浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1069-1079.DOI: 10.3969/j.issn.1004-1524.2023.05.10
柴冠群1(
), 周玮1, 梁红2, 范菲菲1, 朱大雁1, 范成五1,*(
)
收稿日期:2022-05-31
出版日期:2023-05-25
发布日期:2023-06-01
作者简介:柴冠群(1990—),男,山西临汾人,硕士,助理研究员,主要从事农产品产地重金属污染防控工作。E-mail:chaiguanqun@163.com
通讯作者:
*范成五,E-mail:18985581415@189.cn
基金资助:
CHAI Guanqun1(
), ZHOU Wei1, LIANG Hong2, FAN Feifei1, ZHU Dayan1, FAN Chengwu1,*(
)
Received:2022-05-31
Online:2023-05-25
Published:2023-06-01
摘要:
为明确ZnSO4与柠檬酸对辣椒的作用效果,以期为辣椒Cd安全生产提供理论依据,采用盆栽试验,研究叶面喷施200 μmol·L-1 ZnSO4、40 μmol·L-1 柠檬酸和二者复配对辣椒(Capsicum annuum L.)吸收转运Cd、产量与品质的影响,结果表明:与叶面喷施纯水相比,协同喷施200 μmol·L-1 ZnSO4与40 μmol·L-1 柠檬酸(Zn200+CA40)处理显著降低了辣椒果实产量、可溶性糖与氨基酸含量,可溶性蛋白含量显著增加,辣椒碱含量变化不显著。供试辣椒品种青红元帅对土壤Cd具有较强的富集能力,不同部位Cd含量为主茎上叶>根>果实>叉茎上叶>叉茎≈主茎;不同处理辣椒果实Cd含量介于0.58~0.79 mg·kg-1;与叶面喷施纯水相比,Zn200+CA40处理辣椒果实Cd含量显著(P<0.05)降低了26.58%,该处理显著降低了根净吸Cd量及其主茎上叶与叉茎上叶向果实转运Cd的效率,显著增加了根向主茎、叉茎、主茎上叶与叉茎上叶转运Cd的效率,并显著增加了辣椒地上部营养器官Cd的分配比例,尤其是主茎上叶Cd的分配比例。综上,Zn200+CA40处理果实Cd含量降低主要是由于辣椒根净吸Cd量及其主茎上叶向果实转运Cd的效率降低。
中图分类号:
柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079.
CHAI Guanqun, ZHOU Wei, LIANG Hong, FAN Feifei, ZHU Dayan, FAN Chengwu. Effect of foliar spraying of zinc fertilizer and citric acid on yield, quality and Cd absorption and transport ation of pepper[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1069-1079.
| 处理 Treatment | 果实干重 Dry weight of fruits/g | 果实数量 Number of fruits | 单果干重 Dry weight per fruit/g | 整株干重 Dry weight of whole plant/g | 果实干重占比 Percentage of dry weight of fruit/% |
|---|---|---|---|---|---|
| CK | 33.01±0.18 a | 54.67±0.47 ab | 0.60±0.01 a | 75.50±0.41 a | 43.73±0.48 a |
| Zn200 | 33.12±2.07 a | 50.00±2.45 b | 0.66±0.01 a | 76.11±2.22 a | 43.48±1.58 a |
| CA40 | 31.52±1.5 ab | 60.00±3.27 a | 0.51±0.05 b | 77.91±2.62 a | 39.15±0.61 b |
| Zn200+CA40 | 29.31±0.99 b | 49.67±4.50 b | 0.59±0.05 ab | 74.17±0.06 a | 39.52±1.30 b |
表1 不同处理的辣椒生物量(干基)
Table 1 Biomass of peppers under different treatments (Dry weight)
| 处理 Treatment | 果实干重 Dry weight of fruits/g | 果实数量 Number of fruits | 单果干重 Dry weight per fruit/g | 整株干重 Dry weight of whole plant/g | 果实干重占比 Percentage of dry weight of fruit/% |
|---|---|---|---|---|---|
| CK | 33.01±0.18 a | 54.67±0.47 ab | 0.60±0.01 a | 75.50±0.41 a | 43.73±0.48 a |
| Zn200 | 33.12±2.07 a | 50.00±2.45 b | 0.66±0.01 a | 76.11±2.22 a | 43.48±1.58 a |
| CA40 | 31.52±1.5 ab | 60.00±3.27 a | 0.51±0.05 b | 77.91±2.62 a | 39.15±0.61 b |
| Zn200+CA40 | 29.31±0.99 b | 49.67±4.50 b | 0.59±0.05 ab | 74.17±0.06 a | 39.52±1.30 b |
| 处理 Treatment | 可溶性糖含量 Soluble sugars content/ (g·kg-1) | 可溶性蛋白含量 Soluble proteins content/ (g·kg-1) | 氨基酸含量 Amino acids content/ (mg·kg-1) | 辣椒碱含量 Capsaicin content/ (g·kg-1) | VC含量 VC content/ (mg·kg-1) |
