Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 651-661.DOI: 10.3969/j.issn.1004-1524.20230202
• Biosystems Engineering • Previous Articles Next Articles
LIU Yancena(), GUO Junxiana,*(
), GUO Yanga, SHI Yonga, HUANG Huab, LI Longjiea, ZHANG Zhenzhena
Received:
2023-02-20
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
LIU Yancen, GUO Junxian, GUO Yang, SHI Yong, HUANG Hua, LI Longjie, ZHANG Zhenzhen. Detection of relative chlorophyll content of field cantaloupe canopy at different growth stages based on digital images[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 651-661.
Fig.2 Schematic diagram of canopy image acquisition device 1, Test site; 2, Guide rail; 3, Light blocking aluminum foil; 4, Light source switch; 5, Lens; 6, Area array camera; 7, Image acquisition car; 8, Computer; 9, Fixed light source; 10, Canopy blade.
特征来源 Features source | 数量 Number | 特征参数 Feature parameters |
---|---|---|
RGB | 22 | R、G、B、R-B、G-R、G-B、G/R、B/G、B/R、R/(R+B+G)、G/(R+B+G)、B/(R+B+G)、1.4R-G、(R-B)/(R+B)、(G-B)/(G+B)、(G-R)/(G+R)、2G-R-B、(2G-R-B)/(2G+R+B)、(G2-RB)/(G2+RB)、3G-2.4R-B、(G2-R2)/(G2+R2)、0.44R-0.88G-0.39B+18.787 5 |
Gray | 1 | Gray |
HSV | 3 | H、S、V |
NTSC | 3 | YNTSC、I、Q |
YCbCr | 3 | Y、Cb、Cr |
Table 1 Brief introduction of color features
特征来源 Features source | 数量 Number | 特征参数 Feature parameters |
---|---|---|
RGB | 22 | R、G、B、R-B、G-R、G-B、G/R、B/G、B/R、R/(R+B+G)、G/(R+B+G)、B/(R+B+G)、1.4R-G、(R-B)/(R+B)、(G-B)/(G+B)、(G-R)/(G+R)、2G-R-B、(2G-R-B)/(2G+R+B)、(G2-RB)/(G2+RB)、3G-2.4R-B、(G2-R2)/(G2+R2)、0.44R-0.88G-0.39B+18.787 5 |
Gray | 1 | Gray |
HSV | 3 | H、S、V |
NTSC | 3 | YNTSC、I、Q |
YCbCr | 3 | Y、Cb、Cr |
纹理特征名称 Texture feature name | 符号 Symbol | 表达式 Expression | 纹理度量 Texture measurement |
---|---|---|---|
平均值 Mean | m | 平均亮度 Average brightness | |
标准偏差 Standard deviation | S | 平均对比度 Average contrast | |
平滑度 Smoothness | F | 区域中亮度的相对平滑度 Relative smoothness of brightness in the area | |
三阶矩 Third moment | T3 | 直方图偏斜程度 Degree of histogram deviation | |
一致性 Consistency | U | 灰度值一致性 Consistency of gray value | |
熵 Entropy | e | 灰度级混乱程度 Grayscale confusion |
Table 2 Brief introduction of texture features
纹理特征名称 Texture feature name | 符号 Symbol | 表达式 Expression | 纹理度量 Texture measurement |
---|---|---|---|
平均值 Mean | m | 平均亮度 Average brightness | |
标准偏差 Standard deviation | S | 平均对比度 Average contrast | |
平滑度 Smoothness | F | 区域中亮度的相对平滑度 Relative smoothness of brightness in the area | |
三阶矩 Third moment | T3 | 直方图偏斜程度 Degree of histogram deviation | |
一致性 Consistency | U | 灰度值一致性 Consistency of gray value | |
