浙江农业学报 ›› 2024, Vol. 36 ›› Issue (2): 344-357.DOI: 10.3969/j.issn.1004-1524.20230318
收稿日期:
2023-03-10
出版日期:
2024-02-25
发布日期:
2024-03-05
作者简介:
刘筱琳(1996—),女,山东烟台人,硕士研究生,研究方向为花卉种质资源创新与育种。E-mail:742695401@qq.com
通讯作者:
*何恒斌,E-mail:hengbinhe_1220@bjfu.edu.cn
基金资助:
LIU Xiaolin(), SUN Tingting, YANG Jie, HE Hengbin*(
)
Received:
2023-03-10
Online:
2024-02-25
Published:
2024-03-05
摘要:
以天香百合(Lilium auratum)和药百合(L. speciosum var. gloriosoides)为研究材料,分别克隆获得黄酮醇合成酶(flavonol synthase, FLS)基因,命名为LaFLS和LsFLS。实验结果表明,LaFLS和LsFLS基因均含完整的开放阅读框1 035 bp,均编码344个氨基酸,氨基酸序列高度保守,均具有DIOX-N结构域和2-酮戊二酸和铁(Ⅱ)依赖性双加氧酶结构域,属于2-酮戊二酸和铁(Ⅱ)依赖性双加氧酶超家族;系统进化分析表明,LaFLS和LsFLS除与东方系百合西伯利亚和索邦的FLS亲缘关系最近外,与百合科郁金香(Tulipa fosteriana)等亲缘关系较近;生物信息学分析显示,LaFLS和LsFLS蛋白无信号肽序列和跨膜结构域,均为亲水性蛋白,亚细胞定位结果显示二者主要定位在细胞质中。基因表达分析结果表明,在花蕾发育过程中,LaFLS和LsFLS随花蕾发育出现先上升后下降再上升的趋势,而且在花被片无色区的表达量显著高于有色区域。
中图分类号:
刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357.
LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357.
图1 试验材料 A,天香百合;B,药百合;C,天香百合4个阶段取材;D,药百合4个阶段取材。
Fig.1 Experimental materials A, L. auratum; B, L. speciosum var. gloriosoides; C, Four-stage materials of L. auratum; D, Four-stage materials of L. speciosum var. gloriosoides.
引物名称 Primer name | 引物序列Primer sequence(5'-3') |
---|---|
EF(F) | GGCACTAACTCGCTCCTTCTG |
EF(R) | GGATTGAGAGGAGCTTCGGTGAGA |
TIP41(F) | CGAAGCCAGAAACGGAGAAGAAT |
TIP41(R) | GGGTAGGGTGGATTGGGAAGA |
FLS(Clone)F | ATGTCTACCCGACATCACCTTG |
FLS(Clone)R | CTATTATTGTGGAAGTTTGTTAATC |
FLS(sub-clone)F | CCAAATCGACTCTAGAATGTCTACCCGACATCACCTTG |
FLS(sub-clone)R | TACCGGATCCACTAGTTTGTGGAAGTTTGTTAATCTTGC |
FLS(qRT-PCR)F | ACTTAGCACTTGGGGTGGTG |
FLS(qRT-PCR)R | CGTCCCATTGCTCAAAATCT |
FLS(RT-PCR)F | GAGGAGAAGGAGGCGATAGC |
FLS(RT-PCR)R | CGTCTAACCCTAAACCAACTG |
表1 引物序列表
Table 1 Primer sequences
引物名称 Primer name | 引物序列Primer sequence(5'-3') |
---|---|
EF(F) | GGCACTAACTCGCTCCTTCTG |
EF(R) | GGATTGAGAGGAGCTTCGGTGAGA |
TIP41(F) | CGAAGCCAGAAACGGAGAAGAAT |
TIP41(R) | GGGTAGGGTGGATTGGGAAGA |
FLS(Clone)F | ATGTCTACCCGACATCACCTTG |
FLS(Clone)R | CTATTATTGTGGAAGTTTGTTAATC |
FLS(sub-clone)F | CCAAATCGACTCTAGAATGTCTACCCGACATCACCTTG |
FLS(sub-clone)R | TACCGGATCCACTAGTTTGTGGAAGTTTGTTAATCTTGC |
FLS(qRT-PCR)F | ACTTAGCACTTGGGGTGGTG |
FLS(qRT-PCR)R | CGTCCCATTGCTCAAAATCT |
