Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (8): 1445-1460.DOI: 10.3969/j.issn.1004-1524.2021.08.12
• Horticultural Science • Previous Articles Next Articles
HUANG Changbing1,2(), CHENG Peilei2, YANG Shaozong3, ZHANG Huanchao1,*(
), JIANG Zhengzhi3, JIN Limin2
Received:
2020-10-11
Online:
2021-08-25
Published:
2021-08-27
Contact:
ZHANG Huanchao
CLC Number:
HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.08.12
引物名称 Primer name | 引物序列(5'-3') Sequence (5'-3') | 基因 Gene | 产物长度 Product length/bp |
---|---|---|---|
Unigene25337_All-F | CGTCCGGAGCCACAGCA | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25337_All-R | AGAGGCAGCGAACCAG | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25480_All-F | ATTGATGCTGCAAAAGGC | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Aerine/arginine repetitive matrix protein 3-like gene | |||
Unigene25480_All-R | TCTGTGTGTTTTCATAAA | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Serine/arginine repetitive matrix protein 3-like gene | |||
Unigene25572_All-F | TACTTTTCAGCTATTTAG | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25572_All-R | ACCCGGATGAAGTTTGC | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25602_All-F | GACGGCTGAGAGTGATGA | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25602_All-R | ACAAGAAGAGGGAAAGG | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25633_All-F | TCATCTTCTTCCTCTCTCTC | 粘液素-2基因 Mucin-2 gene | 110 |
Unigene25633_All-R | GCTTCTTCAGCGAAAGCTT | 粘液素-2基因Mucin-2 gene | 110 |
Unigene25700_All-F | TAAAACATCTATGTATTA | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25700_All-R | TGTCGGGCAAACAGCTC | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25732_All-F | GTCTGAATATTTCGTGT | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25732_All-R | CTGAATCTATGAGAATC | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25769_All-F | CAAGCTATTAATTTAAG | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
Unigene25769_All-R | TTAGAGAAATCATGTCA | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
Table 1 qRT-PCR primers for differentially expressed genes
引物名称 Primer name | 引物序列(5'-3') Sequence (5'-3') | 基因 Gene | 产物长度 Product length/bp |
---|---|---|---|
Unigene25337_All-F | CGTCCGGAGCCACAGCA | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25337_All-R | AGAGGCAGCGAACCAG | 类硫氧还蛋白基因Thioredoxin-like protein gene | 120 |
Unigene25480_All-F | ATTGATGCTGCAAAAGGC | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Aerine/arginine repetitive matrix protein 3-like gene | |||
Unigene25480_All-R | TCTGTGTGTTTTCATAAA | 丝氨酸/精氨酸重复基质蛋白基因 | 118 |
Serine/arginine repetitive matrix protein 3-like gene | |||
Unigene25572_All-F | TACTTTTCAGCTATTTAG | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25572_All-R | ACCCGGATGAAGTTTGC | 溶磷酰胆碱酰转移酶1基因 | 110 |
Lysophos phatidylcholine acyltransferase 1 gene | |||
Unigene25602_All-F | GACGGCTGAGAGTGATGA | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25602_All-R | ACAAGAAGAGGGAAAGG | 1-磷脂酰肌醇3-磷酸5-激酶基因 | 108 |
1-phosphatidylinositol 3-phosphate 5-kinase gene | |||
Unigene25633_All-F | TCATCTTCTTCCTCTCTCTC | 粘液素-2基因 Mucin-2 gene | 110 |
Unigene25633_All-R | GCTTCTTCAGCGAAAGCTT | 粘液素-2基因Mucin-2 gene | 110 |
Unigene25700_All-F | TAAAACATCTATGTATTA | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25700_All-R | TGTCGGGCAAACAGCTC | 肌球蛋白VIIa基因 Myosin-VIIa-like gene | 112 |
Unigene25732_All-F | GTCTGAATATTTCGTGT | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25732_All-R | CTGAATCTATGAGAATC | 含有LOB结构域的蛋白38基因 | 108 |
LOB domain-containing protein 38-like gene | |||
Unigene25769_All-F | CAAGCTATTAATTTAAG | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
Unigene25769_All-R | TTAGAGAAATCATGTCA | 多聚泛素-A基因Polyubiquitin-A gene | 106 |