熵 Entropy | e | 灰度级混乱程度 Grayscale confusion |
处理 Treatment | 样本数 Sample size | 各时期的相对叶绿素含量Relative chlorophyll content at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
W1N1 | 18 | 36.98±2.27 d | 44.83±2.33 e | 52.68±2.64 d |
W1N2 | 18 | 37.14±2.43 cd | 45.94±3.01 de | 54.03±2.82 bcd |
W1N3 | 18 | 36.72±3.10 d | 45.44±1.85 de | 53.77±3.28 cd |
W2N1 | 18 | 39.18±2.22 ab | 47.49±2.08 bc | 54.85±2.31 abc |
W2N2 | 18 | 39.84±2.63 a | 49.37±1.87 a | 56.27±2.93 a |
W2N3 | 18 | 39.64±2.58 ab | 47.92±2.82 b | 55.56±2.73 ab |
CK | 18 | 38.34±2.67 bc | 46.55±2.57 cd | 54.89±2.56 abc |
Table 3 Relative chlorophyll content of field cantaloupe canopy under treatments
处理 Treatment | 样本数 Sample size | 各时期的相对叶绿素含量Relative chlorophyll content at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
W1N1 | 18 | 36.98±2.27 d | 44.83±2.33 e | 52.68±2.64 d |
W1N2 | 18 | 37.14±2.43 cd | 45.94±3.01 de | 54.03±2.82 bcd |
W1N3 | 18 | 36.72±3.10 d | 45.44±1.85 de | 53.77±3.28 cd |
W2N1 | 18 | 39.18±2.22 ab | 47.49±2.08 bc | 54.85±2.31 abc |
W2N2 | 18 | 39.84±2.63 a | 49.37±1.87 a | 56.27±2.93 a |
W2N3 | 18 | 39.64±2.58 ab | 47.92±2.82 b | 55.56±2.73 ab |
CK | 18 | 38.34±2.67 bc | 46.55±2.57 cd | 54.89±2.56 abc |
图像特征 Image features | 不同时期的相关系数Correlation coefficient at different growth stages | ||
---|---|---|---|
伸蔓期Vine stretching stage | 开花期Flowering stage | 膨果期Friut expansion stage | |
R | 0.72** | 0.69** | 0.84** |
G | 0.73** | 0.79** | 0.80** |
B | 0.73** | 0.18 | 0.38* |
R-B | 0.69** | 0.61** | 0.68** |
G-R | 0.73** | 0.86** | 0.55** |
G-B | 0.72** | 0.78** | 0.82** |
G/R | 0.46** | 0.29 | -0.12 |
B/G | 0.25 | 0.42* | 0.11 |
B/R | 0.13 | -0.35 | -0.38* |
R/(R+B+G) | -0.42** | 0.24 | 0.28 |
G/(R+B+G) | 0.27 | 0.38* | 0.37* |
B/(R+B+G) | 0.01 | -0.36* | -0.41** |
(R-B)/(R+B) | -0.13 | 0.35 | 0.38* |
(G-B)/(G+B) | 0.06 | 0.37* | 0.42** |
(G-R)/(G+R) | 0.46** | 0.31 | -0.11 |
(G2-RB)/(G2+RB) | 0.24 | 0.38* | 0.41* |
2G-R-B | 0.72** | 0.83** | 0.79** |
1.4R-G | -0.70** | -0.60** | -0.02 |
3G-2.4R-B | 0.72** | 0.82** | 0.70** |
(G2-R2)/(G2+R2) | 0.46* | 0.3 | -0.1 |
(2G-R-B)/(2G+R+B) | 0.26 | 0.21 | 0.11 |
0.44R-0.88G-0.39B+18.787 5 | -0.73** | -0.72** | -0.70** |
Gray | 0.73** | 0.65** | 0.78** |
H | 0.73** | 0.74** | 0.17 |
S | 0.72** | 0.63** | 0.47** |
V | 0.73** | 0.79** | 0.80** |
YNTSC | 0.73** | 0.75** | 0.81** |
I | -0.62** | 0.13 | 0.30 |
Q | -0.72** | -0.82** | -0.80** |
Y | 0.73** | 0.75** | 0.81** |
Cb | -0.72** | -0.75** | -0.81** |
Cr | -0.72** | -0.82** | -0.80** |
m | 0.73** | 0.75** | 0.81** |
