Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (10): 1971-1981.DOI: 10.3969/j.issn.1004-1524.2021.10.21
• Agricultural Economy and Development • Previous Articles Next Articles
HU Yuelia,b(), XIA Chunpingaa,b,*(
), JIA Chenga,b, WANG Cuicuia,b
Received:
2020-09-27
Online:
2021-10-25
Published:
2021-11-02
Contact:
XIA Chunpinga
CLC Number:
HU Yueli, XIA Chunpinga, JIA Cheng, WANG Cuicui. Analysis of farmers’ participation in e-commerce of agricultural products from perspective of social network: based on 349 household survey data from Hubei, Shandong, Anhui and Gansu in China[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1971-1981.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.10.21
维度 Dimension | 指标 Index | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|
F1 | F1-1 | 3.788 | 0.878 |
F1-2 | 3.782 | 0.921 | |
F2 | F2-1 | 4.284 | 0.756 |
F2-2 | 4.132 | 0.743 | |
F3 | F3-1 | 3.358 | 0.929 |
F3-2 | 3.668 | 0.776 | |
F4 | F4-1 | 2.052 | 0.853 |
F4-2 | 2.086 | 0.958 |
Table 1 Statistic description of social network dimensions and indexes
维度 Dimension | 指标 Index | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|
F1 | F1-1 | 3.788 | 0.878 |
F1-2 | 3.782 | 0.921 | |
F2 | F2-1 | 4.284 | 0.756 |
F2-2 | 4.132 | 0.743 | |
F3 | F3-1 | 3.358 | 0.929 |
F3-2 | 3.668 | 0.776 | |
F4 | F4-1 | 2.052 | 0.853 |
F4-2 | 2.086 | 0.958 |
变量类别 Variable type | 变量名称 Variable | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|
被解释变量 Dependent variable | 农户农产品电商参与行为 Farmer's participation in e-commerce of agricultural products | 0.490 | 0.501 |
核心解释变量 | 社会网络Social network | 0 | 0.502 |
Independent variable | 网络互动Network interaction | 0 | 1.000 |
网络信任Network trust | 0 | 1.000 | |
网络学习Network learning | 0 | 1.000 | |
网络互惠Network reciprocity | 0 | 1.000 | |
控制变量Control variable | 性别Gender | 0.527 | 0.500 |
年龄Age | 40.585 | 14.894 | |
健康状况Health | 4.312 | 0.790 | |
学历Education | 2.699 | 1.131 | |
家庭经营耕地面积Area of family-owned farmland | 6.975 | 6.117 | |
耕地质量Farmland quality | 2.418 | 0.779 | |
快递物流便利程度Express delivery convenience | 4.057 | 0.872 | |
政府或电商平台对电商的宣传力度 | 3.814 | 1.068 | |
E-commerce promotion level of government or e-commerce platform |
Table 2 Variable definition and description of statistical analysis results
变量类别 Variable type | 变量名称 Variable | 平均值 Mean | 标准差 Standard deviation |
---|---|---|---|
被解释变量 Dependent variable | 农户农产品电商参与行为 Farmer's participation in e-commerce of agricultural products | 0.490 | 0.501 |
核心解释变量 | 社会网络Social network | 0 | 0.502 |
Independent variable | 网络互动Network interaction | 0 | 1.000 |
网络信任Network trust | 0 | 1.000 | |
网络学习Network learning | 0 | 1.000 | |
网络互惠Network reciprocity | 0 | 1.000 | |
控制变量Control variable | 性别Gender | 0.527 | 0.500 |
年龄Age | 40.585 | 14.894 | |
健康状况Health | 4.312 | 0.790 | |