FLS(RT-PCR)F | GAGGAGAAGGAGGCGATAGC |
FLS(RT-PCR)R | CGTCTAACCCTAAACCAACTG |
拉丁名Latin name | 登录号Login ID | 基因名Gene name |
---|---|---|
Allium cepa L. | AAO63023.1 | AcFLS(H6) |
A. cepa L. | AQR58516.1 | AcFLS (HRB) |
Arabidopsis thaliana (L.) Heynh. | AAB41504.1 | AtFLS |
Fagopyrum tataricum (L.) Gaertn. | AEC33116.1 | FtFLS |
Lilium regale E.H.Wilson | ASV46329.1 | LrFLS |
Narcissus tazetta L. | AFS63899.1 | NtFLS |
Ornithogalum longebracteatum Jacq. | QBQ58059.1 | OlFLS2 |
Scutellaria baicalensis Georgi | AHA14501.1 | SbFLS |
表2 序列比对基因信息
Table 2 Gene information of system sequence alignment
拉丁名Latin name | 登录号Login ID | 基因名Gene name |
---|---|---|
Allium cepa L. | AAO63023.1 | AcFLS(H6) |
A. cepa L. | AQR58516.1 | AcFLS (HRB) |
Arabidopsis thaliana (L.) Heynh. | AAB41504.1 | AtFLS |
Fagopyrum tataricum (L.) Gaertn. | AEC33116.1 | FtFLS |
Lilium regale E.H.Wilson | ASV46329.1 | LrFLS |
Narcissus tazetta L. | AFS63899.1 | NtFLS |
Ornithogalum longebracteatum Jacq. | QBQ58059.1 | OlFLS2 |
Scutellaria baicalensis Georgi | AHA14501.1 | SbFLS |
拉丁名Latin name | 登录号Login ID | 基因名Gene name |
---|---|---|
Acacia confusa Merr. | AFA55179.1 | AcFLS |
Allium cepa L. | AAO63023.1 | AcFLS (H6) |
A. cepa L. | AQR58516.1 | AcFLS (HRB) |
A. cepa L. | AAT68476.1 | AcFLS |
Antirrhinum majus L. | ABB53382.1 | AmFLS |
Arabidopsis thaliana (L.) Heynh. | AAB41504.1 | AtFLS |
Camellia nitidissima | ADZ28516.1 | CnFLS |
C. sinensis (L.) O. Ktze. | ABM88786.1 | CsFLS |
Citrus unshiu Marcow. | BAA36554.1 | CuFLS |
Cyclamen purpurascens | BBA27024.1 | CpurFLS2 |
Eustoma exaltatum subsp. russellianum | AAF64168.1 | EeFLS |
Fagopyrum tataricum (L.) Gaertn. | AEC33116.1 | FtFLS |
F. tataricum (L.) Gaertn. | AGE13752.1 | FtFLS1 |
Gentiana trifloral Pall. | BAK09226.1 | GtFLS |
Ginkgo biloba L. | ACY00393.1 | GbFLS1 |
Glycine max (Linn.) Merr. | BAF31231.1 | GmFLS1 |
Lilium regale E.H.Wilson | ASV46329.1 | LrFLS |
Malus×domestica Borkh. | AAX89401.1 | MdFLS(M9) |
Narcissus tazetta | AFS63899.1 | NtFLS |
Nicotiana tabacum L. | BAF96939.1 | NtFLS |
Ornithogalum longebracteatum | QBQ58059.1 | OlFLS2 |
Petroselinum crispum | AAP57395.1 | PcFLS |
Petunia×hybrida E.Vilm | CAA80264.1 | PhFLS |
Rosa rugosa Thunb. | AIS22436.1 | RrFLS |
Scutellaria baicalensis Georgi | AHA14501.1 | SbFLS |
