浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2600-2610.DOI: 10.3969/j.issn.1004-1524.20221604
        
               		孔凡旺1,2(
), 张志刚2, 李伟2, 陈玉峰2, 王长江2, 郑亚琴1, 徐蒙1,*(
)
                  
        
        
        
        
    
收稿日期:2022-11-11
									
				
									
				
									
				
											出版日期:2023-11-25
									
				
											发布日期:2023-12-04
									
			作者简介:孔凡旺(1977—),男,山东邹城人,学士,高级工程师,主要从事林果病理和采后生理研究。E-mail: Zclcsdkfw@163.com
				
							通讯作者:
					* 徐蒙,E-mail: xumeng@lyu.edu.cn
							基金资助:
        
               		KONG Fanwang1,2(
), ZHANG Zhigang2, LI Wei2, CHEN Yufeng2, WANG Changjiang2, ZHENG Yaqin1, XU Meng1,*(
)
			  
			
			
			
                
        
    
Received:2022-11-11
									
				
									
				
									
				
											Online:2023-11-25
									
				
											Published:2023-12-04
									
			摘要:
4-香豆酸辅酶A连接酶(4-coumarate: CoA ligase, 4CL)在类黄酮和木质素等化合物代谢中具有重要作用。本研究基于桃基因组数据库系统鉴定4CL基因家族成员,从基因家族进化树的角度分析桃4CL基因家族的结构与潜在功能,结合转录组数据和qRT-PCR技术分析其在果实发育阶段类黄酮合成及采后冷害木质化调控中的功能。结果表明,基于桃基因组数据库鉴定出21个4CL基因家族成员,分布在8条染色体上;基因家族进化树分析表明,Pp4CL1与Pp4CL2属于第一亚家族,主要参与木质素合成,Pp4CL3-Pp4CL21属于第二亚家族,主要参与类黄酮的合成;启动子顺式元件分析发现其含有大量的非生物胁迫以及茉莉酸甲酯(MeJA)等激素响应元件。发育阶段的基因表达结果表明,Pp4CL8和 Pp4CL13的表达水平随发育阶段总体呈上升趋势,且在红肉品种中的表达量高于黄肉和白肉品种,猜测其可能参与花青素等类黄酮合成。采后低温贮藏阶段的基因表达结果表明,Pp4CL2可能在果实采后冷害木质化中发挥作用,程序性降温(low temperature conditioning,LTC)处理后Pp4CL8、Pp4CL10和Pp4CL14也可通过诱导类黄酮合成,减轻采后低温贮藏对果实造成的冷害。本研究将为桃果实色泽发育和采后保鲜提供理论依据。
中图分类号:
孔凡旺, 张志刚, 李伟, 陈玉峰, 王长江, 郑亚琴, 徐蒙. 桃4CL基因家族鉴定及其在果实色泽发育和采后贮藏冷害中的表达分析[J]. 浙江农业学报, 2023, 35(11): 2600-2610.
KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610.
| 基因 Gene  |  正向引物 Forward primer (5'→3')  |  反向引物 Reverse primer (3'→5')  | 
|---|---|---|
| Pp4CL8 Pp4CL10 Pp4CL14 EF2  |  CCCACATACCCAATTGCCCA AAAGAGCGGCTACTGTCCAC TGGAATCTCTACATGCTCCTCAG AGCAGGCTCTTGGTGGTATCT  |  TGAGGGCAGGTTTGTTTGAGT GGAGGGAGAGAGCGAAATGG GGTGAGGTTAGCGTGAAGATGA GATTCAATGACGGGGAGGTAG  | 
表1 qRT-PCR基因表达引物序列
Table 1 Primer sequences for quantitative real-time PCR analysis
| 基因 Gene  |  正向引物 Forward primer (5'→3')  |  反向引物 Reverse primer (3'→5')  | 
|---|---|---|
| Pp4CL8 Pp4CL10 Pp4CL14 EF2  |  CCCACATACCCAATTGCCCA AAAGAGCGGCTACTGTCCAC TGGAATCTCTACATGCTCCTCAG AGCAGGCTCTTGGTGGTATCT  |  TGAGGGCAGGTTTGTTTGAGT GGAGGGAGAGAGCGAAATGG GGTGAGGTTAGCGTGAAGATGA GATTCAATGACGGGGAGGTAG  | 
																													图1 桃4CL基因家族成员染色体分布情况 桃4CL基因在染色体上的分布以红色字体突出显示,串联重复基因以灰色突出显示,片段复制以橘黄色直线连接。
Fig.1 Chromosome distribution of 4CL gene family members in peach The distribution of the peach 4CL gene on the chromosome is highlighted in red font, tandem repeat genes are highlighted in gray, and segment duplication is connected in orange straight lines.
| 基因名称 Gene name  |  登录号 GenBank  |  氨基酸数目 Amino acid  |  等电点 Isoelectric point  |  分子量 Molecular weight/u  |  不稳定系数 Instability index  | 
|---|---|---|---|---|---|
| Pp4CL1 | XM_007222180.2 | 544 | 5.83 | 59 937.30 | 30.32 | 
| Pp4CL2 | XM_007215457.2 | 551 | 5.84 | 59 981.39 | 37.07 | 
| Pp4CL3 | XM_020570163.1 | 567 | 8.9 | 62 153.90 | 41.82 | 