|---|---|---|---|---|---|
| CK | 80.36±1.81 a | 23.12±0.26 c | 1 572.21±100.41 a | 1.91±0.14 a | 422.49±18.32 b |
| Zn200 | 68.23±1.34 b | 21.49±0.67 d | 1 645.83±13.50 a | 1.62±0.21 a | 607.69±29.02 a |
| CA40 | 81.23±3.47 a | 29.92±0.42 b | 1 396.94±70.43 b | 1.60±0.26 a | 403.17±16.99 b |
| Zn200+CA40 | 44.85±0.96 c | 31.66±1.06 a | 1 264.23±45.26 b | 2.15±0.51 a | 414.85±23.99 b |
表2 不同处理辣椒果实品质差异
Table 2 Differences in fruit quality of peppers under different treatments
| 处理 Treatment | 可溶性糖含量 Soluble sugars content/ (g·kg-1) | 可溶性蛋白含量 Soluble proteins content/ (g·kg-1) | 氨基酸含量 Amino acids content/ (mg·kg-1) | 辣椒碱含量 Capsaicin content/ (g·kg-1) | VC含量 VC content/ (mg·kg-1) |
|---|---|---|---|---|---|
| CK | 80.36±1.81 a | 23.12±0.26 c | 1 572.21±100.41 a | 1.91±0.14 a | 422.49±18.32 b |
| Zn200 | 68.23±1.34 b | 21.49±0.67 d | 1 645.83±13.50 a | 1.62±0.21 a | 607.69±29.02 a |
| CA40 | 81.23±3.47 a | 29.92±0.42 b | 1 396.94±70.43 b | 1.60±0.26 a | 403.17±16.99 b |
| Zn200+CA40 | 44.85±0.96 c | 31.66±1.06 a | 1 264.23±45.26 b | 2.15±0.51 a | 414.85±23.99 b |
| 处理 Treament | 果实 Fruit | 叉茎 Fork stem | 主茎 Main stem | 叉茎上叶 Leaf on fork stem | 主茎上叶 Leaf on main stem | 根 Root | 地上部 Above-ground parts | 地上部营养器官 Above-ground vegetative organs | 整株 Whole plant |
|---|---|---|---|---|---|---|---|---|---|
| CK | 0.79±0.04 a | 0.35±0.01 a | 0.31±0.04 a | 0.56±0.02b | 2.14±0.10 a | 1.98±0.06 a | 0.62±0.02 a | 0.52±0.01 a | 0.75±0.03 a |
| Zn200 | 0.64±0.03 b | 0.36±0.03 a | 0.28±0.02 a | 0.61±0.02 a | 1.61±0.21 b | 1.61±0.10 b | 0.55±0.02 b | 0.48±0.02 b | 0.64±0.03b |
| CA40 | 0.73±0.01 a | 0.39±0.03 a | 0.32±0.03 a | 0.60±0.01 a | 2.29±0.09 a | 1.43±0.10 b | 0.63±0.01 a | 0.52±0.02 a | 0.70±0.01 a |
| Zn200+CA40 | 0.58±0.06 b | 0.28±0.02 b | 0.31±0.01 a | 0.53±0.01 b | 2.37±0.02 a | 1.14±0.11 c | 0.55±0.02 b | 0.52±0.03 a | 0.61±0.03 b |
表3 不同处理辣椒不同部位Cd含量特征(干基)
Table 3 Characteristics of Cd content in different parts of peppers under different treatments (Dry weight) mg·kg-1
| 处理 Treament | 果实 Fruit | 叉茎 Fork stem | 主茎 Main stem | 叉茎上叶 Leaf on fork stem | 主茎上叶 Leaf on main stem | 根 Root | 地上部 Above-ground parts | 地上部营养器官 Above-ground vegetative organs | 整株 Whole plant |
|---|---|---|---|---|---|---|---|---|---|
| CK | 0.79±0.04 a | 0.35±0.01 a | 0.31±0.04 a | 0.56±0.02b | 2.14±0.10 a | 1.98±0.06 a | 0.62±0.02 a | 0.52±0.01 a | 0.75±0.03 a |
| Zn200 | 0.64±0.03 b | 0.36±0.03 a | 0.28±0.02 a | 0.61±0.02 a | 1.61±0.21 b | 1.61±0.10 b | 0.55±0.02 b | 0.48±0.02 b | 0.64±0.03b |
| CA40 | 0.73±0.01 a | 0.39±0.03 a | 0.32±0.03 a | 0.60±0.01 a | 2.29±0.09 a | 1.43±0.10 b | 0.63±0.01 a | 0.52±0.02 a | 0.70±0.01 a |