Tricyrtis sp. Shinonome | BAU20368.1 | TrFLS |
Tulipa fosteriana W.Irving | AHY20032.1 | TfFLS1 |
Vaccinium corymbosum | AKJ87100.1 | VcFLS |
表3 系统进化树基因信息
Table 3 Gene information of phylogenetic tree
拉丁名Latin name | 登录号Login ID | 基因名Gene name |
---|---|---|
Acacia confusa Merr. | AFA55179.1 | AcFLS |
Allium cepa L. | AAO63023.1 | AcFLS (H6) |
A. cepa L. | AQR58516.1 | AcFLS (HRB) |
A. cepa L. | AAT68476.1 | AcFLS |
Antirrhinum majus L. | ABB53382.1 | AmFLS |
Arabidopsis thaliana (L.) Heynh. | AAB41504.1 | AtFLS |
Camellia nitidissima | ADZ28516.1 | CnFLS |
C. sinensis (L.) O. Ktze. | ABM88786.1 | CsFLS |
Citrus unshiu Marcow. | BAA36554.1 | CuFLS |
Cyclamen purpurascens | BBA27024.1 | CpurFLS2 |
Eustoma exaltatum subsp. russellianum | AAF64168.1 | EeFLS |
Fagopyrum tataricum (L.) Gaertn. | AEC33116.1 | FtFLS |
F. tataricum (L.) Gaertn. | AGE13752.1 | FtFLS1 |
Gentiana trifloral Pall. | BAK09226.1 | GtFLS |
Ginkgo biloba L. | ACY00393.1 | GbFLS1 |
Glycine max (Linn.) Merr. | BAF31231.1 | GmFLS1 |
Lilium regale E.H.Wilson | ASV46329.1 | LrFLS |
Malus×domestica Borkh. | AAX89401.1 | MdFLS(M9) |
Narcissus tazetta | AFS63899.1 | NtFLS |
Nicotiana tabacum L. | BAF96939.1 | NtFLS |
Ornithogalum longebracteatum | QBQ58059.1 | OlFLS2 |
Petroselinum crispum | AAP57395.1 | PcFLS |
Petunia×hybrida E.Vilm | CAA80264.1 | PhFLS |
Rosa rugosa Thunb. | AIS22436.1 | RrFLS |
Scutellaria baicalensis Georgi | AHA14501.1 | SbFLS |
Tricyrtis sp. Shinonome | BAU20368.1 | TrFLS |
Tulipa fosteriana W.Irving | AHY20032.1 | TfFLS1 |
Vaccinium corymbosum | AKJ87100.1 | VcFLS |
图2 天香百合和药百合的FLS基因编码区序列扩增片段 M,DNA Marker;A1、A2,LaFLS的扩增产物;B1、B2,LsFLS的扩增产物。
Fig.2 PCR products of the cDNA of LaFLS in L. auratum and LsFLS in L. speciosum var. gloriosoides M, DNA Marker; A1, A2, Product of the LaFLS amplification in cDNA; B1, B2, Product of the LsFLS amplification in cDNA.
图3 LaFLS 和LsFLS核苷酸及编码氨基酸序列 A,LaFLS核苷酸及编码氨基酸序列;B, LsFLS核苷酸及编码氨基酸序列。方框表示LaFLS 和LsFLS核苷酸及编码氨基酸序列中的差异。
Fig.3 Nucleotide and amino acid sequences of LaFLS and LsFLS A, Nucleotide and amino acid sequences of LaFLS; B, Nucleotide and amino acid sequences of LsFLS. The frames show the differences between the nucleotide and amino acid sequences of LaFLS and LsFLS.