| Pp4CL4 | XM_020567696.1 | 572 | 6.32 | 62 409.91 | 38.71 | 
| Pp4CL5 | XM_007219446.2 | 457 | 5.56 | 49 467.21 | 31.17 | 
| Pp4CL6 | XM_007225695.2 | 548 | 6.06 | 59 512.92 | 36.62 | 
| Pp4CL7 | XM_007203554.2 | 543 | 8.44 | 59 630.94 | 41.21 | 
| Pp4CL8 | XM_007208395.2 | 542 | 8.63 | 59 168.68 | 37.81 | 
| Pp4CL9 | XM_007222403.2 | 569 | 8.95 | 61 299.59 | 33.63 | 
| Pp4CL10 | XM_007209025.2 | 557 | 7.26 | 61 211.61 | 53.40 | 
| Pp4CL11 | XM_020569127.1 | 591 | 8.47 | 63 537.10 | 43.54 | 
| Pp4CL12 | XM_007219420.2 | 569 | 5.73 | 61 733.01 | 42.35 | 
| Pp4CL13 | XM_007209024.2 | 558 | 6.26 | 61 052.43 | 49.46 | 
| Pp4CL14 | XM_020566011.1 | 635 | 6.56 | 69 746.76 | 36.41 | 
| Pp4CL15 | XM_007221216.2 | 748 | 8.29 | 83 920.25 | 44.22 | 
| Pp4CL16 | XM_020554905.1 | 748 | 8.29 | 83 920.25 | 44.22 | 
| Pp4CL17 | XM_020554134.1 | 566 | 8.11 | 63 179.53 | 37.96 | 
| Pp4CL18 | XM_020561814.1 | 555 | 7.23 | 60 667.33 | 38.26 | 
| Pp4CL19 | XM_020564772.1 | 165 | 6.51 | 18 632.33 | 44.38 | 
| Pp4CL20 | XM_007200387.2 | 218 | 6.6 | 25 006.86 | 38.89 | 
| Pp4CL21 | XM_020570041.1 | 218 | 6.6 | 25 006.86 | 38.89 | 
表2 桃4CL基因家族成员蛋白理化性质
Table 2 Physical and chemical properties of 4CL gene family proteins in peach
| 基因名称 Gene name  |  登录号 GenBank  |  氨基酸数目 Amino acid  |  等电点 Isoelectric point  |  分子量 Molecular weight/u  |  不稳定系数 Instability index  | 
|---|---|---|---|---|---|
| Pp4CL1 | XM_007222180.2 | 544 | 5.83 | 59 937.30 | 30.32 | 
| Pp4CL2 | XM_007215457.2 | 551 | 5.84 | 59 981.39 | 37.07 | 
| Pp4CL3 | XM_020570163.1 | 567 | 8.9 | 62 153.90 | 41.82 | 
| Pp4CL4 | XM_020567696.1 | 572 | 6.32 | 62 409.91 | 38.71 | 
| Pp4CL5 | XM_007219446.2 | 457 | 5.56 | 49 467.21 | 31.17 | 
| Pp4CL6 | XM_007225695.2 | 548 | 6.06 | 59 512.92 | 36.62 | 
| Pp4CL7 | XM_007203554.2 | 543 | 8.44 | 59 630.94 | 41.21 | 
| Pp4CL8 | XM_007208395.2 | 542 | 8.63 | 59 168.68 | 37.81 | 
| Pp4CL9 | XM_007222403.2 | 569 | 8.95 | 61 299.59 | 33.63 | 
| Pp4CL10 | XM_007209025.2 | 557 | 7.26 | 61 211.61 | 53.40 | 
| Pp4CL11 | XM_020569127.1 | 591 | 8.47 | 63 537.10 | 43.54 | 
| Pp4CL12 | XM_007219420.2 | 569 | 5.73 | 61 733.01 | 42.35 | 
| Pp4CL13 | XM_007209024.2 | 558 | 6.26 | 61 052.43 | 49.46 | 
| Pp4CL14 | XM_020566011.1 | 635 | 6.56 | 69 746.76 | 36.41 | 
| Pp4CL15 | XM_007221216.2 | 748 | 8.29 | 83 920.25 | 44.22 | 
| Pp4CL16 | XM_020554905.1 | 748 | 8.29 | 83 920.25 | 44.22 | 
| Pp4CL17 | XM_020554134.1 | 566 | 8.11 | 63 179.53 | 37.96 | 
| Pp4CL18 | XM_020561814.1 | 555 | 7.23 | 60 667.33 | 38.26 | 
| Pp4CL19 | XM_020564772.1 | 165 | 6.51 | 18 632.33 | 44.38 | 
| Pp4CL20 | XM_007200387.2 | 218 | 6.6 | 25 006.86 | 38.89 | 
| Pp4CL21 | XM_020570041.1 | 218 | 6.6 | 25 006.86 | 38.89 | 
																													图7 红肉、黄肉和白肉光核桃果肉发育阶段4CL基因表达模式 PH,硬核期;CE,细胞增大期;FR,果实成熟期。
Fig.7 4CL gene expression in the development stage of red, yellow and white flesh peaches PH,pit-harding; CE,cell enlargement; FR,fruit ripening.
																													图9 qRT-PCR验证候选4CL基因在采后0 ℃(A)和LTC(B)处理中的相对表达水平