样品 Sample | 原始 readsTotal raw reads | 过滤后的reads Total clean reads | 核苷酸数量 Number of nucleotides | 质量值≥20碱基 所占百分比 Q20/% | 质量值≥30的碱基 所占百分比 Q30/% | GC含量 GCcontent/% |
---|---|---|---|---|---|---|
4CK | 47 738 570 | 46 171 660 | 6 858 685 119 | 98.61 | 95.65 | 48.83 |
4T | 50 110 130 | 47 791 962 | 7 099 131 160 | 98.63 | 95.70 | 48.89 |
7CK | 50 918 552 | 47 411 290 | 7 047 333 003 | 98.72 | 95.97 | 48.57 |
7T | 38 540 808 | 35 880 734 | 5 342 671 114 | 98.82 | 96.23 | 48.48 |
Table 2 Valid data evaluation statistics
样品 Sample | 原始 readsTotal raw reads | 过滤后的reads Total clean reads | 核苷酸数量 Number of nucleotides | 质量值≥20碱基 所占百分比 Q20/% | 质量值≥30的碱基 所占百分比 Q30/% | GC含量 GCcontent/% |
---|---|---|---|---|---|---|
4CK | 47 738 570 | 46 171 660 | 6 858 685 119 | 98.61 | 95.65 | 48.83 |
4T | 50 110 130 | 47 791 962 | 7 099 131 160 | 98.63 | 95.70 | 48.89 |
7CK | 50 918 552 | 47 411 290 | 7 047 333 003 | 98.72 | 95.97 | 48.57 |
7T | 38 540 808 | 35 880 734 | 5 342 671 114 | 98.82 | 96.23 | 48.48 |
数据库 Database | 数量 Number | 比例 Percentage/% |
---|---|---|
NCBI非冗余蛋白数据库 Nr | 38 447 | 44.15 |
NCBI核酸数据库 Nt | 10 453 | 12.00 |
瑞士蛋白序列数据库 SwissProt | 28 095 | 32.27 |
京都基因和基因组路径 KEGG | 27 835 | 31.97 |
真核生物直系同源物 KOG | 41 418 | 47.57 |
Pfam蛋白家族数据库 Pfam | 36 767 | 42.23 |
基因本体GO | 15 933 | 18.30 |
Table 3 Annotation results of unigene sequences
数据库 Database | 数量 Number | 比例 Percentage/% |
---|---|---|
NCBI非冗余蛋白数据库 Nr | 38 447 | 44.15 |
NCBI核酸数据库 Nt | 10 453 | 12.00 |
瑞士蛋白序列数据库 SwissProt | 28 095 | 32.27 |
京都基因和基因组路径 KEGG | 27 835 | 31.97 |
真核生物直系同源物 KOG | 41 418 | 47.57 |
Pfam蛋白家族数据库 Pfam | 36 767 | 42.23 |
基因本体GO | 15 933 | 18.30 |
路径 Pathway | 代谢通路 Metabolic pathway | 基因数量 Gene number | P值 P value |
---|---|---|---|
ko01100 | 异黄酮生物合成Isoflavone biosynthesis | 5 543 | 1.23×10-2 |
ko05010 | 牛磺酸和亚牛磺酸代谢Taurine and taurine metabolism | 2 333 | 1.00×10-2 |
ko04022 | 光合天线作用蛋白Photosynthetic antenna acting protein | 2 134 | 8.15×10-2 |
ko04022 | 二苯基庚酮和姜酚生物合成Biosynthesis of diphenylheptanone and gingerol | 2 057 | 1.71×10-3 |
ko04020 | 昼夜节律-植物Circadian rhythm-plants | 2 026 | 3.72×10-2 |
ko05169 | 不饱和脂肪酸的生物合成Biosynthesis of unsaturated fatty acids | 1 915 | 1.00×10-2 |
ko04972 | 花青素生物合成Anthocyanin biosynthesis | 1 743 | 1.00×10-2 |
ko05016 | 类黄酮生物合成Flavonoid biosynthesis | 1 599 | 3.45×10-3 |
ko00230 | 吲哚生物碱生物合成Biosynthesis of indole alkaloids | 1 488 | 1.00×10-2 |
ko05168 | 类固醇生物合成Steroid biosynthesis | 1 447 | 1.00×10-2 |
ko05110 | 嘌呤代谢purine metabolism | 1 429 | 4.34×10-3 |
ko00240 | 硫辛酸代谢Lipoic acid metabolism | 1 345 | 1.00×10-2 |
ko05146 | 黄酮生物合成Flavone biosynthesis | 1 265 | 4.53×10-2 |
ko03020 | 花生四烯酸代谢Arachidonic acid metabolism | 1 121 | 9.80×10-9 |
ko03010 | RNA聚合酶RNA polymerase | 1 110 | 6.73×10-15 |
ko05152 | 光合作用Photosynthesis | 990 | 1.00×10-4 |
Table 4 Sixteen metabolic pathways related to cold stress of Hemerocallis fulva
路径 Pathway | 代谢通路 Metabolic pathway | 基因数量 Gene number | P值 P value |
---|---|---|---|
ko01100 | 异黄酮生物合成Isoflavone biosynthesis | 5 543 | 1.23×10-2 |
ko05010 | 牛磺酸和亚牛磺酸代谢Taurine and taurine metabolism | 2 333 | 1.00×10-2 |
ko04022 | 光合天线作用蛋白Photosynthetic antenna acting protein | 2 134 | 8.15×10-2 |
ko04022 | 二苯基庚酮和姜酚生物合成Biosynthesis of diphenylheptanone and gingerol | 2 057 | 1.71×10-3 |
ko04020 | 昼夜节律-植物Circadian rhythm-plants | 2 026 | 3.72×10-2 |
ko05169 | 不饱和脂肪酸的生物合成Biosynthesis of unsaturated fatty acids | 1 915 | 1.00×10-2 |
ko04972 | 花青素生物合成Anthocyanin biosynthesis | 1 743 | 1.00×10-2 |
ko05016 | 类黄酮生物合成Flavonoid biosynthesis | 1 599 | 3.45×10-3 |
ko00230 | 吲哚生物碱生物合成Biosynthesis of indole alkaloids | 1 488 | 1.00×10-2 |
ko05168 | 类固醇生物合成Steroid biosynthesis | 1 447 | 1.00×10-2 |
ko05110 | 嘌呤代谢purine metabolism | 1 429 | 4.34×10-3 |