图4 LaFLS和LsFLS氨基酸多序列比对分析 下划线位置是DIOX-N结构域,红色方框表示2-酮戊二酸和铁(Ⅱ)依赖性双加氧酶结构域;DHQ底物特异结合位点、2-酮戊二酸和Fe2+位点分别用黑色三角、星号及箭头表示。
Fig.4 Amino acid multiple sequence alignment analysis of LaFLS and LsFLS The underlined position is the DIOX-N domain, and the red box represents the 2-ketoglutaric acid and iron (Ⅱ) dependent dioxygenase domain; DHQ substrate specific binding sites, 2-ketoglutaric acid and Fe2+ sites are indicated by black triangles, asterisks and arrows, respectively.
图10 天香百合和药百合各组织部位FLS的半定量PCR分析 1,上部叶;2,下部叶;3,花柱;4,柱头;5,子房;6,花丝;7,花药;8,花被片;LaEF,天香百合内参基因;LsTIP,药百合内参基因。
Fig.10 RT-PCR expression of FLS in L. auratum and L. speciosum var. gloriosoides different tissues 1, Upper leaf; 2, Lower leaf; 3, Style; 4, Stigma; 5, Ovary; 6, Perianth; 7, Anther; 8, Perianth; LaEF, Reference gene in L. auratum; LsTIP, Reference gene in L. speciosum var. gloriosoides.
图11 天香百合(A)和药百合(B)花蕾不同发育阶段FLS基因的表达 不同小写字母表示差异显著(P<0.05)。
Fig.11 Expression of FLS in L. auratum (A) and L. speciosum var. gloriosoides (B) at different development stages of flower buds Different lowercase letters indicate significant differences (P<0.05).
[1] | YAMAGISHI M. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale[J]. Molecular Breeding, 2016, 36(1): 3. |
[2] | 王洁琼. 中国野生百合资源调查及遗传多样性分析[D]. 北京: 北京林业大学, 2006. |
WANG J Q. Studies on resource and genetic diversity of wild lily in China[D]. Beijing: Beijing Forestry University, 2006. (in Chinese with English abstract) | |
[3] | 黄洁, 刘晓华, 管洁, 等. 百合分子育种研究进展[J]. 园艺学报, 2012, 39(9): 1793-1808. |
HUANG J, LIU X H, GUAN J, et al. Progress in molecular breeding of lily[J]. Acta Horticulturae Sinica, 2012, 39(9): 1793-1808. (in Chinese with English abstract) | |
[4] | 孔滢, 窦晓莹, 包放, 等. 百合花色机理研究进展[J]. 园艺学报, 2015, 42(9): 1747-1759. |
KONG Y, DOU X Y, BAO F, et al. Advances in flower color mechanism of Lilium[J]. Acta Horticulturae Sinica, 2015, 42(9): 1747-1759. (in Chinese with English abstract) | |
[5] | 刘龙博, 安玉艳, 熊丽君, 等. 5-ALA诱导的黄酮醇积累参与调节苹果叶片气孔开度[J]. 园艺学报, 2016, 43(5): 817-828. |
LIU L B, AN Y Y, XIONG L J, et al. Flavonols induced by 5-aminolevulinic acid are involved in regulation of stomatal opening in apple leaves[J]. Acta Horticulturae Sinica, 2016, 43(5): 817-828. (in Chinese with English abstract) | |
[6] | 韦云. ‘南果梨’及其红色芽变‘南红梨’果皮着色差异机理研究[D]. 沈阳: 沈阳农业大学, 2016: 5. |
WEI Y. Studies on the different mechanism of pigment development in ‘Nanguo’ pear and ‘Nanhong’ pear[D]. Shenyang: Shenyang Agricultural University, 2016: 5. (in Chinese with English abstract) | |
[7] | 杨丽, 刘雅莉, 王跃进. 百合查尔酮合成酶(chs)基因的cDNA克隆与分析[J]. 河南农业科学, 2011, 40(1): 124-126. |
YANG L, LIU Y L, WANG Y J. Cloning and sequencing of Chalcone synthase gene cDNA in Lilium[J]. Journal of Henan Agricultural Sciences, 2011, 40(1): 124-126. (in Chinese with English abstract) | |
[8] | 王瑜, 崔金腾, 张克中, 等. 百合花青素苷合成酶基因片段的克隆及表达分析[J]. 中国农学通报, 2013, 29(10): 162-166. |
