浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2600-2610.DOI: 10.3969/j.issn.1004-1524.20221604
孔凡旺1,2(), 张志刚2, 李伟2, 陈玉峰2, 王长江2, 郑亚琴1, 徐蒙1,*(
)
收稿日期:
2022-11-11
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
孔凡旺(1977—),男,山东邹城人,学士,高级工程师,主要从事林果病理和采后生理研究。E-mail: Zclcsdkfw@163.com
通讯作者:
* 徐蒙,E-mail: xumeng@lyu.edu.cn
基金资助:
KONG Fanwang1,2(), ZHANG Zhigang2, LI Wei2, CHEN Yufeng2, WANG Changjiang2, ZHENG Yaqin1, XU Meng1,*(
)
Received:
2022-11-11
Online:
2023-11-25
Published:
2023-12-04
摘要:
4-香豆酸辅酶A连接酶(4-coumarate: CoA ligase, 4CL)在类黄酮和木质素等化合物代谢中具有重要作用。本研究基于桃基因组数据库系统鉴定4CL基因家族成员,从基因家族进化树的角度分析桃4CL基因家族的结构与潜在功能,结合转录组数据和qRT-PCR技术分析其在果实发育阶段类黄酮合成及采后冷害木质化调控中的功能。结果表明,基于桃基因组数据库鉴定出21个4CL基因家族成员,分布在8条染色体上;基因家族进化树分析表明,Pp4CL1与Pp4CL2属于第一亚家族,主要参与木质素合成,Pp4CL3-Pp4CL21属于第二亚家族,主要参与类黄酮的合成;启动子顺式元件分析发现其含有大量的非生物胁迫以及茉莉酸甲酯(MeJA)等激素响应元件。发育阶段的基因表达结果表明,Pp4CL8和 Pp4CL13的表达水平随发育阶段总体呈上升趋势,且在红肉品种中的表达量高于黄肉和白肉品种,猜测其可能参与花青素等类黄酮合成。采后低温贮藏阶段的基因表达结果表明,Pp4CL2可能在果实采后冷害木质化中发挥作用,程序性降温(low temperature conditioning,LTC)处理后Pp4CL8、Pp4CL10和Pp4CL14也可通过诱导类黄酮合成,减轻采后低温贮藏对果实造成的冷害。本研究将为桃果实色泽发育和采后保鲜提供理论依据。
中图分类号:
孔凡旺, 张志刚, 李伟, 陈玉峰, 王长江, 郑亚琴, 徐蒙. 桃4CL基因家族鉴定及其在果实色泽发育和采后贮藏冷害中的表达分析[J]. 浙江农业学报, 2023, 35(11): 2600-2610.
KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610.
基因 Gene | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (3'→5') |
---|---|---|
Pp4CL8 Pp4CL10 Pp4CL14 EF2 | CCCACATACCCAATTGCCCA AAAGAGCGGCTACTGTCCAC TGGAATCTCTACATGCTCCTCAG AGCAGGCTCTTGGTGGTATCT | TGAGGGCAGGTTTGTTTGAGT GGAGGGAGAGAGCGAAATGG GGTGAGGTTAGCGTGAAGATGA GATTCAATGACGGGGAGGTAG |
表1 qRT-PCR基因表达引物序列
Table 1 Primer sequences for quantitative real-time PCR analysis
基因 Gene | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (3'→5') |
---|---|---|
Pp4CL8 Pp4CL10 Pp4CL14 EF2 | CCCACATACCCAATTGCCCA AAAGAGCGGCTACTGTCCAC TGGAATCTCTACATGCTCCTCAG AGCAGGCTCTTGGTGGTATCT | TGAGGGCAGGTTTGTTTGAGT GGAGGGAGAGAGCGAAATGG GGTGAGGTTAGCGTGAAGATGA GATTCAATGACGGGGAGGTAG |
图1 桃4CL基因家族成员染色体分布情况 桃4CL基因在染色体上的分布以红色字体突出显示,串联重复基因以灰色突出显示,片段复制以橘黄色直线连接。
Fig.1 Chromosome distribution of 4CL gene family members in peach The distribution of the peach 4CL gene on the chromosome is highlighted in red font, tandem repeat genes are highlighted in gray, and segment duplication is connected in orange straight lines.