ko00240 | 硫辛酸代谢Lipoic acid metabolism | 1 345 | 1.00×10-2 |
ko05146 | 黄酮生物合成Flavone biosynthesis | 1 265 | 4.53×10-2 |
ko03020 | 花生四烯酸代谢Arachidonic acid metabolism | 1 121 | 9.80×10-9 |
ko03010 | RNA聚合酶RNA polymerase | 1 110 | 6.73×10-15 |
ko05152 | 光合作用Photosynthesis | 990 | 1.00×10-4 |
比较 Comparison | 基因ID GeneID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene26840_All | 1.752 123 | 7.08×10-12 | 6.43×10-13 | CBL互作丝氨酸/苏氨酸蛋白激酶3 |
CBL-interacting serine/threonine-protein kinase 3 | |||||
7CK-VS-7T | CL2505.Contig6_All | 1.261 008 | 1.64×10-6 | 4.186×10-7 | 钙/钙调蛋白依赖性蛋白激酶II |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL11891.Contig1_All | 1.245 642 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL10570.Contig1_All | 1.240 229 | 0 | 0 | 钙调蛋白Calmodulin (Calm3) | |
CL7725.Contig5_All | -2.088 160 | 2.18×10-17 | 3.17×10-18 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
CL2721.Contig3_All | -2.334 250 | 1.38×10-47 | 9.96×10-49 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
4CK-VS-7CK | Unigene66_All | 3.843 314 | 5.71×10-111 | 2.74×10-112 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.867 317 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2721.Contig2_All | 2.743 697 | 0 | 0 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
CL2505.Contig6_All | -2.933 600 | 6.70×10-48 | 6.57×10-49 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
4T-VS-7T | Unigene66_All | 3.345 624 | 1.17×10-70 | 6.59×10-72 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.990 892 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2505.Contig6_All | -2.505 860 | 4.20×10-58 | 2.86×10-59 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL7725.Contig5_All | -1.397 450 | 1.19×10-6 | 3.68×10-7 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
Unigene6945_All | -1.307 820 | 1.57×10-27 | 2.01×10-28 | 钙调素结合转录激活子3 | |
Calmodulin-binding transcription activator 3 |
Table 5 Differentially expressed genes involved in Ca2+ signalling pathway in each comparison
比较 Comparison | 基因ID GeneID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene26840_All | 1.752 123 | 7.08×10-12 | 6.43×10-13 | CBL互作丝氨酸/苏氨酸蛋白激酶3 |
CBL-interacting serine/threonine-protein kinase 3 | |||||
7CK-VS-7T | CL2505.Contig6_All | 1.261 008 | 1.64×10-6 | 4.186×10-7 | 钙/钙调蛋白依赖性蛋白激酶II |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL11891.Contig1_All | 1.245 642 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL10570.Contig1_All | 1.240 229 | 0 | 0 | 钙调蛋白Calmodulin (Calm3) | |
CL7725.Contig5_All | -2.088 160 | 2.18×10-17 | 3.17×10-18 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
CL2721.Contig3_All | -2.334 250 | 1.38×10-47 | 9.96×10-49 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
4CK-VS-7CK | Unigene66_All | 3.843 314 | 5.71×10-111 | 2.74×10-112 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.867 317 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2721.Contig2_All | 2.743 697 | 0 | 0 | CBL互作丝氨酸/苏氨酸蛋白激酶14 | |
CBL-interacting serine/threonine-protein kinase 14-like | |||||
CL2505.Contig6_All | -2.933 600 | 6.70×10-48 | 6.57×10-49 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
4T-VS-7T | Unigene66_All | 3.345 624 | 1.17×10-70 | 6.59×10-72 | 钙调蛋白Calmodulin (Calm1) |
CL11891.Contig3_All | 1.990 892 | 0 | 0 | 钙调蛋白Calmodulin (Calm5) | |
CL2505.Contig6_All | -2.505 860 | 4.20×10-58 | 2.86×10-59 | 钙/钙调蛋白依赖性蛋白激酶II | |
Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) | |||||
CL7725.Contig5_All | -1.397 450 | 1.19×10-6 | 3.68×10-7 | 钙调素和肌素相互作用RhoGEF | |
Calmodulin and titin-interacting RhoGEF | |||||
Unigene6945_All | -1.307 820 | 1.57×10-27 | 2.01×10-28 | 钙调素结合转录激活子3 | |
Calmodulin-binding transcription activator 3 |