| Zn200+CA40 | 0.58±0.06 b | 0.28±0.02 b | 0.31±0.01 a | 0.53±0.01 b | 2.37±0.02 a | 1.14±0.11 c | 0.55±0.02 b | 0.52±0.03 a | 0.61±0.03 b |
图1 不同处理辣椒各部位Cd分配比例 CK,叶面喷施纯水;Zn200,叶面喷施200 μmol·L-1 ZnSO4;CA40,叶面喷施40 μmol·L-1柠檬酸;Zn200+CA40,叶面喷施200 μmol·L-1 ZnSO4与40 μmol·L-1柠檬酸。不同处理下辣椒相同部位间不同小写字母表示差异达显著水平(P<0.05)。下同。
Fig.1 Proportion of Cd accumulation in each part of pepper under different treatments CK, Spraying pure water on leaves; Zn200, Spraying 200 μmol·L-1 ZnSO4 on leaves; CA40, Spraying 40 μmol·L-1 citric acid on leaves; Zn200+CA40, Spraying 200 μmol·L-1 ZnSO4 and 40 μmol·L-1 citric acid on leaves. The different lowercase letters indicated significant differences (P<0.05) among the same part under the different treatment. The same as below.
图2 各处理辣椒对Cd富集能力与根向地上部或茎叶转运Cd的效率
Fig.2 Cd enrichment capacity and efficiency of Cd translocation from root to above-ground part, stem and leaf by pepper in each treatment
| 变异来源 Source of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | F值 F value |
|---|---|---|---|---|
| 修正模型Modified model | 10.421# | 3 | 3.474 | 16.472** |
| 截距Intercept | 687.629 | 1 | 687.629 | 3 260.564** |
| Zn | 3.291 | 1 | 3.291 | 15.604** |
| CA | 3.867 | 1 | 3.867 | 18.336** |
| Zn×CA | 3.264 | 1 | 3.264 | 15.475** |
| 误差Error | 1.687 | 8 | 0.211 | |
| 总计Sum | 699.737 | 12 | ||
| 校正的总计Modified sum | 12.108 | 11 |
表4 辣椒根Cd净吸收量双因素方差分析
Table 4 Two-factor ANOVA for net Cd uptake by pepper roots
| 变异来源 Source of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | F值 F value |
|---|---|---|---|---|
| 修正模型Modified model | 10.421# | 3 | 3.474 | 16.472** |
| 截距Intercept | 687.629 | 1 | 687.629 | 3 260.564** |
| Zn | 3.291 | 1 | 3.291 | 15.604** |
| CA | 3.867 | 1 | 3.867 | 18.336** |
| Zn×CA | 3.264 | 1 | 3.264 | 15.475** |
| 误差Error | 1.687 | 8 | 0.211 | |
| 总计Sum | 699.737 | 12 | ||
| 校正的总计Modified sum | 12.108 | 11 |
图4 不同处理辣椒根Cd净吸收量 图A中不同小写字母表示同一柠檬酸用量条件下不同ZnSO4用量间的差异达到极显著水平(P<0.01);图B中不同小写字母表示同一ZnSO4用量条件下不同柠檬酸用量间的差异达到极显著水平(P<0.01)。
Fig.4 Net Cd uptake by pepper root in different treatments The different lowercase letters indicate extremely significant different (P<0.01) between different ZnSO4 application rates under the same citric acid application rates in figure A; The different lowercase letters indicate extremely significant different (P<0.01) between different citric acid application rates under the same ZnSO4 application rates in figure B.
| [1] | 黄道梅, 魏江霖, 吴世焕, 等. 贵州省辣椒加工业发展现状解析[J]. 中国调味品, 2019, 44(10): 187-189. |
| HUANG D M, WEI J L, WU S H, et al. Analysis on the development status of chili processing industry in Guizhou Province[J]. China Condiment, 2019, 44(10): 187-189. (in Chinese with English abstract) | |
| [2] |
张建, 杨瑞东, 陈蓉, 等. 贵州喀斯特地区土壤-辣椒体系重金属元素的生物迁移积累特征[J]. 食品科学, 2017, 38(21): 175-181.