基因名称 Gene name | 登录号 GenBank | 氨基酸数目 Amino acid | 等电点 Isoelectric point | 分子量 Molecular weight/u | 不稳定系数 Instability index |
---|---|---|---|---|---|
Pp4CL1 | XM_007222180.2 | 544 | 5.83 | 59 937.30 | 30.32 |
Pp4CL2 | XM_007215457.2 | 551 | 5.84 | 59 981.39 | 37.07 |
Pp4CL3 | XM_020570163.1 | 567 | 8.9 | 62 153.90 | 41.82 |
Pp4CL4 | XM_020567696.1 | 572 | 6.32 | 62 409.91 | 38.71 |
Pp4CL5 | XM_007219446.2 | 457 | 5.56 | 49 467.21 | 31.17 |
Pp4CL6 | XM_007225695.2 | 548 | 6.06 | 59 512.92 | 36.62 |
Pp4CL7 | XM_007203554.2 | 543 | 8.44 | 59 630.94 | 41.21 |
Pp4CL8 | XM_007208395.2 | 542 | 8.63 | 59 168.68 | 37.81 |
Pp4CL9 | XM_007222403.2 | 569 | 8.95 | 61 299.59 | 33.63 |
Pp4CL10 | XM_007209025.2 | 557 | 7.26 | 61 211.61 | 53.40 |
Pp4CL11 | XM_020569127.1 | 591 | 8.47 | 63 537.10 | 43.54 |
Pp4CL12 | XM_007219420.2 | 569 | 5.73 | 61 733.01 | 42.35 |
Pp4CL13 | XM_007209024.2 | 558 | 6.26 | 61 052.43 | 49.46 |
Pp4CL14 | XM_020566011.1 | 635 | 6.56 | 69 746.76 | 36.41 |
Pp4CL15 | XM_007221216.2 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL16 | XM_020554905.1 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL17 | XM_020554134.1 | 566 | 8.11 | 63 179.53 | 37.96 |
Pp4CL18 | XM_020561814.1 | 555 | 7.23 | 60 667.33 | 38.26 |
Pp4CL19 | XM_020564772.1 | 165 | 6.51 | 18 632.33 | 44.38 |
Pp4CL20 | XM_007200387.2 | 218 | 6.6 | 25 006.86 | 38.89 |
Pp4CL21 | XM_020570041.1 | 218 | 6.6 | 25 006.86 | 38.89 |
表2 桃4CL基因家族成员蛋白理化性质
Table 2 Physical and chemical properties of 4CL gene family proteins in peach
基因名称 Gene name | 登录号 GenBank | 氨基酸数目 Amino acid | 等电点 Isoelectric point | 分子量 Molecular weight/u | 不稳定系数 Instability index |
---|---|---|---|---|---|
Pp4CL1 | XM_007222180.2 | 544 | 5.83 | 59 937.30 | 30.32 |
Pp4CL2 | XM_007215457.2 | 551 | 5.84 | 59 981.39 | 37.07 |
Pp4CL3 | XM_020570163.1 | 567 | 8.9 | 62 153.90 | 41.82 |
Pp4CL4 | XM_020567696.1 | 572 | 6.32 | 62 409.91 | 38.71 |
Pp4CL5 | XM_007219446.2 | 457 | 5.56 | 49 467.21 | 31.17 |
Pp4CL6 | XM_007225695.2 | 548 | 6.06 | 59 512.92 | 36.62 |
Pp4CL7 | XM_007203554.2 | 543 | 8.44 | 59 630.94 | 41.21 |
Pp4CL8 | XM_007208395.2 | 542 | 8.63 | 59 168.68 | 37.81 |
Pp4CL9 | XM_007222403.2 | 569 | 8.95 | 61 299.59 | 33.63 |
Pp4CL10 | XM_007209025.2 | 557 | 7.26 | 61 211.61 | 53.40 |
Pp4CL11 | XM_020569127.1 | 591 | 8.47 | 63 537.10 | 43.54 |
Pp4CL12 | XM_007219420.2 | 569 | 5.73 | 61 733.01 | 42.35 |
Pp4CL13 | XM_007209024.2 | 558 | 6.26 | 61 052.43 | 49.46 |
Pp4CL14 | XM_020566011.1 | 635 | 6.56 | 69 746.76 | 36.41 |
Pp4CL15 | XM_007221216.2 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL16 | XM_020554905.1 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL17 | XM_020554134.1 | 566 | 8.11 | 63 179.53 | 37.96 |
Pp4CL18 | XM_020561814.1 | 555 | 7.23 | 60 667.33 | 38.26 |
Pp4CL19 | XM_020564772.1 | 165 | 6.51 | 18 632.33 | 44.38 |
Pp4CL20 | XM_007200387.2 | 218 | 6.6 | 25 006.86 | 38.89 |
Pp4CL21 | XM_020570041.1 | 218 | 6.6 | 25 006.86 | 38.89 |
图7 红肉、黄肉和白肉光核桃果肉发育阶段4CL基因表达模式 PH,硬核期;CE,细胞增大期;FR,果实成熟期。