S | 0.53** | -0.24 | 0.17 |
F | 0.52** | -0.24 | 0.16 |
T3 | -0.65** | -0.33* | -0.22 |
U | -0.73** | -0.75** | -0.31* |
e | 0.73** | 0.77** | 0.47** |
Table 4 Correlation coefficient between image features and relative chlorophyll content of field cantaloupe canopy at different growth stages
图像特征 Image features | 不同时期的相关系数Correlation coefficient at different growth stages | ||
---|---|---|---|
伸蔓期Vine stretching stage | 开花期Flowering stage | 膨果期Friut expansion stage | |
R | 0.72** | 0.69** | 0.84** |
G | 0.73** | 0.79** | 0.80** |
B | 0.73** | 0.18 | 0.38* |
R-B | 0.69** | 0.61** | 0.68** |
G-R | 0.73** | 0.86** | 0.55** |
G-B | 0.72** | 0.78** | 0.82** |
G/R | 0.46** | 0.29 | -0.12 |
B/G | 0.25 | 0.42* | 0.11 |
B/R | 0.13 | -0.35 | -0.38* |
R/(R+B+G) | -0.42** | 0.24 | 0.28 |
G/(R+B+G) | 0.27 | 0.38* | 0.37* |
B/(R+B+G) | 0.01 | -0.36* | -0.41** |
(R-B)/(R+B) | -0.13 | 0.35 | 0.38* |
(G-B)/(G+B) | 0.06 | 0.37* | 0.42** |
(G-R)/(G+R) | 0.46** | 0.31 | -0.11 |
(G2-RB)/(G2+RB) | 0.24 | 0.38* | 0.41* |
2G-R-B | 0.72** | 0.83** | 0.79** |
1.4R-G | -0.70** | -0.60** | -0.02 |
3G-2.4R-B | 0.72** | 0.82** | 0.70** |
(G2-R2)/(G2+R2) | 0.46* | 0.3 | -0.1 |
(2G-R-B)/(2G+R+B) | 0.26 | 0.21 | 0.11 |
0.44R-0.88G-0.39B+18.787 5 | -0.73** | -0.72** | -0.70** |
Gray | 0.73** | 0.65** | 0.78** |
H | 0.73** | 0.74** | 0.17 |
S | 0.72** | 0.63** | 0.47** |
V | 0.73** | 0.79** | 0.80** |
YNTSC | 0.73** | 0.75** | 0.81** |
I | -0.62** | 0.13 | 0.30 |
Q | -0.72** | -0.82** | -0.80** |
Y | 0.73** | 0.75** | 0.81** |
Cb | -0.72** | -0.75** | -0.81** |
Cr | -0.72** | -0.82** | -0.80** |
m | 0.73** | 0.75** | 0.81** |
S | 0.53** | -0.24 | 0.17 |
F | 0.52** | -0.24 | 0.16 |
T3 | -0.65** | -0.33* | -0.22 |
U | -0.73** | -0.75** | -0.31* |
e | 0.73** | 0.77** | 0.47** |
Fig.4 Correlation of image features and relaitve chlorophyll content of field cantaloupe canopy at different growth stages R, G, B represent the red, green and blue primary colors of RGB model, respectively; Gray denotes the gray value of the grayscale model ;H, S, V represent the hue, color saturation and value of HSV model, respectively; YNTSC, I, Q represent the brightness, hue and saturation of NTSC model, respectively; Y, Cb, Cr represent the luminance component, blue chromaticity component and red chromaticity component of YcbCr model, respectively; m, Mean; S, Standard deviation; F, Smoothness; T3, Third moment; U, Consistency; e, Entropy; D, Relative chlorophyll content of canopy. “*” indicate significant correlation at P<0.05.
