Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (9): 2068-2078.DOI: 10.3969/j.issn.1004-1524.20221113
• Animal Science • Previous Articles Next Articles
ZOU Wenteng(), LIU Zhenhong, YANG Jingxuan, LU Yangyang, PENG Kaisong(
)
Received:
2022-07-28
Online:
2023-09-25
Published:
2023-10-09
Contact:
PENG Kaisong
CLC Number:
ZOU Wenteng, LIU Zhenhong, YANG Jingxuan, LU Yangyang, PENG Kaisong. Genome-wide analysis of pathogenicity and drug resistance of Micropterus salmoides-derived Aeromonas veronii strain AV040[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2068-2078.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221113
Fig.2 Separated bacteria return to infect largemouth black bass disease diagram A, Bleeding from pectoral and ventral fins and anus (arrow); B, Bleeding from gills and enlarged spleen (arrow); C, Bleeding from enlarged liver and pyloric pendant (arrow).
测定项目 Test item | 标准株 Standard strain | AV040 | 测定项目 Test item | 标准株 Standard strain | AV040 |
---|---|---|---|---|---|
吲哚Indole | + | + | 肌醇Inositol | - | - |
枸橼酸盐Citrates | + | + | 蔗糖Cane sugar | + | + |
MR | + | + | 赖氨酸脱羧酶Lysine decarboxylase | + | + |
VP | + | + | 阿拉伯糖Arabinose | - | - |
硫化氢Hydrogen sulfide | - | - | 葡萄糖Glucose | + | + |
明胶液化Gelatin liquefaction | + | + | 甘露糖Mannose | + | + |
氧化酶Oxidase | + | + | 精氨酸双水解酶Arginine bihydrolytic enzyme | +/- | + |
Table 1 Biochemical reaction of pathogenic bacteria
测定项目 Test item | 标准株 Standard strain | AV040 | 测定项目 Test item | 标准株 Standard strain | AV040 |
---|---|---|---|---|---|
吲哚Indole | + | + | 肌醇Inositol | - | - |
枸橼酸盐Citrates | + | + | 蔗糖Cane sugar | + | + |
MR | + | + | 赖氨酸脱羧酶Lysine decarboxylase | + | + |
VP | + | + | 阿拉伯糖Arabinose | - | - |
硫化氢Hydrogen sulfide | - | - | 葡萄糖Glucose | + | + |
明胶液化Gelatin liquefaction | + | + | 甘露糖Mannose | + | + |
氧化酶Oxidase | + | + | 精氨酸双水解酶Arginine bihydrolytic enzyme | +/- | + |
Fig.5 Genome circle map GC skew, GC content, non-coding RNA (rRNA red, tRNA blue, sRNA green, lagging strand COG annotation, leading strand COG annotation, in order from inside to outside).
Fig.6 AV040 COG functional classification 1, RNA processing and modification; 2, Chromatin structure and dynamics; 3, Energy production and conversion; 4, Cell cycle control, cell division, chromosome differentiation; 5, Amino acid transport and metabolism; 6, Nucleotide transport and metabolism; 7, Carbohydrate transport and metabolism; 8, Coenzyme transport and metabolism; 9, Lipid transport and metabolism; 10, Translation, ribosome structure and biogenesis; 11, Transcription; 12, Replication, recombination and repair; 13, Cell wall, membrane and envelope biogenesis; 14, Cell motility; 15, Post-translational modifications, protein turnover, chaperone proteins; 16, Inorganic ion transport and metabolism; 17, Secondary metabolite biosynthesis, transport and catabolism; 18, General function; 19, Function unknown; 20, Signal transduction; 21, Intracellular secretion and vesicular transport; 22, Defense mechanisms.