Fig.7 4CL gene expression in the development stage of red, yellow and white flesh peaches PH,pit-harding; CE,cell enlargement; FR,fruit ripening.
图9 qRT-PCR验证候选4CL基因在采后0 ℃(A)和LTC(B)处理中的相对表达水平
Fig.9 qRT-PCR verification of relative expression level of candidate 4CL genes at 0 ℃ (A) and LTC treatment (B)
[1] | LAVHALE S G, KALUNKE R M, GIRI A P. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants[J]. Planta, 2018, 248(5): 1063-1078. |
[2] | SCHNEIDER K, HÖVEL K, WITZEL K, et al. The substrate specificity-determining amino acid code of 4-coumarate: CoA ligase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8601-8606. |
[3] | LOZOYA E, HOFFMANN H, DOUGLAS C, et al. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley[J]. European Journal of Biochemistry, 1988, 176(3): 661-667. |
[4] | DOUGLAS C, HOFFMANN H, SCHULZ W, et al. Structure and elicitor or UV-light-stimulated expression of two 4-coumarate: CoA ligase genes in parsley[J]. The EMBO Journal, 1987, 6(5): 1189-1195. |
[5] | LI Y, KIM J I, PYSH L, et al. Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism[J]. Plant Physiology, 2015, 169(4): 2409-2421 |
[6] | WANG Y Y, GUO L H, ZHAO Y J, et al. Systematic analysis and expression profiles of the 4-coumarate: CoA ligase (4CL) gene family in pomegranate (Punica granatum L.)[J]. International Journal of Molecular Sciences, 2022, 23(7): 3509. |
[7] | XU B, ESCAMILLA-TREVIÑO L L, SATHITSUKSANOH N, et al. Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production[J]. The New Phytologist, 2011, 192(3): 611-625. |
[8] | FARCUH M, TAJIMA H, LERNO L A, et al. Changes in ethylene and sugar metabolism regulate flavonoid composition in climacteric and non-climacteric plums during postharvest storage[J]. Food Chemistry Molecular Sciences, 2022, 4: 100075. |
[9] | WANG B, SUN W, LI Q S, et al. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza[J]. Planta, 2015, 241(3): 711-725. |
[10] | VOELKER S L, LACHENBRUCH B, MEINZER F C, et al. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar[J]. Plant Physiology, 2010, 154(2): 874-886. |
[11] | WANG H Z, XUE Y X, CHEN Y J, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa[J]. Industrial Crops and Products, 2012, 37(1): 170-177. |
[12] | SHI R, SUN Y H, LI Q Z, et al. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes[J]. Plant and Cell Physiology, 2010, 51(1): 144-163. |
[13] | 杨克彬, 单雪萌, 史晶晶, 等. 毛竹4-香豆酸辅酶A连接酶基因家族鉴定及表达分析[J]. 核农学报, 2021, 35(1): 72-82. |
YANG K B, SHAN X M, SHI J J, et al. Identification and expression analysis of 4CL gene family in Phyllostachys edulis[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 72-82. (in Chinese with English abstract) | |
[14] | 曹运鹏, 方志, 李姝妹, 等. 砀山酥梨4CL基因家族的全基因组鉴定与分析[J]. 遗传, 2015, 37(7): 711-719. |
CAO Y P, FANG Z, LI S M, et al. Genome-wide identification and analyses of 4CL gene families in Pyrus bretschneideri Rehd[J]. Hereditas, 2015, 37(7): 711-719. (in Chinese with English abstract) | |