WANG Y, CUI J T, ZHANG K Z, et al. Molecular cloning and expression analysis of anthocyanidin synthase gene fragment in Lilium[J]. Chinese Agricultural Science Bulletin, 2013, 29(10): 162-166. (in Chinese with English abstract) | |
[9] | 窦晓莹, 郎利新, 包放, 等. 东方百合查尔酮异构酶基因LhCHI的克隆及表达[J]. 东北林业大学学报, 2015, 43(9): 6-11. |
DOU X Y, LANG L X, BAO F, et al. Cloning and expression analysis of Chalcone isomerase gene LhCHI in oriental hybrid lily(Lilium spp.)[J]. Journal of Northeast Forestry University, 2015, 43(9): 6-11. (in Chinese with English abstract) | |
[10] | 阴婷. 垂花百合花青素基因 ANS 启动子的克隆及功能分析[D]. 沈阳: 沈阳农业大学, 2016: 51. |
YIN T. Cloning and functional identification of the ANS gene promoter from Lilium cernum komar[D]. Shenyang: Shenyang Agricultural University, 2016: 51. (in Chinese with English abstract) | |
[11] | 张星, 杨捷, 彭梦笛, 等. 百合黄烷酮3-羟化酶基因LhSorF3H的克隆与表达[J]. 西北植物学报, 2017, 37(12): 2325-2331. |
ZHANG X, YANG J, PENG M D, et al. Cloning and expression of LhSorF3H genes in Lilium[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(12): 2325-2331. (in Chinese with English abstract) | |
[12] | 杨捷, 张星, 彭梦笛, 等. 百合转录因子MYB12的克隆与表达分析[J]. 植物科学学报, 2018, 36(6): 812-816, 818. |
YANG J, ZHANG X, PENG M D, et al. Cloning and expression analysis of MYB12 in Lilium oriental hybrid ‘Sorbonne’[J]. Plant Science Journal, 2018, 36(6): 812-816, 818. (in Chinese with English abstract) | |
[13] | LI C L, BAI Y C, LI S J, et al. Cloning, characterization, and activity analysis of a flavonol synthase gene FtFLS1 and its association with flavonoid content in Tartary buckwheat[J]. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5161-5168. |
[14] | HARBORNE J B, WILLIAMS C A. Advances in flavonoid research since 1992[J]. Phytochemistry, 2000, 55(6): 481-504. |
[15] | AIDA R, YOSHIDA K, KONDO T, et al. Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene[J]. Plant Science, 2000, 160(1): 49-56. |
[16] | 曹运琳, 邢梦云, 徐昌杰, 等. 植物黄酮醇生物合成及其调控研究进展[J]. 园艺学报, 2018, 45(1): 177-192. |
CAO Y L, XING M Y, XU C J, et al. Biosynthesis of flavonol and its regulation in plants[J]. Acta Horticulturae Sinica, 2018, 45(1): 177-192. (in Chinese with English abstract) | |
[17] | HOLTON T A, BRUGLIERA F, TANAKA Y. Cloning and expression of flavonol synthase from Petunia hybrida[J]. The Plant Journal: for Cell and Molecular Biology, 1993, 4(6): 1003-1010. |
[18] | OWENS D K, ALERDING A B, CROSBY K C, et al. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis[J]. Plant Physiology, 2008, 147(3): 1046-1061. |
[19] | FALCONE FERREYRA M L, CASAS M I, QUESTA J I, et al. Evolution and expression of tandem duplicated maize flavonol synthase genes[J]. Frontiers in Plant Science, 2012, 3: 101. |
[20] | 周兴文, 李纪元, 殷恒福, 等. 金花茶FLS基因的克隆及其植物表达载体的构建[J]. 植物研究, 2013, 33(1): 58-65. |
ZHOU X W, LI J Y, YIN H F, et al. Cloning of Camellia nitidissima flavonol synthase cDNA and construction of sense, RNA interference expression vectors[J]. Bulletin of Botanical Research, 2013, 33(1): 58-65. (in Chinese with English abstract) | |
[21] | 柳爱玲, 沈欣杰, 刘芸, 等. 甜樱桃黄酮醇合酶基因的克隆及其表达分析[J]. 中国农业大学学报, 2013, 18(2): 56-63. |