Fig.7 AV040 KEGG pathway annotation 1, Digestive system; 2, Immune system; 3, Nervous system; 4, Circulatory system; 5, Endocrine system; 6, Environmental adaptation; 7, Aging; 8, Development and regeneration; 9, Excretory system; 10, Nucleotide metabolism; 11, Lipid metabolism; 12, Metabolism of other amino acids; 13, Biosynthesis and metabolism of sugars; 14, Biosynthesis of other secondary metabolites; 15, Foreign biodegradation and metabolism of organisms; 16, Metabolism of terpenoids and polyketides; 17, Metabolism of carbohydrates; 18, Metabolism of amino acids; 19, Metabolism of cofactors and vitamins; 20, Energy metabolism; 21, Endocrine and metabolic diseases; 22, Cardiovascular diseases; 23, Cancer: specific types; 24, Drug resistance: antibiotics; 25, Infectious diseases: parasitic disease; 26, Infectious diseases: bacterial disease; 27, Immune diseases; 28, Infectious diseases: viral disease; 29, Cancer: profile; 30, Neurodegenerative diseases; 31, Drug resistance: antitumor; 32, Translation; 33, Folding, sorting and degradation; 34, Replication and repair; 35, Transcription; 36, Membrane transport; 37, Signal transduction; 38, Cell motility; 39, Cell growth and death; 40, Cell communities-prokaryotes; 41, Transport and catabolism.
抗生素分类 Classification of antibiotics | 耐药基因 Drug resistance genes | 耐药机制 Mechanism of drug resistance | 抗生素名称 Antibiotic | 每片含药量 Dosage per tablet/μg | 抑菌圈直径 Inhibition zone diameter/mm | 中介度 Degree of intermediation/mm |
---|---|---|---|---|---|---|
肽类抗生素 | — | — | 万古霉素Vancomycin | 30 | 11 (I) | 10~11 |
Peptide antibiotics | 替考拉宁Teicoplanin | 30 | 12 | — | ||
多黏菌素B Polymyxin B | 300 IU | 12 (S) | 8~11 | |||
大环内酯类 | — | — | 阿奇霉素Azithromycin | 15 | 19 (S) | 14~17 |
Macrolides | 克拉霉素Clarithromycin | 15 | 19 (S) | 14~17 | ||
红霉素Erythromycin | 15 | 16 (I) | 14~22 | |||
林可酰胺类 | — | — | 克林霉素Clindamycin | 2 | 6 (R) | — |
Lincoamides | 林可霉素Lincomycin | 2 | 6 (R) | — | ||
碳青霉烯 Carbapenem | cphA3 OXA-912 | 抗生素灭活 Antibiotic inactivation | 亚胺培南 Imipenem | 10 | 12 (R) | 14~15 |
美罗培南Meropenem | 10 | 12 | — | |||
磷霉素Fosfomycin | — | — | 磷霉素Fosfomycin | 200 | 34 (S) | 13~15 |
硝基咪唑类 Nitroimidazoles | — | — | 甲硝唑 Metronidazole | 5 | 6 (R) | — |
四环素类 Tetracyclines | adeF | 抗生素外排 Antibiotics efflux | 多西环素 Doxycycline | 30 | 16 (S) | 13~15 |
四环素tetracycline | 30 | 15 (I) | 15~18 | |||
头孢菌素类 | — | — | 头孢氨苄Cefproxin | 30 | 21 (S) | 15~17 |
Cephalosporins | 头孢噻肟Cefotaxime | 30 | 40 (S) | 15~22 | ||
甲氧苄啶类 | — | — | 甲氧苄啶Trimethoprim | 5 | 6 (R) | 11~15 |
Trimethoprim | ||||||
青霉素类 | — | — | 青霉素G Penicillin G | 10 | 6 (R) | 14~15 |
Penicillins | ||||||
— | — | 氨苄西林 Ampicillin | 10 | 6 (R) | 14~16 | |
氨基糖苷类 Aminoglycosides | rsmA | 抗生素外排 Antibiotics efflux | 庆大霉素 Gentamicin | 10 | 18 (S) | 13~14 |
rsmA — | 抗生素外排 Antibiotics efflux | 卡那霉素 Kanamycin | 30 | 18 (S) | 14~17 | |
氨基香豆素类 | rsmA | 抗生素外排 | 新霉素N eomycin | 30 | 17 (S) | 13~16 |
Aminocoumarins | rsmA | Antibiotics efflux | 丁胺卡那Butamikana | 30 | 20 (S) | 15~16 |
— | — | 新生霉素Novobiocin | 30 | 11 (R) | 13~16 | |
利福霉素类 Rifamycin | EF-Tu mutants | 抗生素靶位改变 Antibiotic target change | 利福平 Rifampicin | 5 | 7 (R) | 17~19 |