DOI |
|
ZHANG J, YANG R D, CHEN R, et al. Bioconcentration of heavy metals in soil-Capsicum annuum L. system in Karst areas of Guizhou Province[J]. Food Science, 2017, 38(21): 175-181. (in Chinese with English abstract)
DOI |
|
| [3] |
WANG S Y, WU W Y, LIU F, et al. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn[J]. Environmental Science and Pollution Research, 2017, 24(18): 15209-15225.
DOI URL |
| [4] |
LUO K, LIU H Y, LIU Q D, et al. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly[J]. Environmental Technology, 2022, 43(1): 10-20.
DOI URL |
| [5] | 胡立志, 刘鸿雁, 刘青栋, 等. 贵州喀斯特地区辣椒镉的累积特性及土壤风险阈值研究[J]. 生态科学, 2021, 40(3): 193-200. |
| HU L Z, LIU H Y, LIU Q D, et al. Cadmium accumulation properties of pepper and risk threshold of soils in Karst Area of Guizhou Province[J]. Ecological Science, 2021, 40(3): 193-200. (in Chinese with English abstract) | |
| [6] | 陈贵青, 张晓璟, 徐卫红, 等. 不同Zn水平下辣椒体内Cd的积累、化学形态及生理特性[J]. 环境科学, 2010, 31(7): 1657-1662. |
| CHEN G Q, ZHANG X J, XU W H, et al. Effect of different zinc levels on accumulation and chemical forms of cadmium, and physiological characterization in Capsicum annuum L[J]. Environmental Science, 2010, 31(7): 1657-1662. (in Chinese with English abstract) | |
| [7] | 李洋, 张乃明, 魏复盛. 滇东镉高背景区菜地土壤健康风险评价与基准[J]. 中国环境科学, 2020, 40(10): 4522-4530. |
| LI Y, ZHANG N M, WEI F S. A benchmark study on soil health risks of vegetable fields in a high-cadmium background area in eastern Yunnan[J]. China Environmental Science, 2020, 40(10): 4522-4530. (in Chinese with English abstract) | |
| [8] | 中华人民共和国农业农村部. 轻中度污染耕地安全利用与治理修复推荐技术名录(2019年版)[EB/OL]. (2015-03-25)[2022-05-29]. http://nynct.guizhou.gov.cn/zwgk/xxgkml/zdlyxx/nzccqk/201907/t20190710_25814041.html. |
| [9] |
XIN J L, HUANG B F, LIU A Q, et al. Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil: uptake and redistribution to the edible plant parts[J]. Plant and Soil, 2013, 373(1): 415-425.