Fig.9 qRT-PCR verification of relative expression level of candidate 4CL genes at 0 ℃ (A) and LTC treatment (B)
| [1] | LAVHALE S G, KALUNKE R M, GIRI A P. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants[J]. Planta, 2018, 248(5): 1063-1078. | 
| [2] | SCHNEIDER K, HÖVEL K, WITZEL K, et al. The substrate specificity-determining amino acid code of 4-coumarate: CoA ligase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8601-8606. | 
| [3] | LOZOYA E, HOFFMANN H, DOUGLAS C, et al. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley[J]. European Journal of Biochemistry, 1988, 176(3): 661-667. | 
| [4] | DOUGLAS C, HOFFMANN H, SCHULZ W, et al. Structure and elicitor or UV-light-stimulated expression of two 4-coumarate: CoA ligase genes in parsley[J]. The EMBO Journal, 1987, 6(5): 1189-1195. | 
| [5] | LI Y, KIM J I, PYSH L, et al. Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism[J]. Plant Physiology, 2015, 169(4): 2409-2421 | 
| [6] | WANG Y Y, GUO L H, ZHAO Y J, et al. Systematic analysis and expression profiles of the 4-coumarate: CoA ligase (4CL) gene family in pomegranate (Punica granatum L.)[J]. International Journal of Molecular Sciences, 2022, 23(7): 3509. | 
| [7] | XU B, ESCAMILLA-TREVIÑO L L, SATHITSUKSANOH N, et al. Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production[J]. The New Phytologist, 2011, 192(3): 611-625. | 
| [8] | FARCUH M, TAJIMA H, LERNO L A, et al. Changes in ethylene and sugar metabolism regulate flavonoid composition in climacteric and non-climacteric plums during postharvest storage[J]. Food Chemistry Molecular Sciences, 2022, 4: 100075. | 
| [9] | WANG B, SUN W, LI Q S, et al. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza[J]. Planta, 2015, 241(3): 711-725. | 
| [10] | VOELKER S L, LACHENBRUCH B, MEINZER F C, et al. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar[J]. Plant Physiology, 2010, 154(2): 874-886. | 
| [11] | WANG H Z, XUE Y X, CHEN Y J, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa[J]. Industrial Crops and Products, 2012, 37(1): 170-177. | 
| [12] | SHI R, SUN Y H, LI Q Z, et al. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes[J]. Plant and Cell Physiology, 2010, 51(1): 144-163. | 
| [13] | 杨克彬, 单雪萌, 史晶晶, 等. 毛竹4-香豆酸辅酶A连接酶基因家族鉴定及表达分析[J]. 核农学报, 2021, 35(1): 72-82. | 
| YANG K B, SHAN X M, SHI J J, et al. Identification and expression analysis of 4CL gene family in Phyllostachys edulis[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 72-82. (in Chinese with English abstract) | |
| [14] | 曹运鹏, 方志, 李姝妹, 等. 砀山酥梨4CL基因家族的全基因组鉴定与分析[J]. 遗传, 2015, 37(7): 711-719. | 
| CAO Y P, FANG Z, LI S M, et al. Genome-wide identification and analyses of 4CL gene families in Pyrus bretschneideri Rehd[J]. Hereditas, 2015, 37(7): 711-719. (in Chinese with English abstract) | |
| [15] | WANG K, YIN X R, ZHANG B, et al. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit[J]. Plant, Cell & Environment, 2017, 40(8): 1531-1551. | 