喹诺酮类 Quinolones | rsmA adeF | 抗生素外排 Antibiotics efflux | 诺氟沙星 Norfloxacin | 10 | 30 (S) | 13~16 |
rsmA adeF | 抗生素外排 Antibiotics efflux | 恩诺沙星 Enrofloxacin | 10 | 32 (S) | 16~20 | |
rsmA adeF | 抗生素外排 Antibiotics efflux | 环丙沙星 Ciprofloxacin | 5 | 32 (S) | 16~20 | |
rsmA adeF | 抗生素外排 Antibiotics efflux | 氧氟沙星 Ofloxacin | 5 | 30 (S) | 13~15 | |
复方磺胺类 Compound sulfonamides | — | — | 复方新诺明 Compound neonolemin | 23.75/1.25 | 22 (S) | 13~16 |
氯霉素类/酰胺醇 Chloramphenicols/ amide alcohols | — | — | 氯霉素 Chloramphenicol | 30 | 30 (S) | 13~17 |
— | — | 氟苯尼考Florfenicol | 30 | 32 (S) | 13~17 |
Table 2 Resistance genes and susceptibility inhibition zone
抗生素分类 Classification of antibiotics | 耐药基因 Drug resistance genes | 耐药机制 Mechanism of drug resistance | 抗生素名称 Antibiotic | 每片含药量 Dosage per tablet/μg | 抑菌圈直径 Inhibition zone diameter/mm | 中介度 Degree of intermediation/mm |
---|---|---|---|---|---|---|
肽类抗生素 | — | — | 万古霉素Vancomycin | 30 | 11 (I) | 10~11 |
Peptide antibiotics | 替考拉宁Teicoplanin | 30 | 12 | — | ||
多黏菌素B Polymyxin B | 300 IU | 12 (S) | 8~11 | |||
大环内酯类 | — | — | 阿奇霉素Azithromycin | 15 | 19 (S) | 14~17 |
Macrolides | 克拉霉素Clarithromycin | 15 | 19 (S) | 14~17 | ||
红霉素Erythromycin | 15 | 16 (I) | 14~22 | |||
林可酰胺类 | — | — | 克林霉素Clindamycin | 2 | 6 (R) | — |
Lincoamides | 林可霉素Lincomycin | 2 | 6 (R) | — | ||
碳青霉烯 Carbapenem | cphA3 OXA-912 | 抗生素灭活 Antibiotic inactivation | 亚胺培南 Imipenem | 10 | 12 (R) | 14~15 |
美罗培南Meropenem | 10 | 12 | — | |||
磷霉素Fosfomycin | — | — | 磷霉素Fosfomycin | 200 | 34 (S) | 13~15 |
硝基咪唑类 Nitroimidazoles | — | — | 甲硝唑 Metronidazole | 5 | 6 (R) | — |
四环素类 Tetracyclines | adeF | 抗生素外排 Antibiotics efflux | 多西环素 Doxycycline | 30 | 16 (S) | 13~15 |
四环素tetracycline | 30 | 15 (I) | 15~18 | |||
头孢菌素类 | — | — | 头孢氨苄Cefproxin | 30 | 21 (S) | 15~17 |
Cephalosporins | 头孢噻肟Cefotaxime | 30 | 40 (S) | 15~22 | ||
甲氧苄啶类 | — | — | 甲氧苄啶Trimethoprim | 5 | 6 (R) | 11~15 |
Trimethoprim | ||||||
青霉素类 | — | — | 青霉素G Penicillin G | 10 | 6 (R) | 14~15 |
Penicillins | ||||||
— | — | 氨苄西林 Ampicillin | 10 | 6 (R) | 14~16 | |
氨基糖苷类 Aminoglycosides | rsmA | 抗生素外排 Antibiotics efflux | 庆大霉素 Gentamicin | 10 | 18 (S) | 13~14 |
rsmA — | 抗生素外排 Antibiotics efflux | 卡那霉素 Kanamycin | 30 | 18 (S) | 14~17 | |
氨基香豆素类 | rsmA | 抗生素外排 | 新霉素N eomycin | 30 | 17 (S) | 13~16 |
Aminocoumarins | rsmA | Antibiotics efflux | 丁胺卡那Butamikana | 30 | 20 (S) | 15~16 |
— | — | 新生霉素Novobiocin | 30 | 11 (R) | 13~16 | |
利福霉素类 Rifamycin | EF-Tu mutants | 抗生素靶位改变 Antibiotic target change | 利福平 Rifampicin | 5 | 7 (R) | 17~19 |
喹诺酮类 Quinolones | rsmA adeF | 抗生素外排 Antibiotics efflux | 诺氟沙星 Norfloxacin | 10 | 30 (S) | 13~16 |
rsmA adeF | 抗生素外排 Antibiotics efflux | 恩诺沙星 Enrofloxacin | 10 | 32 (S) | 16~20 | |
rsmA adeF | 抗生素外排 Antibiotics efflux | 环丙沙星 Ciprofloxacin | 5 | 32 (S) | 16~20 | |
rsmA adeF | 抗生素外排 Antibiotics efflux | 氧氟沙星 Ofloxacin | 5 | 30 (S) | 13~15 | |
复方磺胺类 Compound sulfonamides | — | — | 复方新诺明 Compound neonolemin | 23.75/1.25 | 22 (S) | 13~16 |
氯霉素类/酰胺醇 Chloramphenicols/ amide alcohols | — | — | 氯霉素 Chloramphenicol | 30 | 30 (S) | 13~17 |
— | — | 氟苯尼考Florfenicol | 30 | 32 (S) | 13~17 |
[1] | 雷宁, 郝贵杰, 黄爱霞, 等. 大口黑鲈(Micropterus salmoides)致病性维氏气单胞菌的分离鉴定及其特性分析[J]. 海洋与湖沼, 2022, 53(5): 1180-1188. |
