Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1740-1747.DOI: 10.3969/j.issn.1004-1524.2021.09.18
• Biosystems Engineering • Previous Articles Next Articles
ZHANG Qingqing1(), LIU Lianzhong1,*(
), NING Jingming2,3, WU Guodong1, JIANG Zhaohui1, LI Mengjie1, LI Dongliang1
Received:
2020-07-18
Online:
2021-09-25
Published:
2021-10-09
Contact:
LIU Lianzhong
CLC Number:
ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.09.18
模型种类 Model type | 平均精度均值mAP Mean average precision/% | 召回率 The recall rate/% | 平均检测时间 Average detection time/s |
---|---|---|---|
YOLOV3模型YOLOV3 model | 87.5 | 71 | 0.375 5 |
YOLOV3优化模型Optimized YOLOV3 model | 91.0 | 75 | 0.387 2 |
Table 1 Performance comparison of the two models
模型种类 Model type | 平均精度均值mAP Mean average precision/% | 召回率 The recall rate/% | 平均检测时间 Average detection time/s |
---|---|---|---|
YOLOV3模型YOLOV3 model | 87.5 | 71 | 0.375 5 |
YOLOV3优化模型Optimized YOLOV3 model | 91.0 | 75 | 0.387 2 |
[1] | 寇楠楠. 茶叶对神经系统作用及健康伦理视域下茶之健康功能的实现[J]. 茶叶通讯, 2020, 47(1):152-155. |
KOU N N. The effect of tea on the nervous system and the realization of the health function of tea from the perspective of health ethics[J]. Tea Communication, 2020, 47(1):152-155.(in Chinese with English abstract) | |
[2] | 沈童菲, 王森培, 张慧, 等. 中国茶产业国际竞争力评价与发展对策[J]. 四川农业科技, 2019(9):5-11. |
SHEN T F, WANG S P, ZHANG H, et al. Evaluation and development strategy of international competitiveness of Chinese tea industry[J]. Sichuan Agricultural Science and Technology, 2019(9):5-11.(in Chinese) | |
[3] | 刘秋凤, 黄婷婷, 韦瑛璐, 等. 轻便型单人采茶机的采摘效果比较试验[J]. 南方农业, 2020, 14(16):65-67. |
LIU Q F, HUANG T T, WEI Y L, et al. Comparison experiment of picking effect of portable single tea-picking machine[J]. South China Agriculture, 2020, 14(16):65-67.(in Chinese) | |
[4] | 黄丹娟, 王红娟, 陈勋, 等. 茶园机采树冠培育制度研究进展[J]. 茶叶通讯, 2020, 47(2):192-197. |
HUANG D J, WANG H J, CHEN X, et al. Research progress on cultivation system of machine harvested crown in tea gardens[J]. Journal of Tea Communication, 2020, 47(2):192-197.(in Chinese with English abstract) | |
[5] | 任冬法. 浅谈机械自动化技术在茶叶生产加工方面的应用[J]. 福建茶叶, 2020, 42(6):29-30. |
REN D F. Application of mechanical automation technology in tea production and processing[J]. Tea in Fujian, 2020, 42(6):29-30.(in Chinese) | |
[6] | 夏华鹍, 史必高, 黄海霞, 等. 图像处理在茶叶嫩芽智能采摘中的应用进展[J]. 安徽农学通报, 2019, 25(9):133-134. |
XIA H K, SHI B G, HUANG H X, et al. Application progress of image processing in intelligent picking of tea sprouts[J]. Anhui Agricultural Science Bulletin, 2019, 25(9):133-134.(in Chinese with English abstract) | |
[7] | 唐仙, 吴雪梅, 张富贵, 等. 基于阈值分割法的茶叶嫩芽识别研究[J]. 农业装备技术, 2013, 39(6):10-14. |
TANG X, WU X M, ZHANG F G, et al. Contrastive research on tender tea recognition based on multiple threshold segmentation methods[J]. Agricultural Equipment & Technology, 2013, 39(6):10-14.(in Chinese with English abstract) | |
[8] | 汪建. 结合颜色和区域生长的茶叶图像分割算法研究[J]. 茶叶科学, 2011, 31(1):72-77. |
WANG J. Segmentation algorithm of tea combined with the color and region growing[J]. Journal of Tea Science, 2011, 31(1):72-77.(in Chinese with English abstract) | |
[9] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. IEEE, 2014: 580-587. |
[10] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
DOI URL |
[11] | 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5):28-33. |
GUO L L, DING S F. Research progress on deep learning[J]. Computer Science, 2015, 42(5):28-33.(in Chinese with English abstract) | |
[12] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile. IEEE, 2015: 1440-1448. |
[13] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
DOI URL |
[14] | 房靖晶, 成金勇. 基于改进的Faster R-CNN的目标检测与识别[J]. 图像与信号处理, 2019, 8(2):43-50. |
FANG J J, CHENG J Y. Target detection and recognition based on improved Faster R-CNN[J]. Image and Signal Processing, 2019, 8(2):43-50.(in Chinese with English abstract) | |
[15] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
DOI URL |
[16] |
SHINDE S, KOTHARI A, GUPTA V. YOLO based human action recognition and localization[J]. Procedia Computer Science, 2018, 133:831-838.