主成分 Principle component | 各时期的方差贡献率 Variance contribution rate at different growth stages | 各时期的累积方差贡献率 Cumulative variance contribution rate at different growth stages | ||||
---|---|---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | 伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | |
P1 | 0.562 1 | 0.504 4 | 0.517 7 | 0.562 1 | 0.504 4 | 0.517 7 |
P2 | 0.169 3 | 0.245 1 | 0.206 8 | 0.731 4 | 0.749 5 | 0.724 5 |
P3 | 0.104 2 | 0.117 3 | 0.104 4 | 0.835 6 | 0.866 8 | 0.828 9 |
P4 | 0.071 1 | 0.062 6 | 0.082 3 | 0.906 7 | 0.929 4 | 0.911 2 |
P5 | 0.040 7 | 0.033 7 | 0.044 6 | 0.947 4 | 0.963 1 | 0.955 8 |
P6 | 0.020 4 | 0.012 4 | 0.022 5 | 0.967 8 | 0.975 5 | 0.978 3 |
P7 | 0.010 6 | 0.008 8 | 0.009 6 | 0.978 4 | 0.984 3 | 0.987 9 |
P8 | 0.008 8 | 0.005 2 | 0.004 8 | 0.987 2 | 0.989 5 | 0.992 7 |
P9 | 0.007 3 | 0.003 8 | 0.003 6 | 0.994 5 | 0.993 3 | 0.996 3 |
P10 | 0.004 3 | 0.003 2 | 0.003 3 | 0.998 8 | 0.996 5 | 0.999 6 |
Table 5 Variance contribution rate of principal components
主成分 Principle component | 各时期的方差贡献率 Variance contribution rate at different growth stages | 各时期的累积方差贡献率 Cumulative variance contribution rate at different growth stages | ||||
---|---|---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | 伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | |
P1 | 0.562 1 | 0.504 4 | 0.517 7 | 0.562 1 | 0.504 4 | 0.517 7 |
P2 | 0.169 3 | 0.245 1 | 0.206 8 | 0.731 4 | 0.749 5 | 0.724 5 |
P3 | 0.104 2 | 0.117 3 | 0.104 4 | 0.835 6 | 0.866 8 | 0.828 9 |
P4 | 0.071 1 | 0.062 6 | 0.082 3 | 0.906 7 | 0.929 4 | 0.911 2 |
P5 | 0.040 7 | 0.033 7 | 0.044 6 | 0.947 4 | 0.963 1 | 0.955 8 |
P6 | 0.020 4 | 0.012 4 | 0.022 5 | 0.967 8 | 0.975 5 | 0.978 3 |
P7 | 0.010 6 | 0.008 8 | 0.009 6 | 0.978 4 | 0.984 3 | 0.987 9 |
P8 | 0.008 8 | 0.005 2 | 0.004 8 | 0.987 2 | 0.989 5 | 0.992 7 |
P9 | 0.007 3 | 0.003 8 | 0.003 6 | 0.994 5 | 0.993 3 | 0.996 3 |
P10 | 0.004 3 | 0.003 2 | 0.003 3 | 0.998 8 | 0.996 5 | 0.999 6 |
模型 Model | 模型参数 Model parameter | 各时期的参数值Parameter value at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
MLR | β0 | 40.004 | 42.621 | 47.692 |
β1 | 0.538 | 0.471 | 0.685 | |
β2 | -0.167 | 0.612 | -0.623 | |
β3 | 0.042 | 0.147 | -0.553 | |
β4 | 0.151 | 0.035 | 0.237 | |
β5 | 0.738 | 0.175 | -1.048 | |
SVM | C | 64 | 42 | 26 |
g | 0.2 | 0.1 | 0.1 | |
RF | ntree | 300 | 200 | 200 |
mtry | 3 | 3 | 2 |
Table 6 Modeling parameters
模型 Model | 模型参数 Model parameter | 各时期的参数值Parameter value at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
MLR | β0 | 40.004 | 42.621 | 47.692 |
β1 | 0.538 | 0.471 | 0.685 | |
β2 | -0.167 | 0.612 | -0.623 | |
β3 | 0.042 | 0.147 | -0.553 | |
β4 | 0.151 | 0.035 | 0.237 | |
β5 | 0.738 | 0.175 | -1.048 | |
SVM | C | 64 | 42 | 26 |
g | 0.2 | 0.1 | 0.1 | |
RF | ntree | 300 | 200 | 200 |
mtry | 3 | 3 | 2 |
模型 Model | 时期 Period | RMSE | R2 | ||
---|---|---|---|---|---|
训练集Training set | 测试集Test set | 训练集Training set | 测试集Test set | ||
MLR | 伸蔓期Vine stretching stage | 1.72 | 2.52 | 0.70 | 0.56 |
开花期Flowering stage | 1.61 | 1.78 | 0.69 | 0.61 | |
膨果期Fruit expansion stage | 1.78 | 2.12 | 0.74 | 0.72 | |
SVR | 伸蔓期Vine stretching stage | 0.92 | 0.97 | 0.78 | 0.71 |
开花期Flowering stage | 0.92 | 0.93 | 0.80 | 0.77 | |