LEI N, HAO G J, HUANG A X, et al. Isolation and identification of pathogenic Aeromonas veronii in micropterus salmoides[J]. Oceanologia et Limnologia Sinica, 2022, 53(5): 1180-1188. (in Chinese with English abstract) | |
[2] | ALGAMMAL A M, IBRAHIM R A, ALFIFI K J, et al. A first report of molecular typing, virulence traits, and phenotypic and genotypic resistance patterns of newly emerging XDR and MDR Aeromonas veronii in Mugil seheli[J]. Pathogens, 2022, 11(11): 1262. |
[3] | LIU F, YUWONO C, TAY A C Y, et al. Analysis of global Aeromonas veronii genomes provides novel information on source of infection and virulence in human gastrointestinal diseases[J]. BMC Genomics, 2022, 23(1): 166. |
[4] | TURSKA-SZEWCZUK A, DUDA K A, SCHWUDKE D, et al. Structural studies of the lipopolysaccharide from the fish pathogen Aeromonas veronii strain Bs19, serotype O16[J]. Marine Drugs, 2014, 12(3): 1298-1316. |
[5] | ZHU X H, QIAN Q Q, WU C C, et al. Pathogenicity of Aeromonas veronii causing mass mortality of largemouth bass (Micropterus salmoides) and its induced host immune response[J]. Microorganisms, 2022, 10(11): 2198. |
[6] | YUWONO C, WEHRHAHN M C, LIU F, et al. The isolation of Aeromonas species and other common enteric bacterial pathogens from patients with gastroenteritis in an Australian population[J]. Microorganisms, 2021, 9(7): 1440. |
[7] | SHENG T G, SONG G G, YUE T T, et al. Whole-genome sequencing and antimicrobial resistance analysis of multidrug-resistant Aeromonas veronii strain JC529 from a common carp[J]. Journal of Global Antimicrobial Resistance, 2021, 27: 118-122. |
[8] | HUANG H Y, ZHOU P J, CHEN P, et al. Alteration of the gut microbiome and immune factors of grass carp infected with Aeromonas veronii and screening of an antagonistic bacterial strain (Streptomyces flavotricini)[J]. Microbial Pathogenesis, 2020, 143: 104092. |
[9] | WANG X M, ZHAI W S, WANG S L, et al. A novel transposon, tn 6518, mediated transfer of mcr-3 variant in ESBL-producing Aeromonas veronii[J]. Infection and Drug Resistance, 2020, 13: 893-899. |
[10] | PEI C, SONG H L, ZHU L, et al. Identification of Aeromonas veronii isolated from largemouth bass Micropterus salmoides and histopathological analysis[J]. Aquaculture, 2021, 540: 736707. |
[11] | 龙波, 王均, 贺扬, 等. 加州鲈源维氏气单胞菌的分离、鉴定及致病性[J]. 中国兽医学报, 2016, 36(1): 48-55. |
LONG B, WANG J, HE Y, et al. Isolation, identification and pathogenicity of Aeromonas veronii isolated from Micropterus salmoides[J]. Chinese Journal of Veterinary Science, 2016, 36(1): 48-55. (in Chinese with English abstract) | |
[12] | 邓龙君. 大口黑鲈维氏气单胞菌的分离鉴定及其感染的病理损伤[J]. 河南农业科学, 2021, 50(1): 164-171. |
DENG L J. Isolation and identification of Aeromonas veronii from Micropterus salmoides and pathological lesions of its infection[J]. Journal of Henan Agricultural Sciences, 2021, 50(1): 164-171. (in Chinese with English abstract) | |
[13] | XU H S, XU R P, WANG X N, et al. Co-infections of Aeromonas veronii and Nocardia seriolae in largemouth bass (Micropterus salmoides)[J]. Microbial Pathogenesis, 2022, 173: 105815. |
[14] | 苏湘, 仲艳, 王希玉, 等. 一株鸭源维氏气单胞菌的分离鉴定与致病性的初步研究[J]. 中国预防兽医学报, 2020, 42(2): 191-194. |