比较 Comparison | 基因ID Gene ID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL1729.Contig2_All | 1.968 445 | 9.05×10-12 | 8.28×10-13 | 丝裂原活化蛋白激酶激酶激酶3 |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL4304.Contig1_All | -1.360 070 | 6.30×10-25 | 2.99×10-26 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.116 620 | 7.50×10-11 | 7.33×10-12 | 丝裂原活化蛋白激酶激酶激酶5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
7CK-VS-7T | CL3036.Contig2_All | 3.523 562 | 0.008 842 093 | 0.00 348 524 | 丝裂原活化蛋白激酶激酶激酶MLK4 |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL1729.Contig2_All | 2.092 002 | 2.45×10-27 | 2.64×10-28 | 丝裂原活化蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL5625.Contig1_All | 1.376 741 | 1.02×10-18 | 1.42×10-19 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL4304.Contig1_All | -3.903 960 | 3.62×10-103 | 1.43×10-104 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL12049.Contig2_All | -3.286 680 | 5.31×10-18 | 7.56×10-19 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5093.Contig4_All | -1.990 600 | 1.35×10-10 | 2.63×10-11 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4CK-VS-7CK | CL8048.Contig2_All | 3.014 950 | 1.08×10-88 | 6.41×10-90 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.106 915 | 0.001 163 593 | 0.000 507 178 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL12049.Contig2_All | 1.062 509 | 1.48×10-5 | 5.34×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5625.Contig1_All | -1.516 540 | 5.41×10-25 | 8.56×10-26 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL5093.Contig4_All | -1.044 110 | 4.97×10-10 | 1.34×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4T-VS-7T | CL8048.Contig2_All | 4.202 332 | 1.56×10-200 | 3.03×10-202 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.230 472 | 1.80×10-13 | 3.76×10-14 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL3036.Contig2_All | -2.181 490 | 8.88×10-6 | 2.93×10-6 | 丝裂原活化蛋白激酶激酶激酶 MLK4 | |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL12049.Contig2_All | -2.147 640 | 8.88×10-6 | 2.93×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL4304.Contig1_All | -2.051 190 | 4.72×10-15 | 9.22×10-16 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.918 090 | 1.10×10-9 | 2.80×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 |
Table 6 Differentially expressed genes involved in MAPK cascades pathway in each comparison
比较 Comparison | 基因ID Gene ID | log2(fold change) | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL1729.Contig2_All | 1.968 445 | 9.05×10-12 | 8.28×10-13 | 丝裂原活化蛋白激酶激酶激酶3 |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL4304.Contig1_All | -1.360 070 | 6.30×10-25 | 2.99×10-26 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.116 620 | 7.50×10-11 | 7.33×10-12 | 丝裂原活化蛋白激酶激酶激酶5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
7CK-VS-7T | CL3036.Contig2_All | 3.523 562 | 0.008 842 093 | 0.00 348 524 | 丝裂原活化蛋白激酶激酶激酶MLK4 |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL1729.Contig2_All | 2.092 002 | 2.45×10-27 | 2.64×10-28 | 丝裂原活化蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL5625.Contig1_All | 1.376 741 | 1.02×10-18 | 1.42×10-19 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL4304.Contig1_All | -3.903 960 | 3.62×10-103 | 1.43×10-104 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL12049.Contig2_All | -3.286 680 | 5.31×10-18 | 7.56×10-19 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5093.Contig4_All | -1.990 600 | 1.35×10-10 | 2.63×10-11 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4CK-VS-7CK | CL8048.Contig2_All | 3.014 950 | 1.08×10-88 | 6.41×10-90 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.106 915 | 0.001 163 593 | 0.000 507 178 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL12049.Contig2_All | 1.062 509 | 1.48×10-5 | 5.34×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL5625.Contig1_All | -1.516 540 | 5.41×10-25 | 8.56×10-26 | 丝裂原活化蛋白激酶4 | |