LIU A L, SHEN X J, LIU Y, et al. Cloning and expression analysis of PacFLS in sweet cherry(Prunus avium L.)[J]. Journal of China Agricultural University, 2013, 18(2): 56-63. (in Chinese with English abstract) | |
[22] | 杨慧萍, 刘雅莉, 娄倩, 等. 葡萄风信子MaFLS基因克隆与表达分析[J]. 西北植物学报, 2014, 34(8): 1507-1513. |
YANG H P, LIU Y L, LOU Q, et al. Isolation and characterization of a flavonol synthase gene from Muscari armeniacum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1507-1513. (in Chinese with English abstract) | |
[23] | 杜灵娟, 陈凯利, 刘雅莉. 葡萄风信子FLS1基因克隆及其表达与花色性状之间的关联性分析[J]. 西北林学院学报, 2017, 32(1): 106-113. |
DU L J, CHEN K L, LIU Y L. Cloning of flavonol synthase gene (FLS1) and relativity analysis of its expression with the flower color in grape hyacinth[J]. Journal of Northwest Forestry University, 2017, 32(1): 106-113. (in Chinese with English abstract) | |
[24] | 李海鸿. 葡萄风信子(Muscari)黄酮醇合酶FLS(flavonol synthase)基因克隆和功能分析[D]. 杨凌: 西北农林科技大学, 2018: 36. |
LI H H. Clong and functional analysis of FLS(flavonol synthase) gene from Muscari armeniacm[D]. Yangling: Northwest A & F University, 2018: 36. (in Chinese with English abstract) | |
[25] | 袁媛. 郁金香花色苷合成基因的克隆及其表达差异与花色变化的关系[D]. 上海: 上海交通大学, 2015: 130. |
YUAN Y. Cloning of genes related to anthocyanin biosynthesis and relationship between their differential expression and flower color mutation in tulip[D]. Shanghai: Shanghai Jiao Tong University, 2015: 130. (in Chinese with English abstract) | |
[26] | 罗平. 玫瑰类黄酮合成相关基因的克隆和功能解析[D]. 武汉: 华中农业大学, 2016: 20. |
LUO P. Molecular cloning and functional analysis of flavonoids biosynthesis related genes from Rosa rugosa[D]. Wuhan: Huazhong Agricultural University, 2016: 20. (in Chinese with English abstract) | |
[27] | 荣朵艳, 张翔, 潘婷, 等. 红花檵木LcFLS1基因的克隆及其表达与转化研究[J]. 西北植物学报, 2019, 39(3): 404-412. |
RONG D Y, ZHANG X, PAN T, et al. Cloning, expression and transformation of LcFLS1 gene fromLoropetalum chinense var. rubrum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3): 404-412. (in Chinese with English abstract) | |
[28] | KIMURA S, NAKATSUKA T, YAMADA E, et al. A flavonol synthase gene GtFLS defines anther-specific flavonol accumulation in gentian[J]. Plant Biotechnology, 2010, 28(2): 211-221. |
[29] | TIAN J, HAN Z Y, ZHANG J, et al. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples[J]. Scientific Reports, 2015, 5: 12228. |
[30] | NGUYEN N H, KIM J H, KWON J, et al. Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1(FLS1)-overexpression plants in response to abiotic stress[J]. Plant Physiology and Biochemistry, 2016, 103: 133-142. |
[31] | 刘晓. 苹果黄酮醇合成酶基因MdFLS1的功能研究[D]. 泰安: 山东农业大学, 2018: 28. |
LIU X. Functional identification of flavonol synthase gene MdFLS1 in apple[D]. Taian: Shandong Agricultural University, 2018: 28. (in Chinese with English abstract) | |
[32] | LIU H L, SU B B, ZHANG H, et al. Identification and functional analysis of a flavonol synthase gene from grape hyacinth[J]. Molecules, 2019, 24(8): 1579. |