SU X, ZHONG Y, WANG X Y, et al. Isolation and identification of Aeromonas veronii from duck and preliminary study on its pathogenicity[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(2): 191-194. (in Chinese with English abstract) | |
[15] | HAN H J, TAKI T, KONDO H, et al. Pathogenic potential of a collagenase gene from Aeromonas veronii[J]. Canadian Journal of Microbiology, 2008, 54(1): 1-10. |
[16] | YANG B T, ZHANG D X, WU T L, et al. Maltoporin (LamB protein) contributes to the virulence and adhesion of Aeromonas veronii TH0426[J]. Journal of Fish Diseases, 2019, 42(3): 379-389. |
[17] | TYAGI A, SHARMA C, SRIVASTAVA A, et al. Isolation, characterization and complete genome sequencing of fish pathogenic Aeromonas veronii from diseased Labeo rohita[J]. Aquaculture, 2022, 553: 738085. |
[18] | GONÇALVES PESSOA R B, DE OLIVEIRA W F, MARQUES D S C, et al. The genus Aeromonas: a general approach[J]. Microbial Pathogenesis, 2019, 130: 81-94. |
[19] | DAS S, SREEJITH S, BABU J, et al. Genome sequencing and annotation of multi-virulent Aeromonas veronii XhG1.2 isolated from diseased Xiphophorus hellerii[J]. Genomics, 2021, 113(1): 991-998. |
[20] | TEKEDAR H C, KUMRU S, BLOM J, et al. Comparative genomics of Aeromonas veronii: identification of a pathotype impacting aquaculture globally[J]. PLoS One, 2019, 14(8): e0221018. |
[21] | DENG W Y, MARSHALL N C, ROWLAND J L, et al. Assembly, structure, function and regulation of type Ⅲ secretion systems[J]. Nature Reviews Microbiology, 2017, 15(6): 323-337. |
[22] | FERNÁNDEZ-BRAVO A, FIGUERAS M J. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity[J]. Microorganisms, 2020, 8(1): 129. |
[23] | PESSOA R B G, MARQUES D S C, LIMA R O H A, et al. Molecular characterization and evaluation of virulence traits of Aeromonas spp. isolated from the tambaqui fish (Colossoma macropomum)[J]. Microbial Pathogenesis, 2020, 147: 104273. |
[24] | BENZ R. Channel formation by RTX-toxins of pathogenic bacteria: basis of their biological activity[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2016, 1858(3): 526-537. |
[25] | SAHA S S, UDA A, WATANABE K, et al. RtxA like protein contributes to infection of Francisella novicida in silkworm and human macrophage THP-1[J]. Microbial Pathogenesis, 2018, 123: 74-81. |
[26] | ALENAZY R. Drug efflux pump inhibitors: a promising approach to counter multidrug resistance in gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli[J]. Biology, 2022, 11(9): 1328. |
[27] | FRIEDMAN L, ALDER J D, SILVERMAN J A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(6): 2137-2145. |
[1] | WANG Mengzhu, YANG Guangmei, WU Yuhu, YANG Xuanye, WANG Huihui, CAO Xiaoan, LI Yong, MA Zhongren, MA Xiaoxia. Genomic features of 3 bovine viral diarrhea viruses isolated from newborn claves [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1814-1822. |
[2] | JIA Beiping, LYU Xuan, YANG Qing, WANG Yinan, LI Wanxiao, XIE Xindi, ZHU Yingqi, WANG Bei, YIN Dongdong, ZHANG Yunkai, WANG Qing, WANG Guijun. Isolation, identification and genetic evolution analysis of novel goose astrovirus in Anhui Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1048-1057. |