Mitogen-activated protein kinase 4 | |||||
CL5093.Contig4_All | -1.044 110 | 4.97×10-10 | 1.34×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 | |||||
4T-VS-7T | CL8048.Contig2_All | 4.202 332 | 1.56×10-200 | 3.03×10-202 | 丝裂原激活蛋白激酶8互作蛋白2 |
Mitogen-activated protein kinase 8 interacting protein 2 (MAPK8IP2) | |||||
CL1729.Contig2_All | 1.230 472 | 1.80×10-13 | 3.76×10-14 | 丝裂原激活蛋白激酶激酶激酶3 | |
Mitogen-activated protein kinase kinase kinase kinase 3 | |||||
CL3036.Contig2_All | -2.181 490 | 8.88×10-6 | 2.93×10-6 | 丝裂原活化蛋白激酶激酶激酶 MLK4 | |
Mitogen-activated protein kinase kinase kinase MLK4-like | |||||
CL12049.Contig2_All | -2.147 640 | 8.88×10-6 | 2.93×10-6 | 丝裂原激活蛋白激酶7 | |
Mitogen-activated protein kinase 7-like | |||||
CL4304.Contig1_All | -2.051 190 | 4.72×10-15 | 9.22×10-16 | 丝裂原活化蛋白激酶1 | |
Mitogen-activated protein kinase 1 | |||||
CL5093.Contig4_All | -1.918 090 | 1.10×10-9 | 2.80×10-10 | 丝裂原活化蛋白激酶激酶激酶 5 | |
Mitogen-activated protein kinase kinase kinase kinase 5 |
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene9010_All | 1.953 179 | 1.12×10-221 | 5.96×10-224 | HSP70-2 |
CL4189.Contig1_All | 1.291 709 | 4.47×10-12 | 4.00×10-13 | DnaJ热激蛋白 | |
DnaJ heat shock protein (DNAJC6) | |||||
Unigene6560_All | 1.045 864 | 1.83×10-25 | 8.58×10-27 | HSP90 | |
7CK-VS-7T | Unigene14974_All | 1.272 815 | 4.91×10-21 | 6.36×10-22 | HSP86 |
Unigene6560_All | -1.611 640 | 8.90×10-22 | 1.12×10-22 | HSP90 | |
CL2382.Contig6_All | -1.455 820 | 3.29×10-8 | 7.40×10-9 | HSP90-5 | |
4CK-VS-7CK | CL12755.Contig2_All | 3.497 080 | 1.25×10-231 | 2.95×10-233 | HSPA8 |
CL2382.Contig6_All | -4.260 570 | 0 | 0 | HSP90-5 | |
CL5229.Contig2_All | -1.364 170 | 1.90×10-45 | 1.95×10-46 | HSP70-2 | |
4T-VS-7T | CL2382.Contig6_All | -4.985 870 | 1.10×10-307 | 0 | HSP90-5 |
Unigene6560_All | -2.617 300 | 6.68×10-79 | 3.36×10-80 | HSP90 | |
Unigene9010_All | -1.729 100 | 2.73×10-161 | 6.80×10-163 | HSPA8 | |
CL707.Contig3_All | -1.140 870 | 2.44×10-220 | 4.23×10-222 | HSP60 |
Table 7 Differentially expressed genes encoding HSPs protein in each comparison
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | Unigene9010_All | 1.953 179 | 1.12×10-221 | 5.96×10-224 | HSP70-2 |
CL4189.Contig1_All | 1.291 709 | 4.47×10-12 | 4.00×10-13 | DnaJ热激蛋白 | |
DnaJ heat shock protein (DNAJC6) | |||||
Unigene6560_All | 1.045 864 | 1.83×10-25 | 8.58×10-27 | HSP90 | |
7CK-VS-7T | Unigene14974_All | 1.272 815 | 4.91×10-21 | 6.36×10-22 | HSP86 |
Unigene6560_All | -1.611 640 | 8.90×10-22 | 1.12×10-22 | HSP90 | |
CL2382.Contig6_All | -1.455 820 | 3.29×10-8 | 7.40×10-9 | HSP90-5 | |
4CK-VS-7CK | CL12755.Contig2_All | 3.497 080 | 1.25×10-231 | 2.95×10-233 | HSPA8 |
CL2382.Contig6_All | -4.260 570 | 0 | 0 | HSP90-5 | |
CL5229.Contig2_All | -1.364 170 | 1.90×10-45 | 1.95×10-46 | HSP70-2 | |
4T-VS-7T | CL2382.Contig6_All | -4.985 870 | 1.10×10-307 | 0 | HSP90-5 |
Unigene6560_All | -2.617 300 | 6.68×10-79 | 3.36×10-80 | HSP90 | |
Unigene9010_All | -1.729 100 | 2.73×10-161 | 6.80×10-163 | HSPA8 | |
CL707.Contig3_All | -1.140 870 | 2.44×10-220 | 4.23×10-222 | HSP60 |
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL703.Contig1_All | -1.440 740 | 1.94×10-14 | 1.50×10-15 | WRKY11 |
Unigene4802_All | -3.694 380 | 1.60×10-80 | 2.43×10-82 | MYB102 | |
7CK-VS-7T | CL4950.Contig5_All | 2.192 645 | 4.83×10-10 | 9.70×10-11 | MYB20 |
CL9135.Contig2_All | 1.171 953 | 7.09×10-66 | 4.01×10-67 | bHLH2 | |
Unigene4802_All | -1.900 390 | 9.78×10-32 | 9.5×10-33 | MYB102 | |
4CK-VS-7CK | CL703.Contig1_All | 2.076 462 | 2.29×10-100 | 1.21×10-101 | WRKY11 |