[33] | NIELSEN K, DEROLES S C, MARKHAM K R, et al. Antisense flavonol synthase alters copigmentation and flower color in lisianthus[J]. Molecular Breeding, 2002, 9(4): 217-229. |
[34] | MAHAJAN M, AHUJA P S, YADAV S K. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set[J]. PLoS One, 2011, 6(12): e28315. |
[35] | LUO P, NING G G, WANG Z, et al. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants[J]. Frontiers in Plant Science, 2016, 6: 1257. |
[36] | 娄倩. 葡萄风信子(Muscari)花色形成与相关基因研究[D]. 杨凌: 西北农林科技大学, 2014: 4. |
LOU Q. A research on color formation and color-related genes of grape hyacinth (Muscari) flowers[D]. Yangling: Northwest A & F University, 2014: 4. (in Chinese with English abstract) | |
[37] | 吴祝华. 百合属部分种亲缘关系与岷江百合群体遗传结构研究[D]. 南京: 南京林业大学, 2008: 1. |
WU Z H. Research on genetic relationship of Lilium species and conservation genetics of L. regale[D]. Nanjing: Nanjing Forestry University, 2008: 1. (in Chinese with English abstract) | |
[38] | 葛亮, 袁素霞, 王春城, 等. 百合部分种及品种系统进化关系的EST-SSR标记分析[J]. 园艺学报, 2012, 39(11): 2189-2198. |
GE L, YUAN S X, WANG C C, et al. Assessment of phylogenetic relationships of some Lilium species and cultivars using EST-SSR markers[J]. Acta Horticulturae Sinica, 2012, 39(11): 2189-2198. (in Chinese with English abstract) | |
[39] | PELLETIER M K, BURBULIS I E, WINKEL-SHIRLEY B. Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings[J]. Plant Molecular Biology, 1999, 40(1): 45-54. |
[40] | MORIGUCHI T, KITA M, OGAWA K, et al. Flavonol synthase gene expression during citrus fruit development[J]. Physiologia Plantarum, 2002, 114(2): 251-258. |
[41] | HALBWIRTH H, WALDNER I, MIOSIC S, et al. Measuring flavonoid enzyme activities in tissues of fruit species[J]. Journal of Agricultural and Food Chemistry, 2009, 57(11): 4983-4987. |
[42] | FUJITA A, GOTO-YAMAMOTO N, ARAMAKI I, et al. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(3): 632-638. |
[1] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
[2] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[3] | 张丽, 王媛媛, 王瑞, 刘丽霞. 牦牛DRA基因克隆测序及生物信息学分析[J]. 浙江农业学报, 2023, 35(7): 1564-1570. |
[4] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[5] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
[6] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[7] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. |
[8] | 李虹仪, 周润盛, 梁笑玲, 张楚玥, 吕祺欣, 杨长华, 张茂. 日粮钙磷水平对马岗鹅生长性能及肝脏基因表达的影响[J]. 浙江农业学报, 2023, 35(11): 2533-2542. |
[9] | 孔凡旺, 张志刚, 李伟, 陈玉峰, 王长江, 郑亚琴, 徐蒙. 桃4CL基因家族鉴定及其在果实色泽发育和采后贮藏冷害中的表达分析[J]. 浙江农业学报, 2023, 35(11): 2600-2610. |
[10] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
[11] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[12] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[13] | 郭春倩, 田洁. 大蒜己糖激酶基因AsHXK2的克隆及其参与根际促生菌缓解干旱胁迫的表达分析[J]. 浙江农业学报, 2022, 34(9): 1925-1934. |
[14] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[15] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 504
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||