DOI URL |
| [10] | 赵首萍, 叶雪珠, 张棋, 等. 不同辣椒品种镉吸收积累能力及关键期研究[J]. 植物营养与肥料学报, 2021, 27(4): 695-705. |
| ZHAO S P, YE X Z, ZHANG Q, et al. The capacity and critical stage of Cd absorption and accumulation of different pepper cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 695-705. (in Chinese with English abstract) | |
| [11] | 邵晓庆, 贺章咪, 徐卫红. 辣椒果实高中低镉积型对镉的富集、转运特性及在亚细胞分布特点比较[J]. 环境科学, 2021, 42(2): 952-959. |
| SHAO X Q, HE Z M, XU W H. Comparison of enrichment and transport of cadmium in the fruit of high and low enrichment pepper varieties and its distribution in subcells[J]. Environmental Science, 2021, 42(2): 952-959. (in Chinese with English abstract) | |
| [12] | 巩雪峰, 李红, 宋占锋, 等. 外施γ-聚谷氨酸对辣椒生长及其镉胁迫下生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 97-104. |
| GONG X F, LI H, SONG Z F, et al. Effects of γ-poly glutamic acid on growth and physiological characteristics of pepper under cadmium stress[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(2): 97-104. (in Chinese with English abstract) | |
| [13] | 李磊, 尹显慧, 龙友华, 等. 叶面喷施硒对辣椒果实品质及微量元素的影响[J]. 北方园艺, 2019(16): 1-6. |
| LI L, YIN X H, LONG Y H, et al. Effects of foliar spraying of selenium fertilizer on fruit quality and trace elements in pepper[J]. Northern Horticulture, 2019(16): 1-6. (in Chinese with English abstract) | |
| [14] | 董如茵, 徐应明, 王林, 等. 土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596. |
| DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596. (in Chinese with English abstract) | |
| [15] | 吕光辉, 许超, 王辉, 等. 叶面喷施不同浓度锌对水稻锌镉积累的影响[J]. 农业环境科学学报, 2018, 37(7): 1521-1528. |
| LÜ G H, XU C, WANG H, et al. Effect of foliar spraying zinc on the accumulation of zinc and cadmium in rice[J]. Journal of Agro-Environment Science, 2018, 37(7): 1521-1528. (in Chinese with English abstract) | |
| [16] | 徐卫红, 王宏信, 刘怀, 等. Zn、d单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响[J]. 环境科学, 2007, 28(9): 2089-2095. |
| XU W H, WANG H X, LIU H, et al. Effects of individual and combined pollution of Cd and Zn on root exudates and rhizosphere Zn and Cd fractions in ryegrass(Loliurn perenne L.)[J]. Environmental Science, 2007, 28(9): 2089-2095. (in Chinese with English abstract) | |
| [17] | 王亚, 冯发运, 葛静, 等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3): 829-842. |
| WANG Y, FENG F Y, GE J, et al. Effects and mechanisms of plant root exudates on soil remediation[J]. Acta Ecologica Sinica, 2022, 42(3): 829-842. (in Chinese with English abstract) | |
| [18] | 侯晓龙. 铅超富集植物金丝草对Pb胁迫的响应机制研究[D]. 福州: 福建农林大学, 2013. |
| HOU X L. Response mechnism of Pb hypcraccumulator Pogonatherum crinitum to Pb stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese with English abstract) | |
| [19] | 傅晓萍, 豆长明, 胡少平, 等. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354-1358. |
| FU X P, DOU C M, HU S P, et al. A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants[J]. Chinese Journal of Plant Ecology, 2010, 34(11): 1354-1358. (in Chinese with English abstract) | |
| [20] | 薛卫杰. 柠檬酸抑制水稻镉离子吸收转运机理研究[D]. 北京: 中国农业科学院, 2020. |
| XUE W J. The mechanism of citric acid inhibiting cadmium absorption and transport in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract) | |
| [21] | 林琦, 陈英旭, 陈怀满, 等. 有机酸对Pb、Cd的土壤化学行为和植株效应的影响[J]. 应用生态学报, 2001, 12(4): 619-622. |
| LIN Q, CHEN Y X, CHEN H M, et al. Effect of organic acids on soil chemical behavior of lead and cadmium and their toxicity to plants[J]. Chinese Journal of Applied Ecology, 2001, 12(4): 619-622. (in Chinese with English abstract) | |
| [22] | 李子双, 王薇, 张世文, 等. 氮磷与硅钙肥配施对辣椒产量和品质的影响[J]. 植物营养与肥料学报, 2015, 21(2): 458-466. |