CL9135.Contig2_All | -2.614 170 | 0 | 0 | bHLH2 | |
CL4950.Contig5_All | -1.890 000 | 3.43×10-7 | 1.09×10-7 | MYB122-like | |
4T-VS-7T | CL703.Contig1_All | 3.401 090 | 2.74×10-152 | 7.22×10-154 | WRKY11 |
Unigene4802_All | 1.723 331 | 1.95×10-9 | 5.02×10-10 | MYB122-like | |
CL9135.Contig2_All | -1.895 210 | 0 | 0 | bHLH2 |
Table 8 Differential expression of transcription factors
比较 Comparison | 基因ID Gene ID | log2 fold change | 错误发现率 FDR | P值 P value | 描述 Description |
---|---|---|---|---|---|
4CK-VS-4T | CL703.Contig1_All | -1.440 740 | 1.94×10-14 | 1.50×10-15 | WRKY11 |
Unigene4802_All | -3.694 380 | 1.60×10-80 | 2.43×10-82 | MYB102 | |
7CK-VS-7T | CL4950.Contig5_All | 2.192 645 | 4.83×10-10 | 9.70×10-11 | MYB20 |
CL9135.Contig2_All | 1.171 953 | 7.09×10-66 | 4.01×10-67 | bHLH2 | |
Unigene4802_All | -1.900 390 | 9.78×10-32 | 9.5×10-33 | MYB102 | |
4CK-VS-7CK | CL703.Contig1_All | 2.076 462 | 2.29×10-100 | 1.21×10-101 | WRKY11 |
CL9135.Contig2_All | -2.614 170 | 0 | 0 | bHLH2 | |
CL4950.Contig5_All | -1.890 000 | 3.43×10-7 | 1.09×10-7 | MYB122-like | |
4T-VS-7T | CL703.Contig1_All | 3.401 090 | 2.74×10-152 | 7.22×10-154 | WRKY11 |
Unigene4802_All | 1.723 331 | 1.95×10-9 | 5.02×10-10 | MYB122-like | |
CL9135.Contig2_All | -1.895 210 | 0 | 0 | bHLH2 |
Fig.8 qRT-PCR validation for differentially expressed genes identified by RNA-Seq The error line in results represents the standard deviation of the mean value (n=3).
[1] |
TUULOS A, TURAKAINEN M, KLEEMOLA J, et al. Yield of spring cereals in mixed stands with undersown winter turnip rape[J]. Field Crops Research, 2015, 174:71-78.
DOI URL |
[2] | AN F X, LIANG Y, LI J F, et al. Construction and significance analysis of the MicroRNA expression profile of Hemerocallis fulva at low temperature[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(3):378-383. |
[3] | HUANG C B, QIAN J L, QIU H J, et al. Effect of low temperature stress on the Hemerocallis fulva[C]//Computer Science and Electronic Technology International Society. Proceedings of 2018 3rd International Social Sciences and Education Conference(ISSEC 2018),June-23, 2018,Francis Academic Press:2018. |
[4] |
WU W T, MONG M C, YANG Y C, et al. Aqueous and ethanol extracts of daylily flower (Hemerocallis fulva L.) protect HUVE cells against high glucose[J]. Journal of Food Science, 2018, 83(5):1463-1469.
DOI URL |
[5] |
WAALEN W, ØVERGAARD S I, ÅSSVEEN M, et al. Winter survival of winter rapeseed and winter turnip rapeseed in field trials, as explained by PPLS regression[J]. European Journal of Agronomy, 2013, 51:81-90.
DOI URL |
[6] |
WEI A L, XIN X J, WANG Y S, et al. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in Hemerocallis fulva[J]. Ecotoxicology and Environmental Safety, 2013, 98:41-45.
DOI URL |
[7] |
LEE J, LIM J S, KIM S Y, et al. The complete chloroplast genome of Hemerocallisfulva[J]. Mitochondrial DNA Part B, 2019, 4(2):2199-2200.
DOI URL |
[8] |
REN Y, GAO Y K, GAO S Y, et al. Genetic characteristics of circadian flowering rhythm in Hemerocallis[J]. Scientia Horticulturae, 2019, 250:19-26.
DOI URL |
[9] |
LIU Y Z, GAO Y K, YUAN L, et al. Functional characterization and spatial interaction of TERMINAL FLOWER 1 in Hemerocallis[J]. Scientia Horticulturae, 2019, 253:154-162.
DOI URL |
[10] | WANG Y, XU T, FAN B, et al. Advances in researches on chemical composition and functions of Hemerocallis plants[J]. Medicinal Plant, 2018, 9(2):16-21. |
[11] |
CHEN L, ZHANG Y Y, REN Y Y, et al. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing[J]. Biochemical and Biophysical Research Communications, 2012, 417(2):892-896.
DOI URL |
[12] |
GUO X Y, ZHANG L, DONG G Q, et al. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum)[J]. Plant Science, 2019, 289:110246.