学历Education | 2.699 | 1.131 | |
家庭经营耕地面积Area of family-owned farmland | 6.975 | 6.117 | |
耕地质量Farmland quality | 2.418 | 0.779 | |
快递物流便利程度Express delivery convenience | 4.057 | 0.872 | |
政府或电商平台对电商的宣传力度 | 3.814 | 1.068 | |
E-commerce promotion level of government or e-commerce platform |
变量 Variable | 模型1 Model 1 | 模型2 Model 2 | 模型3 Model 3 | 模型4 Model 4 | ||||
---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | B | SE | |
社会网络Social network | 2.334*** | 0.298 | — | — | 2.073*** | 0.349 | — | — |
网络互动Network interaction | — | — | 1.240*** | 0.162 | — | — | 1.004*** | 0.184 |
网络信任Network trust | — | — | 0.035 | 0.130 | — | — | 0.088 | 0.147 |
网络学习Network learning | — | — | 1.087*** | 0.163 | — | — | 1.305*** | 0.196 |
网络互惠Network reciprocity | — | — | 0.270* | 0.139 | — | — | 0.081 | 0.16 |
年龄Age | — | — | — | — | -0.050*** | 0.014 | -0.058*** | 0.015 |
性别Gender | — | — | — | — | 0.403 | 0.274 | 0.412 | 0.298 |
健康状况Health | — | — | — | — | 0.224 | 0.181 | 0.358* | 0.203 |
学历Education | — | — | — | — | 0.459*** | 0.160 | 0.457*** | 0.174 |
家庭经营耕地面积 | — | — | — | — | -0.003 | 0.024 | -0.008 | 0.026 |
Area of family-owned farmland | ||||||||
耕地质量Farmland quality | — | — | — | — | 0.424** | 0.187 | 0.462** | 0.201 |
快递物流便利程度 | — | — | — | — | 0.236 | 0.161 | 0.238 | 0.176 |
Express delivery convenience | ||||||||
政府或电商平台对电商的宣传力度 | — | — | — | — | 0.252* | 0.139 | 0.231* | 0.152 |
E-commerce promotion level of government or e-commerce platform | ||||||||
常数项Constant | 0.177 | 0.180 | 0.479*** | 0.208 | -2.142 | 1.532 | -1.443 | 1.621 |
χ2 | 85.942 | 103.59 | 148.88 | 192.594 | ||||
最大似然估计值 | 397.735 | 350.086 | 334.796 | 290.082 | ||||
Maximum likelihood estimator | ||||||||
Nagelkerke广义决定系数 | 0.291 | 0.424 | 0.463 | 0.566 | ||||
Nagelkerke R2 | ||||||||
正确预测率Correct prodiction rate/% | 69.9 | 77.7 | 77.9 | 81.7 |
Table 3 Regression results of different models
变量 Variable | 模型1 Model 1 | 模型2 Model 2 | 模型3 Model 3 | 模型4 Model 4 | ||||
---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | B | SE | |
社会网络Social network | 2.334*** | 0.298 | — | — | 2.073*** | 0.349 | — | — |
网络互动Network interaction | — | — | 1.240*** | 0.162 | — | — | 1.004*** | 0.184 |
网络信任Network trust | — | — | 0.035 | 0.130 | — | — | 0.088 | 0.147 |
网络学习Network learning | — | — | 1.087*** | 0.163 | — | — | 1.305*** | 0.196 |
网络互惠Network reciprocity | — | — | 0.270* | 0.139 | — | — | 0.081 | 0.16 |
年龄Age | — | — | — | — | -0.050*** | 0.014 | -0.058*** | 0.015 |
性别Gender | — | — | — | — | 0.403 | 0.274 | 0.412 | 0.298 |
健康状况Health | — | — | — | — | 0.224 | 0.181 | 0.358* | 0.203 |
学历Education | — | — | — | — | 0.459*** | 0.160 | 0.457*** | 0.174 |
家庭经营耕地面积 | — | — | — | — | -0.003 | 0.024 | -0.008 | 0.026 |
Area of family-owned farmland | ||||||||
耕地质量Farmland quality | — | — | — | — | 0.424** | 0.187 | 0.462** | 0.201 |
