2021, 37(3): 726-731. |
ZHANG W W, YUE Y L, MA Z L, et al. The role of FoxO1 in viral infection and inflammation[J]. Chinese Journal of Virology, 2021, 37(3): 726-731. (in Chinese with English abstract) | |
[15] |
LI X D, WAN T T, LI Y B. Role of FoxO1 in regulating autophagy in type 2 diabetes mellitus (Review)[J]. Experimental and Therapeutic Medicine, 2021, 22(1): 707.
DOI PMID |
[16] |
KOUSTENI S. FoxO1, the transcriptional chief of staff of energy metabolism[J]. Bone, 2012, 50(2): 437-443.
DOI PMID |
[17] | 史新娥, 宋子仪, 杨浩, 等. 叉头框转录因子O亚族1(FoxO1)去磷酸化抑制猪前体脂肪细胞分化[J]. 农业生物技术学报, 2011, 19(5): 837-842. |
SHI X E, SONG Z Y, YANG H, et al. Dephosphorylation of forkhead box transcription factor O1 (FoxO1) suppresses differentiation of pig preadipocytes[J]. Journal of Agricultural Biotechnology, 2011, 19(5): 837-842. (in Chinese with English abstract) | |
[18] | 朱允和, 周海宁, 杨波, 等. FoxO1基因研究进展[J]. 中华实用诊断与治疗杂志, 2014, 28(5): 423-425. |
ZHU Y H, ZHOU H N, YANG B, et al. Research progress of FoxO1 gene[J]. Journal of Chinese Practical Diagnosis and Therapy, 2014, 28(5): 423-425. (in Chinese) | |
[19] |
CHEN J, LU Y, TIAN M, et al. Molecular mechanisms of FOXO1 in adipocyte differentiation[J]. Journal of Molecular Endocrinology, 2019, 62(3): R239-R253.
DOI |
[20] | 孙雨佳. 秦川牛FoxO1基因遗传变异及组织表达谱分析[D]. 杨凌: 西北农林科技大学, 2013. |
SUN Y J. Heritable variation and tissue expression pattern analysis of FoxO1 gene in Qinchuan cattle[D]. Yangling: Northwest A & F University, 2013. (in Chinese with English abstract) | |
[21] | 王玲. 普通牛FoxO1、FoxO3、FoxO4基因的克隆、表达及其对肉质性状的遗传效应分析[D]. 雅安: 四川农业大学, 2010. |
WANG L. Cloning, expression and genetic effects of bovine FoxO1, FoxO3 and FoxO4 genes on meat quality traits[D]. Yaan: Sichuan Agricultural University, 2010. (in Chinese with English abstract) | |
[22] | 郭红芳, 昝林森, 孙永刚. 牛前体脂肪细胞的分离培养及诱导分化[J]. 西北农林科技大学学报(自然科学版), 2014, 42(2): 1-6, 12. |
GUO H F, ZAN L S, SUN Y G. Primary culture and differentiation of bovine preadipocytes[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(2): 1-6, 12. (in Chinese with English abstract) | |
[23] |
NAKAE J III, KITAMURA T, KITAMURA Y, et al. The forkhead transcription factor FoxO1 regulates adipocyte differentiation[J]. Developmental Cell, 2003, 4(1): 119-129.
PMID |
[24] |
IOANNILLI L, CICCARONE F, CIRIOLO M R. Adipose tissue and FoxO1: bridging physiology and mechanisms[J]. Cells, 2020, 9(4): 849.
DOI URL |
[25] |
LETTIERI BARBATO D, AQUILANO K, CIRIOLO M R. FoxO1 at the nexus between fat catabolism and longevity pathways[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids, 2014, 1841(10): 1555-1560.
DOI PMID |
[26] |
NOMAN M, JAMEEL A, QIANG W D, et al. Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean[J]. International Journal of Molecular Sciences, 2019, 20(19): 4849.
DOI URL |
[27] | 李易聪, 蒲飞洋, 王慧慧, 等. 同义密码子使用偏嗜性对mRNA半衰期及翻译调控的影响[J]. 生物工程学报, 2022, 38(3): 882-892. |
LI Y C, PU F Y, WANG H H, et al. Effects of synonymous codon usage bias on mRNA half-life and translational regulation[J]. Chinese Journal of Biotechnology, 2022, 38(3): 882-892. (in Chinese with English abstract) | |
[28] |
SALEEM R A, BANERJEE-BASU S, MURPHY T C, et al. Essential structural and functional determinants within the forkhead domain of FOXC1[J]. Nucleic Acids Research, 2004, 32(14): 4182-4193.
PMID |
[29] | 韩琦. 绵羊FoxO1基因的克隆及其在卵泡颗粒细胞中的功能研究[D]. 太谷: 山西农业大学, 2020. |
HAN Q. Molecular cloning and functional analysis of FoxO1 gene of sheep granulosa cells[D]. Taigu: Shanxi Agricultural University, 2020. (in Chinese with English abstract) | |
[30] |
BRUNET A, BONNI A, ZIGMOND M J, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor[J]. Cell, 1999, 96(6): 857-868.
DOI PMID |
[31] |
SHEARIN A L, MONKS B R, SEALE P, et al. Lack of AKT in adipocytes causes severe lipodystrophy[J]. Molecular Metabolism, 2016, 5(7): 472-479.