DOI URL |
[13] | MEGHA S, BASU U, KAV N N V . Regulation of low temperature stress in plants by microRNAs[J]. Plant, Cell & Environment, 2018, 41(1):1-15. |
[14] | 柴华文, 罗光明, 吴波, 等. 转录组测序技术在中药的应用[J]. 时珍国医国药, 2018, 29(12):3001-3003. |
CHAI H W, LUO G M, WU B, et al. Application of transcriptome sequencing technology in traditional Chinese medicine[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(12):3001-3003.(in Chinese) | |
[15] | 王伟科, 宋吉玲, 闫静, 等. 秀珍菇转录组测序和初步分析[J]. 南京农业大学学报, 2019, 42(2):292-299. |
WANG W K, SONG J L, YAN J, et al. Transcriptome sequencing and analysis of Pleurotus pulmonarius[J]. Journal of Nanjing Agricultural University, 2019, 42(2):292-299.(in Chinese with English abstract) | |
[16] |
PROVART N J, GIL P, CHEN W Q, et al. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures[J]. Plant Physiology, 2003, 132(2):893-906.
DOI URL |
[17] |
CHEN H Y, CHEN X L, CHEN D, et al. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites[J]. BMC Plant Biology, 2015, 15:132.
DOI URL |
[18] | 李巍. 基于转录组学的紫花苜蓿抗寒分子机制研究[D]. 哈尔滨: 哈尔滨师范大学, 2018. |
LI W. Using RNA-Seq platform revealing molecular mechanism of freezing tolerance in alfalfa[D]. Harbin: Harbin Normal University, 2018. (in Chinese with English abstract) | |
[19] | 戴忠仁. 黄瓜耐冷生理变化规律及相关基因转录组测序和表达分析[D]. 哈尔滨: 东北农业大学, 2015. |
DAI Z R. The physiologycal changes rule of cold tolerance and transcriptome and expression analysis of ralated genes in cucumber[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese with English abstract) | |
[20] | 朱琳, 袁梦, 高红秀, 等. 水稻苗期低温应答转录组分析[J]. 华北农学报, 2018, 33(5):40-51. |
ZHU L, YUAN M, GAO H X, et al. Transcriptomic analysis of rice seedling responsive to low temperature[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5):40-51.(in Chinese with English abstract) | |
[21] |
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652.
DOI URL |
[22] |
AUDIC S, CLAVERIE J M. The significance of digital gene expression profiles[J]. Genome Research, 1997, 7(10):986-995.
DOI URL |
[23] |
SADDHE A A, MALVANKAR M R, KARLE S B, et al. Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants[J]. Environmental and Experimental Botany, 2019, 161:86-97.
DOI URL |
[24] | TAKAHASHI D, UEMURA M, KAWAMURA Y. Freezing tolerance of plant cells: from the aspect of plasma membrane and microdomain[M]//MARI I I, MINORU S, MATSUO U. Survival strategies in extreme cold and desiccation.Singapore: Springer, 2018: 61. |
[25] | LIU L J, ZHANG D X, JIN Z M, et al. Effects of exogenous abscisic acid on expression of cold-regulated genes in winter wheat under low temperature stress[J]. Pakistan Journal of Botany, 2019, 51(1):55. |
[26] |
SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction[J]. Physiologia Plantarum, 2006, 126(1):45-51.
DOI URL |
[27] |
IGNATENKO A, TALANOVA V, REPKINA N, et al. Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation[J]. Acta Physiologiae Plantarum, 2019, 41(6):1-10.
DOI URL |
[28] |
DENG S X, MA J, ZHANG L L, et al. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress[J]. BMC Plant Biology, 2019, 19(1):1-23.
DOI URL |
[29] |
SKYBA M, PETIJOVÁ L, KOŠUTH J , et al. Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment[J]. Journal of Plant Physiology, 2012, 169(10):955-964.
DOI URL |
[30] |
SUN C, LI Y, WU Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynjournal[J]. BMC Genomics, 2010, 11:262.
DOI URL |
[31] |
CHEN S, LUO H, LI Y, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynjournal in Panax ginseng[J]. Plant Cell Reports, 2011, 30(9):1593-1601.
DOI URL |
[32] |
SUI C, ZHANG J, WEI J H, et al. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynjournal of saikosaponins[J]. BMC Genomics, 2011, 12:539.
DOI URL |
[33] |
NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids[J]. Plant Journal, 2014, 77(3):367-379.
DOI URL |
[34] | 张宏涛, 陈纹, 李小伟, 等. 低温胁迫下肋果沙棘试管苗黄酮类化合物合成关键酶的活性[J]. 北方园艺, 2015(10):5-8. |
ZHANG H T, CHEN W, LI X W, et al. The activity of key enzymes related to flavonoids in test-tube plantlets of Hippophae neurocarpaunder low temperature[J]. Northern Horticulture, 2015(10):5-8. (in Chinese with English abstract) | |
[35] |
BOUDSOCQ M, SHEEN J. CDPKs in immune and stress signaling[J]. Trends in Plant Science, 2013, 18(1):30-40.