快递物流便利程度 | — | — | — | — | 0.236 | 0.161 | 0.238 | 0.176 |
Express delivery convenience | ||||||||
政府或电商平台对电商的宣传力度 | — | — | — | — | 0.252* | 0.139 | 0.231* | 0.152 |
E-commerce promotion level of government or e-commerce platform | ||||||||
常数项Constant | 0.177 | 0.180 | 0.479*** | 0.208 | -2.142 | 1.532 | -1.443 | 1.621 |
χ2 | 85.942 | 103.59 | 148.88 | 192.594 | ||||
最大似然估计值 | 397.735 | 350.086 | 334.796 | 290.082 | ||||
Maximum likelihood estimator | ||||||||
Nagelkerke广义决定系数 | 0.291 | 0.424 | 0.463 | 0.566 | ||||
Nagelkerke R2 | ||||||||
正确预测率Correct prodiction rate/% | 69.9 | 77.7 | 77.9 | 81.7 |
变量 Variable | 男性组 Male | 女性组 Female | 参加培训组 Trained | 未参加培训组 Not trained | 高学历组 Highly educated | 低学历组 Lowly educated |
---|---|---|---|---|---|---|
社会网络 Social network | 1.504*** (0.464) | 2.986*** (0.600) | 1.854*** (0.642) | 2.040*** (0.496) | 1.800*** (0.480) | 2.555*** (0.579) |
网络互动 Network interaction | 0.846** (0.258) | 1.228*** (0.305) | 0.977*** (0.345) | 1.058*** (0.275) | 0.857*** (0.260) | 1.342*** (0.340) |
网络信任 Network trust | -0.026 (0.202) | 0.204 (0.245) | 0.164 (0.265) | 0.042 (0.223) | 0.162 (0.188) | -0.171 (0.302) |
网络学习 Network learning | 1.256*** (0.275) | 1.483*** (0.304) | 1.837*** (0.456) | 1.444*** (0.285) | 1.479*** (0.310) | 1.505*** (0.318) |
网络互惠 Network reciprocity | -0.081 (0.218) | 0.405 (0.276) | -0.114 (0.289) | 0.023 (0.223) | -0.415 (0.261) | 0.566** (0.238) |
Table 4 Cluster regression results
变量 Variable | 男性组 Male | 女性组 Female | 参加培训组 Trained | 未参加培训组 Not trained | 高学历组 Highly educated | 低学历组 Lowly educated |
---|---|---|---|---|---|---|
社会网络 Social network | 1.504*** (0.464) | 2.986*** (0.600) | 1.854*** (0.642) | 2.040*** (0.496) | 1.800*** (0.480) | 2.555*** (0.579) |
网络互动 Network interaction | 0.846** (0.258) | 1.228*** (0.305) | 0.977*** (0.345) | 1.058*** (0.275) | 0.857*** (0.260) | 1.342*** (0.340) |
网络信任 Network trust | -0.026 (0.202) | 0.204 (0.245) | 0.164 (0.265) | 0.042 (0.223) | 0.162 (0.188) | -0.171 (0.302) |
网络学习 Network learning | 1.256*** (0.275) | 1.483*** (0.304) | 1.837*** (0.456) | 1.444*** (0.285) | 1.479*** (0.310) | 1.505*** (0.318) |
网络互惠 Network reciprocity | -0.081 (0.218) | 0.405 (0.276) | -0.114 (0.289) | 0.023 (0.223) | -0.415 (0.261) | 0.566** (0.238) |
变量 Variable | 模型5 Model 5 | 模型6 Model 6 | 模型7 Model 7 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Exp(B) | B | SE | Exp(B) | B | SE | Exp(B) | |
社会网络Social network | 1.159*** | 0.301 | 3.186 | — | — | — | — | — | — |
网络互动Network interaction | — | — | — | 0.432*** | 0.146 | 1.541 | 0.832*** | 0.215 | 2.299 |
网络信任Network trust | — | — | — | 0.014 | 0.139 | 1.014 | 0.018 | 0.205 | 1.018 |
网络学习Network learning | — | — | — | 0.692*** | 0.164 | 1.997 | 1.302*** | 0.219 | 3.677 |