DOI PMID |
[32] |
PARK H J, YUN J, JANG S H, et al. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway[J]. PLoS One, 2014, 9(9): e105809.
DOI URL |
[33] | BÄCKESJÖ C M, LI Y, LINDGREN U, et al. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells[J]. Cells, Tissues, Organs, 2009, 189(1/2/3/4): 93-97. |
[34] |
MAJEED Y, HALABI N, MADANI A Y, et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways[J]. Scientific Reports, 2021, 11: 8177.
DOI PMID |
[35] |
JI S H, SUN J, BIAN C C, et al. cAMP-dependent protein kinase A in grass carp Ctenopharyngodon idella: molecular characterization, gene structure, tissue distribution and mRNA expression in endoplasmic reticulum stress-induced adipocyte lipolysis[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020, 250: 110479.
DOI URL |
[36] |
CHEN X Y, RAZA S H A, MA X H, et al. Bovine pre-adipocyte adipogenesis is regulated by bta-miR-150 through mTOR signaling[J]. Frontiers in Genetics, 2021, 12: 636550.
DOI URL |
[37] |
AUBERT J, BELMONTE N, DANI C. Role of pathways for signal transducers and activators of transcription, and mitogen-activated protein kinase in adipocyte differentiation[J]. Cellular and Molecular Life Sciences: CMLS, 1999, 56(5/6): 538-542.
DOI URL |
[38] | LEE J M, CHOI S S, LEE Y H, et al. The E3 ubiquitin ligase TRIM25 regulates adipocyte differentiation via proteasome-mediated degradation of PPARγ[J]. Experimental & Molecular Medicine, 2018, 50(10): 1-11. |
[39] |
KANG M, YAN L M, LI Y M, et al. Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation[J]. Genetics and Molecular Research: GMR, 2013, 12(4): 5267-5277.
DOI PMID |
[40] |
SCHLOTTMANN I, EHRHART-BORNSTEIN M, WABITSCH M, et al. Calcium-dependent release of adipocyte fatty acid binding protein from human adipocytes[J]. International Journal of Obesity, 2014, 38(9): 1221-1227.
DOI PMID |
[41] |
BOURAOUI L, CRUZ-GARCIA L, GUTIÉRREZ J, et al. Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout (Oncorhynchus mykiss) adipocyte cells in culture[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 161(1): 83-88.
DOI URL |
[42] | 陈晓佩, 于文浩, 蒋金航, 等. 牛PPARγ基因对脂肪细胞增殖分化的影响[J]. 中国兽医学报, 2016, 36(1): 101-107. |
CHEN X P, YU W H, JIANG J H, et al. Impact of cattle PPARγ expression on adipocyte proliferation and differentiation[J]. Chinese Journal of Veterinary Science, 2016, 36(1): 101-107. (in Chinese with English abstract) | |
[43] |
ZOU P, LIU L H, ZHENG L, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis[J]. Cell Cycle, 2014, 13(23): 3759-3767.
DOI PMID |
[1] | 汪梦竹, 杨光美, 吴玉湖, 杨宣叶, 王慧慧, 曹小安, 李勇, 马忠仁, 马晓霞. 三株分离于新生小牛的牛病毒性腹泻病毒株的基因组特征[J]. 浙江农业学报, 2023, 35(8): 1814-1822. |
[2] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
[3] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
[4] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[5] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
[6] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
[7] | 戴莎莎, 马小静, 王景松, 田兴苗, 王健霖, 李继东. 重组牛疱疹病毒1型转移载体的构建与初步应用[J]. 浙江农业学报, 2023, 35(10): 2311-2320. |
[8] | 杨迪, 张乃群, 王雪勇, 张军, 王新军. 基于数量性状的伏牛山野生中华猕猴桃资源综合评价[J]. 浙江农业学报, 2023, 35(10): 2354-2363. |
[9] | 向淅, 王思悦, 蒲俊宏, 唐雯璐, 陈清. 低温短日照诱导五叶草莓成花诱导的机理研究[J]. 浙江农业学报, 2022, 34(8): 1661-1668. |
[10] | 楚志刚, 田云芳. 蕙兰一个PEBP家族基因的克隆及生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1679-1691. |
[11] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
[12] | 刘鹏程, 张继, 邱淦远, 龚俞, 李雪松, 李维, 张依裕, 刘若余. 关岭牛TBC1D7基因单核苷酸多态性筛查及生物信息学分析[J]. 浙江农业学报, 2022, 34(7): 1402-1411. |
[13] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[14] | 李姗, 黄方园, 张玉龙, 才冬杰, 左之才. 四川省部分地区肉牛源产超广谱β-内酰胺酶肺炎克雷伯菌的分离鉴定与耐药性分析[J]. 浙江农业学报, 2022, 34(5): 923-933. |
[15] | 陈久兵, 耿尚景超, 王方国, 陈娅婷, 周金伟, 骆巧, 马莉, 姚学萍, 余树民, 沈留红, 储岳峰, 曹随忠. 四川省某奶牛场犊牛呼吸道疾病的细菌性病原qPCR检测[J]. 浙江农业学报, 2022, 34(4): 706-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||