| [16] | XU Q, YIN X R, ZENG J K, et al. Activator-and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway[J]. Journal of Experimental Botany, 2014, 65(15): 4349-4359. | 
| [17] | LUO Z S, XU X L, YAN B F. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage[J]. European Food Research and Technology, 2008, 226(4): 635-640. | 
| [18] | 周慧娟, 苏明申, 叶正文, 等. 桃果实采后生理生化及冷害研究进展[J]. 果树学报, 2017, 34(9): 1204-1212. | 
| ZHOU H J, SU M S, YE Z W, et al. Advances in the research into physiological and biochemical characteristics and chilling injury of peach fruits after harvest[J]. Journal of Fruit Science, 2017, 34(9): 1204-1212. (in Chinese with English abstract) | |
| [19] | CHEN Z Z, CHEN Y C, CHOU Y H, et al. cDNA cloning and molecular characterization of 4-coumarate:coenzyme A ligase in Eucalyptus camaldulensis[J]. Taiwan Journal of Forest Science, 2006, 21(1): 87-100. | 
| [20] | NEGISHI N, NANTO K, HAYASHI K, et al. Transcript abundances of LIM transcription factor, 4CL, CAld5H and CesAs affect wood properties in Eucalyptus globulus[J]. Silvae Genetica, 2011, 60: 288-296. | 
| [21] | BRANDI F, BAR E, MOURGUES F, et al. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology, 2011, 11: 24. | 
| [22] | FALCHI R, VENDRAMIN E, ZANON L, et al. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach[J]. The Plant Journal, 2013, 76(2): 175-187. | 
| [23] | JIAO Y, MA R, SHEN Z, et al. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica(L.) Batsch) cultivars during fruit development[J]. Journal of Zhejiang University. Science. B, 2014, 15(9): 809-819. | 
| [24] | YAN J A, CAI Z X, SHEN Z J, et al. Proanthocyanidin monomers and cyanidin 3-O-glucoside accumulation in blood-flesh peach (Prunus persica (L.) Batsch) fruit[J]. Archives of Biological Sciences, 2017, 69(4): 611-617. | 
| [25] | 赵秀林, 臧程, 田义超, 等. 桃果实中花青素的研究进展[J]. 安徽农业科学, 2012, 40(10): 5735-5736, 5750. | 
| ZHAO X L, ZANG C, TIAN Y C, et al. Research progress of anthocyanin in peach fruit[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 5735-5736, 5750. (in Chinese with English abstract) | |
| [26] | YING H, SHI J, ZHANG S S, et al. Transcriptomic and metabolomic profiling provide novel insights into fruit development and flesh coloration in Prunus mira Koehne, a special wild peach species[J]. BMC Plant Biology, 2019, 19(1): 463. | 
| [27] | CAO K, DING T Y, MAO D M, et al. Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach[J]. Plant Physiology and Biochemistry, 2018, 123: 94-102. | 
| [28] | SHEN Z J, CONFOLENT C, LAMBERT P, et al. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach[J]. Tree Genetics & Genomes, 2013, 9(6): 1435-1446. | 
| [29] | 王震光, 余义和, 郭大龙. 活性氧调控果实发育成熟的研究进展[J]. 浙江农业学报, 2020, 32(11): 2103-2110. | 
| WANG Z G, YU Y H, GUO D L. Advances in ROS promoting fruit development and ripening[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 2103-2110. (in Chinese with English abstract) | |
| [30] | YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8): 1780403. | 