网络互惠Network reciprocity | — | — | — | 0.142 | 0.144 | 1.153 | 0.189 | 0.200 | 1.208 |
年龄Age | -0.034** | 0.015 | 0.967 | -0.046*** | 0.016 | 0.955 | -0.041** | 0.017 | 0.960 |
性别Gender | 0.492* | 0.271 | 1.635 | 0.514* | 0.278 | 1.672 | 0.400 | 0.301 | 1.492 |
健康状况Health | 0.239 | 0.186 | 1.271 | 0.283 | 0.192 | 1.328 | 0.079 | 0.206 | 1.082 |
学历Education | 0.410** | 0.164 | 1.506 | 0.407** | 0.166 | 1.503 | 0.489*** | 0.184 | 1.630 |
家庭经营耕地面积 | 0.002 | 0.024 | 1.002 | -0.001 | 0.025 | 0.999 | -0.006 | 0.029 | 0.994 |
Area of family-owned farmland | |||||||||
耕地质量Farmland quality | 0.308 | 0.188 | 1.360 | 0.340* | 0.193 | 1.405 | 0.450** | 0.209 | 1.569 |
快递物流便利程度 | 0.289* | 0.158 | 1.336 | 0.261 | 0.164 | 1.298 | 0.196 | 0.181 | 1.216 |
Express delivery convenience | |||||||||
政府或电商平台对电商的宣传力度 | 0.367*** | 0.137 | 1.444 | 0.398*** | 0.142 | 1.489 | 0.256*** | 0.157 | 1.291 |
E-commerce promotion level of government or e-commerce platform | |||||||||
常数项Constant | -4.291 | 1.534 | 0.014 | -4.206*** | 1.561 | 0.015 | -10.855*** | 2.141 | 0 |
χ2 | 73.058 | 85.022 | 126.287 | ||||||
最大似然估计值 | 327.903 | 315.939 | 274.674 | ||||||
Maximum likelihood estimator | |||||||||
Nagelkerke广义决定系数 | 0.296 | 0.337 | 0.469 | ||||||
Nagelkerke R2 | |||||||||
正确预测率 Correct prodiction rate/% | 71.4 | 74.8 | 79.3 |
Table 5 Regression results under robustness check
变量 Variable | 模型5 Model 5 | 模型6 Model 6 | 模型7 Model 7 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Exp(B) | B | SE | Exp(B) | B | SE | Exp(B) | |
社会网络Social network | 1.159*** | 0.301 | 3.186 | — | — | — | — | — | — |
网络互动Network interaction | — | — | — | 0.432*** | 0.146 | 1.541 | 0.832*** | 0.215 | 2.299 |
网络信任Network trust | — | — | — | 0.014 | 0.139 | 1.014 | 0.018 | 0.205 | 1.018 |
网络学习Network learning | — | — | — | 0.692*** | 0.164 | 1.997 | 1.302*** | 0.219 | 3.677 |
网络互惠Network reciprocity | — | — | — | 0.142 | 0.144 | 1.153 | 0.189 | 0.200 | 1.208 |
年龄Age | -0.034** | 0.015 | 0.967 | -0.046*** | 0.016 | 0.955 | -0.041** | 0.017 | 0.960 |
性别Gender | 0.492* | 0.271 | 1.635 | 0.514* | 0.278 | 1.672 | 0.400 | 0.301 | 1.492 |
健康状况Health | 0.239 | 0.186 | 1.271 | 0.283 | 0.192 | 1.328 | 0.079 | 0.206 | 1.082 |
学历Education | 0.410** | 0.164 | 1.506 | 0.407** | 0.166 | 1.503 | 0.489*** | 0.184 | 1.630 |
家庭经营耕地面积 | 0.002 | 0.024 | 1.002 | -0.001 | 0.025 | 0.999 | -0.006 | 0.029 | 0.994 |
Area of family-owned farmland | |||||||||
耕地质量Farmland quality | 0.308 | 0.188 | 1.360 | 0.340* | 0.193 | 1.405 | 0.450** | 0.209 | 1.569 |
快递物流便利程度 | 0.289* | 0.158 | 1.336 | 0.261 | 0.164 | 1.298 | 0.196 | 0.181 | 1.216 |
Express delivery convenience | |||||||||
政府或电商平台对电商的宣传力度 | 0.367*** | 0.137 | 1.444 | 0.398*** | 0.142 | 1.489 | 0.256*** | 0.157 | 1.291 |
E-commerce promotion level of government or e-commerce platform | |||||||||