DOI URL |
[17] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer vision: ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[18] | 林君宇, 李奕萱, 郑聪尉, 等. 应用卷积神经网络识别花卉及其病症[J]. 小型微型计算机系统, 2019, 40(6):1330-1335. |
LIN J Y, LI Y X, ZHENG C W, et al. Classifying flowers and their diseases by using convolutional neural network[J]. Journal of Chinese Computer Systems, 2019, 40(6):1330-1335.(in Chinese with English abstract) | |
[19] | 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2):237-244. |
LIU X G, FAN C, LI J N, et al. Identification method of strawberry based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2):237-244.(in Chinese with English abstract) | |
[20] | YAN L, PANG L, WANG H, et al. Recognition of different Longjing fresh tea varieties using hyperspectral imaging technology and chemometrics[J]. Journal of Food Process Engineering, 2020, 43(4):e13378. |
[21] | 吕军, 夏华鹍, 方梦瑞, 等. 基于AlexNet的茶叶嫩芽状态智能识别研究[J]. 黑龙江八一农垦大学学报, 2019, 31(2):72-78. |
LYU J, XIA H K, FANG M R, et al. Research on intelligent identification of tea sprouts state based on AlexNet[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(2):72-78.(in Chinese with English abstract) | |
[22] | 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2):211-216. |
SUN X X, MU S M, XU Y Y, et al. Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2):211-216.(in Chinese with English abstract) | |
[23] | ZHANG X L, DONG X P, WEI Q J, et al. Real-time object detection algorithm based on improved YOLOv3[J]. Journal of Electronic Imaging, 2019, 28(5):1. |
[24] | 刘连忠, 李孟杰, 宁井铭. 基于时序巡航图像的茶树生长监测研究[J]. 浙江农业学报, 2020, 32(5):886-896. |
LIU L Z, LI M J, NING J M. Tea plant growth monitoring based on time series cruise images[J]. Acta Agriculturae Zhejiangensis, 2020, 32(5):886-896.(in Chinese with English abstract) | |
[25] | 阮秋琦. 数字图像处理学[M]. 2版. 北京: 电子工业出版社, 2007. |
[26] | 胡琼, 汪荣贵, 胡韦伟, 等. 基于直方图分割的彩色图像增强算法[J]. 中国图象图形学报, 2009, 14(9):1776-1781. |
HU Q, WANG R G, HU W W, et al. Color image enhancement based on histogram segmentation[J]. Journal of Image and Graphics, 2009, 14(9):1776-1781.(in Chinese with English abstract) | |
[27] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 936-944. |
[28] |
WANG X L, WANG S, CAO J Q, et al. Data-driven based tiny-YOLOv3 method for front vehicle detection inducing SPP-net[J]. IEEE Access, 2020, 8:110227-110236.
DOI URL |
[29] | 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3):164-173. |
ZHAO D A, WU R D, LIU X Y, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):164-173.(in Chinese with English abstract) | |
[30] | 周云成, 许童羽, 郑伟, 等. 基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报, 2017, 33(15):219-226. |
ZHOU Y C, XU T Y, ZHENG W, et al. Classification and recognition approaches of tomato main organs based on DCNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15):219-226.(in Chinese with English abstract) |
[1] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[2] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[3] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
[4] | ZHANG Shanwen, HUANG Wenzhun, YOU Zhuhong. Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network [J]. , 2017, 29(11): 1868-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||