膨果期Fruit expansion stage | 0.66 | 0.73 | 0.83 | 0.81 | |
RF | 伸蔓期Vine stretching stage | 0.91 | 1.03 | 0.79 | 0.75 |
开花期Flowering stage | 1.28 | 1.32 | 0.77 | 0.76 | |
膨果期Fruit expansion stage | 0.81 | 0.99 | 0.81 | 0.78 |
Table 7 Comparison of modeling effect
模型 Model | 时期 Period | RMSE | R2 | ||
---|---|---|---|---|---|
训练集Training set | 测试集Test set | 训练集Training set | 测试集Test set | ||
MLR | 伸蔓期Vine stretching stage | 1.72 | 2.52 | 0.70 | 0.56 |
开花期Flowering stage | 1.61 | 1.78 | 0.69 | 0.61 | |
膨果期Fruit expansion stage | 1.78 | 2.12 | 0.74 | 0.72 | |
SVR | 伸蔓期Vine stretching stage | 0.92 | 0.97 | 0.78 | 0.71 |
开花期Flowering stage | 0.92 | 0.93 | 0.80 | 0.77 | |
膨果期Fruit expansion stage | 0.66 | 0.73 | 0.83 | 0.81 | |
RF | 伸蔓期Vine stretching stage | 0.91 | 1.03 | 0.79 | 0.75 |
开花期Flowering stage | 1.28 | 1.32 | 0.77 | 0.76 | |
膨果期Fruit expansion stage | 0.81 | 0.99 | 0.81 | 0.78 |
Fig.5 Regression scatter diagram of the predicted value by support vector regression (SVR) model and the measure value at different growth stages RMSE, Root mean square error; R2, Coefficient of determination.
[1] | ZARCO-TEJADA P J, MILLER J R, MORALES A, et al. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[J]. Remote Sensing of Environment, 2004, 90(4): 463-476. |
[2] | RORIE R L, PURCELL L C, MOZAFFARI M, et al. Association of “greenness” in corn with yield and leaf nitrogen concentration[J]. Agronomy Journal, 2011, 103(2): 529-535. |
[3] | 殷星, 侯振安, 冶军, 等. 应用多酚-叶绿素仪监测棉花氮素营养状况研究[J]. 植物营养与肥料学报, 2021, 27(7): 1198-1212. |
YIN X, HOU Z A, YE J, et al. Application of polyphenol-chlorophyll meter to monitor cotton N nutrition status[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1198-1212. (in Chinese with English abstract) | |
[4] | VOLLMANN J, WALTER H, SATO T, et al. Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean[J]. Computers and Electronics in Agriculture, 2011, 75(1): 190-195. |
[5] | 张伏, 张亚坤, 毛鹏军, 等. 植物叶绿素测量方法研究现状及发展[J]. 农机化研究, 2014, 36(4): 238-241. |
ZHANG F, ZHANG Y K, MAO P J, et al. Status and development of measuring method in plant chlorophyll content[J]. Journal of Agricultural Mechanization Research, 2014, 36(4): 238-241. (in Chinese with English abstract) | |
[6] | ZHANG H C, GE Y F, XIE X Y, et al. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion[J]. Plant Methods, 2022, 18(1): 60. |
[7] | 焦颖. 叶绿素仪在东北春播玉米营养诊断施肥中的应用[J]. 安徽农业科学, 2017, 45(31): 18-19. |
JIAO Y. Application of chlorophyll meter in nutrient diagnosis and fertilization of spring maize in northeast China[J]. Journal of Anhui Agricultural Sciences, 2017, 45(31): 18-19. (in Chinese with English abstract) | |
[8] | 李丽, 程灵. 基于RGB模型建立快速检测番茄叶片叶绿素含量的方法[J]. 分子植物育种, 2021, 19(20): 6906-6909. |
LI L, CHENG L. A method for rapid detection of chlorophyll content in tomato leaves based on RGB model[J]. Molecular Plant Breeding, 2021, 19(20): 6906-6909. (in Chinese with English abstract) | |
[9] | SARKER U, OBA S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables[J]. Journal of the Science of Food and Agriculture, 2019, 99(5): 2275-2284. |
[10] | 程立真, 朱西存, 高璐璐, 等. 基于RGB模型的苹果叶片叶绿素含量估测[J]. 园艺学报, 2017, 44(2): 381-390. |