常数项Constant | -4.291 | 1.534 | 0.014 | -4.206*** | 1.561 | 0.015 | -10.855*** | 2.141 | 0 |
χ2 | 73.058 | 85.022 | 126.287 | ||||||
最大似然估计值 | 327.903 | 315.939 | 274.674 | ||||||
Maximum likelihood estimator | |||||||||
Nagelkerke广义决定系数 | 0.296 | 0.337 | 0.469 | ||||||
Nagelkerke R2 | |||||||||
正确预测率 Correct prodiction rate/% | 71.4 | 74.8 | 79.3 |
[1] | 曾亿武, 万粒, 郭红东. 农业电子商务国内外研究现状与展望[J]. 中国农村观察, 2016(3):82-93. |
ZENG Y W, WAN L, GUO H D. Agricultural E-commerce research: a review of the current status and prospects[J]. China Rural Survey, 2016(3):82-93.(in Chinese with English abstract) | |
[2] | 林家宝, 罗志梅, 李婷. 企业农产品电子商务采纳的影响机制研究: 基于制度理论的视角[J]. 农业技术经济, 2019(9):129-142. |
LIN J B, LUO Z M, LI T. The mechanism of adoption of E-commerce of agricultural products in firms: from the perspective of institutional theory[J]. Journal of Agrotechnical Economics, 2019(9):129-142.(in Chinese with English abstract) | |
[3] | 孔令英, 李媛彤, 王明月. 新疆农户参与农产品电子商务行为研究: 基于X县农户的调查[J]. 新疆农垦经济, 2019(12):26-32. |
KONG L Y, LI Y T, WANG M Y. Study on the behavior of farmers participating in E-commerce of agricultural products in Xinjiang: based on the survey of farmers in X County[J]. Xinjiang State Farms Economy, 2019(12):26-32.(in Chinese) | |
[4] | 吕丹, 张俊飚. 新型农业经营主体农产品电子商务采纳的影响因素研究[J]. 华中农业大学学报(社会科学版), 2020(3):72-83. |
LYU D, ZHANG J B. Research on the influence factors of the adoption of E-commerce of agricultural products by new type of agricultural operator[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2020(3):72-83.(in Chinese with English abstract) | |
[5] | 郭锦墉, 肖剑, 汪兴东. 主观规范、网络外部性与农户农产品电商采纳行为意向[J]. 农林经济管理学报, 2019, 18(4):453-461. |
GUO J Y, XIAO J, WANG X D. Subjective norms, network externality and farmers’ behavioral intention to adopt agricultural products E-commerce[J]. Journal of Agro-Forestry Economics and Management, 2019, 18(4):453-461.(in Chinese with English abstract) | |
[6] | 王格玲, 陆迁. 社会网络影响农户技术采用倒U型关系的检验: 以甘肃省民勤县节水灌溉技术采用为例[J]. 农业技术经济, 2015(10):92-106. |
WANG G L, LU Q. The test of the influence of social networks on the inverted U-shaped relationship of farmers’ technology adoption: a case study of the adoption of water-saving irrigation technology in Minqin County, Gansu Province[J]. Journal of Agrotechnical Economics, 2015(10):92-106.(in Chinese) | |
[7] |
WEN W. A knowledge-based intelligent electronic commerce system for selling agricultural products[J]. Computers and Electronics in Agriculture, 2007, 57(1):33-46.
DOI URL |
[8] | CARPIO C E, ISENGILDINA-MASSA O, LAMIE R D, et al. Dose e-commerce help agricultural markets? the case of MarketMarker[J]. Choices: The Magazine of Food, Farm, andResource Issues, 2013, 28(4):1-7. |
[9] |
STRZĘBICKI D. The development of electronic commerce in agribusiness: the Polish example[J]. Procedia Economics and Finance, 2015, 23:1314-1320.