| LI Z S, WANG W, ZHANG S W, et al. Effect of nitrogen, phosphorus and silicon calcium fertilizer on yield and quality of pepper[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 458-466. (in Chinese with English abstract) | |
| [23] | 柴冠群, 范成五, 刘桂华, 等. 适宜贵州中度镉污染烟田安全生产的烤烟品种筛选[J]. 西南农业学报, 2022, 35(6):1415-1421. |
| CHAI G Q, FAN C W, LIU G H, et al. Screening of tobacco varieties for safe production in tobacco fields with medium risk of Cd pollution in Guizhou[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(6):1415-1421. | |
| [24] | 索炎炎, 张翔, 司贤宗, 等. 磷锌配施对花生生理特性、产量及品质的影响[J]. 中国土壤与肥料, 2018(2): 96-102. |
| SUO Y Y, ZHANG X, SI X Z, et al. The combined effects of phosphorus and zinc on physiological characteristics, yield and quality of peanut plants[J]. Soil and Fertilizer Sciences in China, 2018(2): 96-102. (in Chinese with English abstract) | |
| [25] | 李美玲, 皇飞, 郭振升, 等. 不同锌肥对朝天椒产量和品质的影响[J]. 陕西农业科学, 2018, 64(5): 30-33. |
| LI M L, HUANG F, GUO Z S, et al. Effects of different Zn fertilizers on pod pepper yield and quality[J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(5): 30-33. (in Chinese) | |
| [26] | 施娴, 李洪有, 卢丙越, 等. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022(3): 149-154. |
| SHI X, LI H Y, LU B Y, et al. Physiological responses of three Tartary buckwheat varieties to salt stress and evaluation of salt tolerance[J]. Crops, 2022(3): 149-154. (in Chinese with English abstract) | |
| [27] | 刘燕, 姚媛媛, 杨越超, 等. 小分子有机酸钾对水稻种子萌发和幼苗生长的影响[J]. 植物营养与肥料学报, 2019, 25(12): 2142-2151. |
| LIU Y, YAO Y Y, YANG Y C, et al. Effects of small molecule organic sylvites on seed germination and seedling growth of rice (Oryza sativa L.)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2142-2151. (in Chinese with English abstract) | |
| [28] | 于丹, 徐福利, 王渭玲, 等. 低分子有机酸喷施对辣椒生长、养分吸收、产量及果实品质的影响[J]. 西北农业学报, 2013, 22(6): 118-125. |
| YU D, XU F L, WANG W L, et al. Effects of low-molecular organic acids spray on growth, nutrient uptake, yield and fruit quality of hot pepper[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(6): 118-125. (in Chinese with English abstract) | |
| [29] |
WANG Y F, SU Y, LU S G. Cd accumulation and transfer in pepper (Capsicum annuum L.) grown in typical soils of China: pot experiments[J]. Environmental Science and Pollution Research, 2019, 26(36): 36558-36567.
DOI |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [3] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [4] | 贺世雄, 杨蕾, 齐安民, 程籍, 王敏, 李英奎, 洪林. 中间砧对3种杂柑叶片光合特性、理化指标和果实品质的影响[J]. 浙江农业学报, 2025, 37(8): 1680-1693. |
| [5] | 张顺昌, 徐继根, 符成悦, 蒲占湑, 胡丽鹏, 吴昊, 李俊兵, 辛亮, 雷元军. 喷施氨基酸钙对红美人杂柑果皮龟裂与品质的影响[J]. 浙江农业学报, 2025, 37(8): 1706-1715. |
| [6] | 张智颖, 邱琴, 侯立娟, 徐平, 蒋宁, 林金盛, 李辉平, 曲绍轩, 马林, 王伟霞, 李福后. 杀虫剂施用对秀珍菇和毛木耳的安全性评价[J]. 浙江农业学报, 2025, 37(8): 1733-1742. |
| [7] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [8] | 王呈阳, 刘洁雅, 吴敏怡, 谢博伊, 洪德成, 冷锋, 吴国泉. 钙处理对涝害下寒香蜜葡萄果实品质的影响[J]. 浙江农业学报, 2025, 37(7): 1451-1458. |
| [9] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [10] | 项缨, 丛建民, 潘丹红, 陶永刚. 春大棚有机种植不同品种番茄的生育进程分析和综合评价研究[J]. 浙江农业学报, 2025, 37(6): 1252-1261. |
| [11] | 刘文琦, 胡齐赞, 岳智臣, 陶鹏, 雷娟利, 李必元, 赵彦婷, 王华森. 夏季高温对叶用芥菜外观与营养品质的影响[J]. 浙江农业学报, 2025, 37(6): 1262-1271. |
| [12] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [13] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [14] | 张程程, 范涛, 章检明, 赵风亮, 忻晓庭, 牛海月, 刘大群. 缙云梅干菜腌制过程中细菌群落与品质的变化[J]. 浙江农业学报, 2025, 37(6): 1336-1343. |
| [15] | 岳丽, 庄红梅, 祖力皮牙·买买提, 王佳敏, 毛红艳, 张英仙, 尼格尔热依·亚迪卡尔, 于明. 基于主成分分析与聚类分析的芜菁肉质根质地品质综合评价[J]. 浙江农业学报, 2025, 37(5): 1057-1071. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||