CHENG L Z, ZHU X C, GAO L L, et al. Estimation of chlorophyll content in apple leaves based on RGB model using digital camera[J]. Acta Horticulturae Sinica, 2017, 44(2): 381-390. (in Chinese with English abstract) | |
[11] | SÁNCHEZ-SASTRE L F, ALTE DA VEIGA N M S, RUIZ-POTOSME N M, et al. Assessment of RGB vegetation indices to estimate chlorophyll content in sugar beet leaves in the final cultivation stage[J]. AgriEngineering, 2020, 2(1): 128-149. |
[12] | 娄卫东, 林宝刚, 周洪奎, 等. 基于图像特征的油菜叶绿素含量快速估算[J]. 浙江农业科学, 2022, 63(3): 480-484. |
LOU W D, LIN B G, ZHOU H K, et al. Rapid estimation of chlorophyll content for rape based on image features[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(3): 480-484. (in Chinese) | |
[13] | 周利亚, 苑迎春, 宋宇斐, 等. 基于图像处理的小麦叶绿素估测模型研究[J]. 河北农业大学学报, 2018, 41(2): 105-109. |
ZHOU L Y, YUAN Y C, SONG Y F, et al. Research on estimation of wheat chlorophyll using image processing technology[J]. Journal of Hebei Agricultural University, 2018, 41(2): 105-109. (in Chinese with English abstract) | |
[14] | 孙宇露, 王德海, 朱国建. 基于图像分析检测青菜叶绿素含量[J]. 食品与发酵工业, 2016, 42(8): 194-198. |
SUN Y L, WANG D H, ZHU G J. Detection of chlorophyll content of green vegetables leaves based on image analysis technology[J]. Food and Fermentation Industries, 2016, 42(8): 194-198. (in Chinese with English abstract) | |
[15] | 李源彬, 李凌, 穆炯. 基于图像特征的黄瓜叶片叶绿素含量分布测试方法[J]. 山东农业大学学报(自然科学版), 2020, 51(6): 1004-1009. |
LI Y B, LI L, MU J. A test method for chlorophyll content distribution in cucumber leaves based on image features[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(6): 1004-1009. (in Chinese with English abstract) | |
[16] | 郭阳, 郭俊先, 史勇, 等. 基于BiPLS-CARS-PLS的哈密瓜冠层叶片SPAD值反演建模[J]. 浙江农业学报, 2022, 34(10): 2286-2295. |
GUO Y, GUO J X, SHI Y, et al. SPAD inversion model of cantaloupe canopy leaf based on BiPLS-CARS-PLS[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2286-2295. (in Chinese with English abstract) | |
[17] | 范军亮, 王涵, 廖振棋, 等. 基于纹理-颜色特征与植被指数融合的冬小麦LAI估测[J]. 农业机械学报, 2023, 54(7): 347-359. |
FAN J L, WANG H, LIAO Z Q, et al. Winter wheat leaf area index estimation based on texture-color features and vegetation indices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 347-359. (in Chinese with English abstract) | |
[18] | SANTIAGO C B, GUO J Y, SIGMAN M S. Predictive and mechanistic multivariate linear regression models for reaction development[J]. Chemical Science, 2018, 9(9): 2398-2412. |
[19] | 陈鹏, 齐超, 刘人玮, 等. 基于支持向量机回归的LIBS飞灰含碳量定量分析[J]. 光学学报, 2022, 42(9): 278-285. |
CHEN P, QI C, LIU R W, et al. Quantitative analysis of carbon content in fly ash using LIBS based on support vector machine regression[J]. Acta Optica Sinica, 2022, 42(9): 278-285. (in Chinese with English abstract) | |
[20] | DRUCKER H, BURGES C J C, KAUFMAN L, et al. Support vector regression machines[C]// Proceedings of the 9th International Conference on Neural Information Processing Systems. December 3-5, 1996, Denver, Colorado. New York: ACM, 1996: 155-161. |
[21] | 闫文豪, 杨晓莹, 耿鑫, 等. 手持式LIBS结合随机森林用于鱼产品的快速鉴别分析[J]. 光谱学与光谱分析, 2022, 42(12): 3714-3718. |
YAN W H, YANG X Y, GENG X, et al. Rapid identification of fish products using handheld laser induced breakdown spectroscopy combined with random forest[J]. Spectroscopy and Spectral Analysis, 2022, 42(12): 3714-3718. (in Chinese with English abstract) | |