[15] | WANG K, YIN X R, ZHANG B, et al. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit[J]. Plant, Cell & Environment, 2017, 40(8): 1531-1551. |
[16] | XU Q, YIN X R, ZENG J K, et al. Activator-and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway[J]. Journal of Experimental Botany, 2014, 65(15): 4349-4359. |
[17] | LUO Z S, XU X L, YAN B F. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage[J]. European Food Research and Technology, 2008, 226(4): 635-640. |
[18] | 周慧娟, 苏明申, 叶正文, 等. 桃果实采后生理生化及冷害研究进展[J]. 果树学报, 2017, 34(9): 1204-1212. |
ZHOU H J, SU M S, YE Z W, et al. Advances in the research into physiological and biochemical characteristics and chilling injury of peach fruits after harvest[J]. Journal of Fruit Science, 2017, 34(9): 1204-1212. (in Chinese with English abstract) | |
[19] | CHEN Z Z, CHEN Y C, CHOU Y H, et al. cDNA cloning and molecular characterization of 4-coumarate:coenzyme A ligase in Eucalyptus camaldulensis[J]. Taiwan Journal of Forest Science, 2006, 21(1): 87-100. |
[20] | NEGISHI N, NANTO K, HAYASHI K, et al. Transcript abundances of LIM transcription factor, 4CL, CAld5H and CesAs affect wood properties in Eucalyptus globulus[J]. Silvae Genetica, 2011, 60: 288-296. |
[21] | BRANDI F, BAR E, MOURGUES F, et al. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology, 2011, 11: 24. |
[22] | FALCHI R, VENDRAMIN E, ZANON L, et al. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach[J]. The Plant Journal, 2013, 76(2): 175-187. |
[23] | JIAO Y, MA R, SHEN Z, et al. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica(L.) Batsch) cultivars during fruit development[J]. Journal of Zhejiang University. Science. B, 2014, 15(9): 809-819. |
[24] | YAN J A, CAI Z X, SHEN Z J, et al. Proanthocyanidin monomers and cyanidin 3-O-glucoside accumulation in blood-flesh peach (Prunus persica (L.) Batsch) fruit[J]. Archives of Biological Sciences, 2017, 69(4): 611-617. |
[25] | 赵秀林, 臧程, 田义超, 等. 桃果实中花青素的研究进展[J]. 安徽农业科学, 2012, 40(10): 5735-5736, 5750. |
ZHAO X L, ZANG C, TIAN Y C, et al. Research progress of anthocyanin in peach fruit[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 5735-5736, 5750. (in Chinese with English abstract) | |
[26] | YING H, SHI J, ZHANG S S, et al. Transcriptomic and metabolomic profiling provide novel insights into fruit development and flesh coloration in Prunus mira Koehne, a special wild peach species[J]. BMC Plant Biology, 2019, 19(1): 463. |
[27] | CAO K, DING T Y, MAO D M, et al. Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach[J]. Plant Physiology and Biochemistry, 2018, 123: 94-102. |
[28] | SHEN Z J, CONFOLENT C, LAMBERT P, et al. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach[J]. Tree Genetics & Genomes, 2013, 9(6): 1435-1446. |
[29] | 王震光, 余义和, 郭大龙. 活性氧调控果实发育成熟的研究进展[J]. 浙江农业学报, 2020, 32(11): 2103-2110. |
WANG Z G, YU Y H, GUO D L. Advances in ROS promoting fruit development and ripening[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 2103-2110. (in Chinese with English abstract) | |
[30] | YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8): 1780403. |