| [31] | ALI KHAN R, KHAN M R, SAHREEN S, et al. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens[J]. Chemistry Central Journal, 2012, 6(1): 43. | 
| [32] | 李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20): 8163-8171. | 
| LI X, BAI X Q, LIU C X, et al. Research progress on antioxidant mechanism and functional activity of natural anthocyanin[J]. Journal of Food Safety & Quality, 2021, 12(20): 8163-8171. (in Chinese with English abstract) | |
| [33] | SUN H Y, LI Y, FENG S Q, et al. Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice[J]. Biochemical and Biophysical Research Communications, 2013, 430(3): 1151-1156. | 
| [34] | SUN S C, XIONG X P, ZHANG X L, et al. Correction to: characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance[J]. BMC Plant Biology, 2021, 21(1): 65. | 
| [35] | ZHANG C H, MA T, LUO W C, et al. Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress[J]. Genes, 2015, 6(3): 901-917. | 
| [36] | JIN P, SUN C C, ZHENG Y H, et al. Effects of methyl jasmonate in combination with low temperature conditioning on chilling injury and active oxygen metabolism in loquat fruits[J]. Acta Horticulturae Sinica, 2012, 39(3): 461-468. | 
| [37] | 李永晖, 李捷, 冯丽丹, 等. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. | 
| LI Y H, LI J, FENG L D, et al. Comparison of fruit yield, disease resistance and storage ability of Lycium bararum sprayed with different plant immune inducers[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 164-174. (in Chinese with English abstract) | |
| [38] | CHEN M S, GUO H M, CHEN S Q, et al. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit[J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9958-9966. | 
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. | 
| [2] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. | 
| [3] | 谈亚丽, 高梦祥, 李晓洁, 周英杰, 熊健, 曾子琦, 李啸, 杨华. 湖北省主栽核桃在不同采收期的品质[J]. 浙江农业学报, 2025, 37(7): 1459-1468. | 
| [4] | 侯启华, 商颖婕, 王苏丹, 刘银泉, 陈瑞. 烟盲蝽对3种蔬菜害虫的捕食作用及捕食偏好性[J]. 浙江农业学报, 2025, 37(5): 1082-1086. | 
| [5] | 孙凤婷, 王旭, 韩新雨, 许振岚, 吴声敢, 黄浩, 汤涛, 盛清, 王强, 沈国强, 赵学平. 复硝酚钠对铁皮石斛中黄酮含量和抗氧化活性的影响[J]. 浙江农业学报, 2025, 37(4): 934-942. | 
| [6] | 陈凤, 陈虹, 陈兵权, 宝春杰, 周昊亮, 赵鑫, 郭来珍. 核桃无融合生殖核仁内源激素含量变化与基因表达分析[J]. 浙江农业学报, 2025, 37(2): 381-393. | 
| [7] | 黄浩, 汤涛, 许振岚, 赵学平. 吡唑醚菌酯对铁皮石斛中多糖和黄酮的影响研究[J]. 浙江农业学报, 2025, 37(1): 115-125. | 
| [8] | 程嘉瑜, 陈妙金, 李彤, 孙奇男, 张小斌, 赵懿滢, 朱怡航, 顾清. 基于改进Faster-RCNN网络的无人机遥感影像桃树检测[J]. 浙江农业学报, 2024, 36(8): 1909-1919. | 
| [9] | 高兰芸, 刘昊, 李爱, 张婷婷, 杨丽芳, 高英. NaCl对樱桃砧木组培生根、IAA原位分布及相关酶活性的影响[J]. 浙江农业学报, 2024, 36(6): 1300-1308. | 
| [10] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. | 
| [11] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. | 
| [12] | 陈晓涓, 罗军, 王富敏, 李拓键, 屈燕. 全缘叶绿绒蒿黄色花形成关键基因的挖掘[J]. 浙江农业学报, 2024, 36(4): 811-824. | 
| [13] | 张翰生, 昌秦湘, 康建忠, 梁宗锁. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905-919. | 
| [14] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. | 
| [15] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||