[22] | 李修华, 卢显杰, 奚金阳, 等. 智能手机RGB图像检测植物叶片叶绿素含量的通用方法[J]. 农业工程学报, 2021, 37(22): 145-151. |
LI X H, LU X J, XI J Y, et al. Univeisal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 145-151. (in Chinese with English abstract) | |
[23] | 孙玉婷, 王映龙, 杨红云, 等. RGB与HSI色彩空间下预测叶绿素相对含量的研究[J]. 浙江农业学报, 2018, 30(10): 1782-1789. |
SUN Y T, WANG Y L, YANG H Y, et al. Prediction of SPAD in rice leaf based on RGB and HSI color space[J]. Acta Agriculturae Zhejiangensis, 2018, 30(10): 1782-1789. (in Chinese with English abstract) |
[1] | HU Lixia, ZHANG Jing, GAO Yanqiang, MAO Erye, HAN Kangning, YANG Yan, XIE Jianming. Effects of long-term magnesium stress on chlorophyll fluorescence characteristics and antioxidant properties of celery [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 295-307. |
[2] | ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31. |
[3] | LI Xiaoxia, LI Dan, LI Wanxing, JIN Kunpeng, LIU Yongzhong, HAN Wenqing, HUANG Xuefang, LIU Xin, TIAN Gang, CAO Jinjun. Effects of different rotation patterns on physiological characteristics, yield and quality of foxtail millet during grain filling stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1499-1510. |
[4] | ZHANG Xuenan, WANG Lele, NIU Mingxuan, ZHAN Ni, REN Haojie, XU Haocong, YANG Kun, WU Liquan, KE Jian, YOU Cuicui, HE Haibing. Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1265-1277. |
[5] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[6] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
[7] | ZHANG Zhiguo, CONG Lin, ZHANG Shijie, LI Rongguang, ZOU Weina, CHI Fa'an, ZHANG Bao, JIANG Yuping. Effects of root-zone temperature on growth, development and flowering of Hemerocallis fulva [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1005-1014. |
[8] | WANG Huiru, LI Jianshe, YAN Sihua, GAO Yanming. Effect of prunning patterns on canopy light interception characteristics and chlorophyll fluorescence parameters in cherry tomato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 525-533. |
[9] | CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589. |
[10] | SUN Shouxia, CHEN Hong, LYU Wei, PIAO Hanqi, ZHOU Guanghui, WANG Hesong, ZHANG Shubin, HAO Jinlian. Effects of dustfall on photosynthetic characteristics and chlorophyll fluorescence characteristics of major fruit trees in Aksu Region, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2659-2668. |
[11] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
[12] | ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects on photochemical fluorescence properties under salt-alkaline stresses about Sinocalycanthus chinensis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1416-1425. |
[13] | XIAO Zhiyun, WANG Yining. Hyperspectral retrieval for chlorophyll contents of Syringa oblata leaves based on RF-VR [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2164-2173. |
[14] | LIU Han, DAI Yuanxing, LYU Mingfang, YUAN Zhengjie, LI Jing, YAN Chengqi, ZHANG Hengmu. Effects of exogenous salicylic acid on growth and defense-related genes of rice seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1789-1796. |
[15] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 380
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||