DOI URL |
[10] | 周冬, 叶睿. 农村电子商务发展的影响因素与政府的支持: 基于模糊集定性比较分析的实证研究[J]. 农村经济, 2019(2):110-116. |
ZHOU D, YE R. Influencing factors of rural e-commerce development and government support: an empirical study based on qualitative comparative analysis of fuzzy sets[J]. Rural Economy, 2019(2):110-116.(in Chinese) | |
[11] | 张益丰. 生鲜果品电商销售、农户参与意愿及合作社嵌入: 来自烟台大樱桃产区农户的调研数据[J]. 南京农业大学学报(社会科学版), 2016, 16(1):49-58. |
ZHANG Y F. On E-commerce of fresh fruit, cooperative embedding and the willingness of farmers to participate: empirical analysis of field survey data of 241 fruit farmers in Yantai large cherry planting field[J]. Journal of Nanjing Agricultural University (Social Sciences Edition), 2016, 16(1):49-58.(in Chinese with English abstract) | |
[12] | 曾亿武, 陈永富, 郭红东. 先前经验、社会资本与农户电商采纳行为[J]. 农业技术经济, 2019(3):38-48. |
ZENG Y W, CHEN Y F, GUO H D. Previous experience, social capital and smallholders’ E-commerce adoption[J]. Journal of Agrotechnical Economics, 2019(3):38-48.(in Chinese with English abstract) | |
[13] | 刘爽. 农村用户的电子商务接受模型研究[J]. 中国商贸, 2013(5):86-87. |
LIU S. Research on rural user’s e-commerce acceptance model[J]. China Business & Trade, 2013(5):86-87.(in Chinese) | |
[14] | 齐丹, 刘若熙. 面向农村用户的电子商务接受度模型构建及实证研究[J]. 物流工程与管理, 2016, 38(7):153-155. |
QI D, LIU R X. An e-commerce acceptance model for rural users and empirical research[J]. Logistics Engineering and Management, 2016, 38(7):153-155.(in Chinese with English abstract) | |
[15] | 吕有清, 黄山青. 基于TAM的农村电商接受度实证研究[J]. 宿州学院学报, 2018, 33(2):15-18. |
LV Y Q, HUANG S Q. An empirical study on rural E-commerce acceptance based on TAM[J]. Journal of Suzhou University, 2018, 33(2):15-18.(in Chinese) | |
[16] | 张聪颖, 霍学喜. 社会资本多维视角与农户销售渠道选择: 基于微观调研数据的实证[J]. 华中农业大学学报(社会科学版), 2017(1):23-31. |
ZHANG C Y, HUO X X. Farmers’ sales channel choice under multi-dimensional social capital perspective: an empirical analysis based on microcosmic research data[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2017(1):23-31.(in Chinese with English abstract) | |
[17] | 唐立强. 农户社会资本与电商交易平台的选择[J]. 华南农业大学学报(社会科学版), 2017, 16(4):75-86. |
TANG L Q. Rural social capital and electronic commerce transaction platform[J]. Journal of South China Agricultural University (Social Science Edition), 2017, 16(4):75-86.(in Chinese with English abstract) | |
[18] | 王翠翠, 夏春萍, 蔡轶, 等. 社会信任对农户合作参与电商经营的影响[J]. 中国农业大学学报, 2019, 24(3):198-209. |
WANG C C, XIA C P, CAI Y, et al. Research on the influence of social trust on the cooperative participation of farmers in business operation[J]. Journal of China Agricultural University, 2019, 24(3):198-209.(in Chinese with English abstract) | |
[19] | 郭斌. 农村社会网络嵌入与农业企业层级控制结构: 以某省J农业有限公司为例[J]. 中国农村观察, 2012(6):22-30. |
GUO B. Rural society network embeddedness and agricultural enterprise-level control structure[J]. China Rural Survey, 2012(6):22-30.(in Chinese with English abstract) | |
[20] | 边燕杰. 城市居民社会资本的来源及作用: 网络观点与调查发现[J]. 中国社会科学, 2004(3):136-146. |
BIAN Y J. Source and functions of urbanites’ social capital: a network approach[J]. Social Sciences in China, 2004(3):136-146.(in Chinese with English abstract) | |
[21] | 吴贤荣, 李晓玲, 左巧丽. 社会网络对农户农机节能减排技术采纳意愿的影响: 基于价值认知的中介效应[J]. 世界农业, 2020(11):54-64. |
WU X R, LI X L, ZUO Q L. The influence of social network on farmers’ willingness to adopt agricultural machinery energy-saving and emission-reduction technologies: the mediating effect based on value perception[J]. World Agriculture, 2020(11):54-64.(in Chinese) | |
[22] |
BANDIERA O, RASUL I. Social networks and technology adoption in northern Mozambique[J]. The Economic Journal, 2006, 116(514):869-902.