DOI URL |
[36] |
XU G Y, ROCHA P S C F, WANG M L , et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1):47-59.
DOI URL |
[37] |
WANG X C, ZHAO Q Y, MA C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14(1):1-15.
DOI URL |
[38] |
LEHTI-SHIU M D, ZOU C, HANADA K, et al. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes[J]. Plant Physiology, 2009, 150(1):12-26.
DOI URL |
[39] |
RAMILOWSKI J A, SAWAI S, SEKI H, et al. Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals[J]. Plant and Cell Physiology, 2013, 54(5):697-710.
DOI URL |
[40] |
YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16):5085-5097.
DOI URL |
[41] |
PENG H H, SHAN W, KUANG J F, et al. Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit[J]. Planta, 2013, 238(5):937-953.
DOI URL |
[1] | YIN Minghua, CAO Qing, CHEN Hong, DENG Siyu, DENG Yanmei. Transcriptome analysis of red bud taro and green stem taro in Yanshan, Jiangxi Province [J]. , 2020, 32(9): 1533-1543. |
[2] | LIU Xinyu, TIAN Jie. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers [J]. , 2020, 32(9): 1615-1625. |
[3] | GE Jintao, WANG Jiangying, ZHAO Wenjing, SHAO Xiaobin, ZHU Pengbo, TANG Xueyan, SUN Mingwei, LIU Xingman. Transcriptome analysis on development of aerial root in grape of Weike [J]. , 2020, 32(9): 1645-1655. |
[4] | ZHU Yu, LIU Yang. Transcriptome analysis on heat tolerance of Chilo suppressalis larvae [J]. , 2020, 32(5): 849-857. |
[5] | SONG Zhiqiang, DING Xiang, TANG Xian, ZHU Miao, HOU Yiling. Transcriptome analysis of fruiting bodies of Lactarius deliciosus at two developmental stages [J]. , 2020, 32(2): 337-347. |
[6] | ZHU Xiaolin, WEI Xiaohong, WANG Baoqiang, WANG Xian, ZHANG Mingjun. Transcriptome analysis of tomato under salt stress induced by c-GMP [J]. , 2020, 32(10): 1788-1797. |
[7] | WANG Qi, CHEN Xiaojie, GU Shuangyue, ZHANG Xinyue, HANG Tianlu, DING Ting. Transcriptome profiling of maize resistance gene in response to DZSY21 induction [J]. , 2019, 31(3): 345-354. |
[8] | WANG Hua, WANG Wangwei, WANG Dongliang, ZHANG Shihu, HU Xinfang, LU Shiyu, GONG Xuemei. De novo assembly and functional annotation of transcriptome data of Rhododendron pulchurum cv. Baifeng 4 leaf [J]. , 2018, 30(7): 1149-1159. |
[9] | TENG Yao, LI Anding, HAO Ziyuan, ZHANG Hongliang, ZHANG Limin, CAI Guojun. Anatomical structure of Passiflora caerulea L. and relationship between leaf structure and cold resistance under low temperature stress [J]. , 2018, 30(11): 1849-1858. |
[10] | FENG Chen, TANG Haoru, JIANG Leiyu, SONG Xia, ZHANG Yunting, YE Yuntian, CHEN Qing, SUN Bo. Analysis of codon usage bias of specific genes in strawberry transcriptome under the red and blue light [J]. , 2017, 29(4): 566-574. |
[11] | HONG Senrong, WU-XIA Junpeng, XU Wenhui, ZHAN Xuelin, XIE Ni’ni, JIANG Yan, WANG Jinhua, LING Fei, WU Lixia, WAN Lin. Correlation analysis of transcriptome, proteome and metabolome of Dioscorea bulbifera L. microtubers conserved in vitro at low temperature [J]. , 2017, 29(11): 1827-1834. |
[12] | JIANG Jinglong, SHEN Jixue, XU Weiping, TIAN Yun, LI Li. Effects of exogenous hydrogen peroxide on growth and physiological index of Citrus reticulata Blanco cv. Dahonggan leaves under low temperature stress [J]. , 2016, 28(7): 1164-. |
[13] | DU Zhuotao1, YANG Yan2, ZHU Guopeng1, TIAN Libo1,*, SHANG Sang1,*. Effects of exogenous NO on plant growth and resistant characteristics of bitter melon seedlings under lowtemperature stress [J]. , 2016, 28(5): 776-. |
[14] | PEI Cuiming, ZHANG Zhenya, MA Jin*. Identification and analysis of salt stressresponsive transcription factor in leaf of southern type alfalfa [J]. , 2016, 28(4): 550-. |
[15] | MA Jing 1, CHENG Tielong 1, 2, *, SUN Canyue 3, DENG Nan 1, SHI Shengqing 1, JIANG Zeping 1. Characterization of transcriptome reveals pathway of flavonoids in Ephedra sinica Stapf [J]. , 2016, 28(4): 609-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||