[31] | ALI KHAN R, KHAN M R, SAHREEN S, et al. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens[J]. Chemistry Central Journal, 2012, 6(1): 43. |
[32] | 李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20): 8163-8171. |
LI X, BAI X Q, LIU C X, et al. Research progress on antioxidant mechanism and functional activity of natural anthocyanin[J]. Journal of Food Safety & Quality, 2021, 12(20): 8163-8171. (in Chinese with English abstract) | |
[33] | SUN H Y, LI Y, FENG S Q, et al. Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice[J]. Biochemical and Biophysical Research Communications, 2013, 430(3): 1151-1156. |
[34] | SUN S C, XIONG X P, ZHANG X L, et al. Correction to: characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance[J]. BMC Plant Biology, 2021, 21(1): 65. |
[35] | ZHANG C H, MA T, LUO W C, et al. Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress[J]. Genes, 2015, 6(3): 901-917. |
[36] | JIN P, SUN C C, ZHENG Y H, et al. Effects of methyl jasmonate in combination with low temperature conditioning on chilling injury and active oxygen metabolism in loquat fruits[J]. Acta Horticulturae Sinica, 2012, 39(3): 461-468. |
[37] | 李永晖, 李捷, 冯丽丹, 等. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. |
LI Y H, LI J, FENG L D, et al. Comparison of fruit yield, disease resistance and storage ability of Lycium bararum sprayed with different plant immune inducers[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 164-174. (in Chinese with English abstract) | |
[38] | CHEN M S, GUO H M, CHEN S Q, et al. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit[J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9958-9966. |
[1] | 张小斌, 朱怡航, 赵懿滢, 陈妙金, 孙奇男, 谢宝良, 冯绍然, 顾清. 基于可见/近红外光谱的水蜜桃糖度无损检测方法优化研究[J]. 浙江农业学报, 2023, 35(7): 1617-1625. |
[2] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. |
[3] | 李虹仪, 周润盛, 梁笑玲, 张楚玥, 吕祺欣, 杨长华, 张茂. 日粮钙磷水平对马岗鹅生长性能及肝脏基因表达的影响[J]. 浙江农业学报, 2023, 35(11): 2533-2542. |
[4] | 林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620. |
[5] | 孙凤婷, 许振岚, 朱作艺, 张春荣, 汤涛, 赵学平, 盛清, 王强. 铁皮石斛的黄酮类成分测定及其生物可及性研究[J]. 浙江农业学报, 2023, 35(11): 2710-2719. |
[6] | 唐文静, 龚荣高, 初元琦, 陈超群, 陈红旭, 冉茂升, 张瑶, 杨文龙. 不同遮光率对甜樱桃果实品质和光合特性的影响[J]. 浙江农业学报, 2023, 35(10): 2346-2353. |
[7] | 杨迪, 张乃群, 王雪勇, 张军, 王新军. 基于数量性状的伏牛山野生中华猕猴桃资源综合评价[J]. 浙江农业学报, 2023, 35(10): 2354-2363. |
[8] | 彭丹丹, 陈大刚, 徐开未, 游浩宇, 杨然, 廖慧苹, 陈远学. 椰糠复合基质对猕猴桃砧木幼苗生长及根系特征的影响[J]. 浙江农业学报, 2023, 35(10): 2364-2377. |
[9] | 刘贵阁, 乔勇进, 陈冰洁, 王晓, 张怡, 钟耀广. 不同干燥方式对黄桃果粉品质的影响[J]. 浙江农业学报, 2023, 35(10): 2456-2464. |
[10] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[11] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
[12] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[13] | 古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924. |
[14] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[15] | 邵宇辰, 穆宏磊, 陈杭君, 殷军艺, 房祥军, 吴伟杰, 刘瑞玲, 韩延超, 郜海燕. 肠道条件和粒径对加工山核桃体外消化的影响[J]. 浙江农业学报, 2022, 34(8): 1734-1742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||