DOI URL |
[23] |
MATUSCHKE I, QAIM M. The impact of social networks on hybrid seed adoption in India[J]. Agricultural Economics, 2009, 40(5):493-505.
DOI URL |
[24] |
TAKAHASHI K, MURAOKA R, OTSUKA K. Technology adoption, impact, and extension in developing countries’ agriculture: a review of the recent literature[J]. Agricultural Economics, 2020, 51(1):31-45.
DOI URL |
[25] | 杨志海. 老龄化、社会网络与农户绿色生产技术采纳行为: 来自长江流域六省农户数据的验证[J]. 中国农村观察, 2018(4):44-58. |
YANG Z H. Ageing, social network and the adoption of green production technology: evidence from farm households in six provinces in the Yangtze River Basin[J]. China Rural Survey, 2018(4):44-58.(in Chinese with English abstract) | |
[26] | 姜维军, 颜廷武, 江鑫, 等. 社会网络、生态认知对农户秸秆还田意愿的影响[J]. 中国农业大学学报, 2019, 24(8):203-216. |
JIANG W J, YAN T W, JIANG X, et al. Influence of social network and ecological cognition on farmer’s willingness of straw returning[J]. Journal of China Agricultural University, 2019, 24(8):203-216.(in Chinese with English abstract) | |
[27] | 刘艳婷, 陈美球, 邝佛缘, 等. 社会网络、信息成本与农户生态耕种采纳意愿[J]. 中国农业大学学报, 2019, 24(11):250-258. |
LIU Y T, CHEN M Q, KUANG F Y, et al. Social network, information cost and the influence of farmers’ willingness to adopt ecological farming[J]. Journal of China Agricultural University, 2019, 24(11):250-258.(in Chinese with English abstract) | |
[28] | 杨祺. 初始资产与社会网络对农户节水灌溉技术采用影响研究: 基于张掖市的调查数据[D]. 杨凌: 西北农林科技大学, 2017. |
YANG Q. The impact of initial assets and social networks on farmers’ choice of water-saving irrigation technology[D]. Yangling: Northwest A & F University, 2017. (in Chinese with English abstract) | |
[29] |
LAROSE R, STROVER S, GREGG J L, et al. The impact of rural broadband development: lessons from a natural field experiment[J]. Government Information Quarterly, 2011, 28(1):91-100.
DOI URL |
[30] | 徐智邦, 王中辉, 周亮, 等. 中国“淘宝村”的空间分布特征及驱动因素分析[J]. 经济地理, 2017, 37(1):107-114. |
XU Z B, WANG Z H, ZHOU L, et al. The spatial distribution characteristics and driving factors of “Taobao Village” in China[J]. Economic Geography, 2017, 37(1):107-114.(in Chinese with English abstract) | |
[31] | 薛洲, 耿献辉. 电商平台、熟人社会与农村特色产业集群: 沙集“淘宝村”的案例[J]. 西北农林科技大学学报(社会科学版), 2018, 18(5):46-54. |
XUE Z, GENG X H. E-commerce platform, acquaintance society and rural distinctive industrial clusters: case study of “Taobao villages” in Shaji Town[J]. Journal of Northwest A&F University (Social Science Edition), 2018, 18(5):46-54.(in Chinese with English abstract) | |
[32] |
BROCK W A, DURLAUF S N. Discrete choice with social interactions[J]. The Review of Economic Studies, 2001, 68(2):235-260.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||