[3] | LI Shan, HUANG Fangyuan, ZHANG Yulong, CAI Dongjie, ZUO Zhicai. Isolation, identification and drug resistance of extended spectrum β-lactamases (ESBLs) producing Klebsiella pneumoniae from beef cattle in Sichuan Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 923-933. |
[4] | FAN Lihong, GUO Hongrui, WU Jiang, YI Jun, MA Xiaoping, GOU Liping, XIE Yue, YE Gang, ZUO Zhicai. Pathogenicity of Acinetobacter pittii from beef cattle in mice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 230-238. |
[5] | CHEN Mengzhu, KANG Zhenya, GUO Xianghui, GENG Yi, BAI Minghuan, OUYANG Ping, CHEN Defang, HUANG Xiaoli, LAI Weimin. Isolation and biological characteristics of a pathogenic ST-251 Aeromonas hydrophila from Procypris Rabaudi (rock carp) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2286-2294. |
[6] | JI Kaiyuan, QIU Yueyang, CHENG Ao, JIANG Shudong, PENG Mengling. Genetic diversity of Canine parvovirus in Hefei, Anhui Province from 2018 to 2019 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1817-1825. |
[7] | TANG Biao, CHANG Jiang, HU Ji, QIAN Mingrong, XIA Xiaodong, YANG Hua. Structures and characteristics of 103 plasmids carrying mcr gene [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 43-51. |
[8] | ZHANG Hongli, HUANG Jing, LIU Xia, WU Yunhong, FENG Xiaoxiao, WU Xuejun, XU Hui. Sequencing and analysis of several genes of a virulent duck enteritis virus strain ZJ2016 [J]. , 2020, 32(2): 226-233. |
[9] | XU Lihua, LAN Shengzhi, YU Bin, LI Junxing, ZHANG Pengchao, LI Baochen, SU Fei, YUAN Xiufang. Detection and genetic variation analysis of prevalent porcine circovirus type 2 strains in Zhejiang Province [J]. , 2020, 32(11): 1970-1977. |
[10] | YANG Hua, MA Yan, LIU Xiuting, LYU Wentao, LU Lizhi, XIAO Yingping. Virulence genes and drug resistance characteristics of Escherichia coli in ready-to-eat duck products [J]. , 2020, 32(10): 1841-1848. |
[11] | YUAN Xianyu, YANG Longbin, HE Zanzan, MAO Tianjiao, HE Changsheng, ZHAN Songhe, SUN Pei, WEI Jianzhong, LI Yu. Isolation and identification of pseudorabies virus and molecular characterization of its main virulence genes in Anhui [J]. , 2020, 32(1): 43-56. |
[12] | YI Keke, YIN Wenqi, ZHOU Yuancheng, JIANG Jinzhen, ZHANG Baiyu, LI Zhongyin, YAN Qigui. Isolation and identification of 4 strains of porcine pseudorabies virus and analysis of main virulence genes [J]. , 2019, 31(9): 1429-1436. |
[13] | CHANG Jiang, LUO Yi, TANG Biao, ZHANG Ling, DAI Xianjun, QIU Hanqi, YANG Hua, XIA Xiaodong. Whole-genome sequencing and antibiotic resistance study of a multi-drug resistant Escherichia coli isolated from chicken [J]. , 2019, 31(8): 1249-1256. |
[14] | CUI Yilong, SHI Yun, YANG Dahan, YIN Youqin, XUE Jiangdong, HUO Xiaowei, MA Dehui. Isolation,identification of horse Bacillus cereus and its virulence genes detection [J]. , 2019, 31(2): 216-221. |
[15] | PENG Kenan, ZHOU Xueke, YIN Xinhuan, LI fei, CAI Yao, ZENG Yubing, JIANG Chaoyuan, ZHANG Rubo, YANG Zexiao, XU Zhiwen, ZHU Ling. Molecular typing, biofilm formation ability and drug resistance of pathogenic Escherichia coli isolated from pigs in Sichuan Province [J]. , 2019, 31(10): 1599-1607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||