Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1740-1747.DOI: 10.3969/j.issn.1004-1524.2021.09.18
• Biosystems Engineering • Previous Articles Next Articles
ZHANG Qingqing1(
), LIU Lianzhong1,*(
), NING Jingming2,3, WU Guodong1, JIANG Zhaohui1, LI Mengjie1, LI Dongliang1
Received:2020-07-18
Online:2021-09-25
Published:2021-10-09
Contact:
LIU Lianzhong
CLC Number:
ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.09.18
| 模型种类 Model type | 平均精度均值mAP Mean average precision/% | 召回率 The recall rate/% | 平均检测时间 Average detection time/s |
|---|---|---|---|
| YOLOV3模型YOLOV3 model | 87.5 | 71 | 0.375 5 |
| YOLOV3优化模型Optimized YOLOV3 model | 91.0 | 75 | 0.387 2 |
Table 1 Performance comparison of the two models
| 模型种类 Model type | 平均精度均值mAP Mean average precision/% | 召回率 The recall rate/% | 平均检测时间 Average detection time/s |
|---|---|---|---|
| YOLOV3模型YOLOV3 model | 87.5 | 71 | 0.375 5 |
| YOLOV3优化模型Optimized YOLOV3 model | 91.0 | 75 | 0.387 2 |
| [1] | 寇楠楠. 茶叶对神经系统作用及健康伦理视域下茶之健康功能的实现[J]. 茶叶通讯, 2020, 47(1):152-155. |
| KOU N N. The effect of tea on the nervous system and the realization of the health function of tea from the perspective of health ethics[J]. Tea Communication, 2020, 47(1):152-155.(in Chinese with English abstract) | |
| [2] | 沈童菲, 王森培, 张慧, 等. 中国茶产业国际竞争力评价与发展对策[J]. 四川农业科技, 2019(9):5-11. |
| SHEN T F, WANG S P, ZHANG H, et al. Evaluation and development strategy of international competitiveness of Chinese tea industry[J]. Sichuan Agricultural Science and Technology, 2019(9):5-11.(in Chinese) | |
| [3] | 刘秋凤, 黄婷婷, 韦瑛璐, 等. 轻便型单人采茶机的采摘效果比较试验[J]. 南方农业, 2020, 14(16):65-67. |
| LIU Q F, HUANG T T, WEI Y L, et al. Comparison experiment of picking effect of portable single tea-picking machine[J]. South China Agriculture, 2020, 14(16):65-67.(in Chinese) | |
| [4] | 黄丹娟, 王红娟, 陈勋, 等. 茶园机采树冠培育制度研究进展[J]. 茶叶通讯, 2020, 47(2):192-197. |
| HUANG D J, WANG H J, CHEN X, et al. Research progress on cultivation system of machine harvested crown in tea gardens[J]. Journal of Tea Communication, 2020, 47(2):192-197.(in Chinese with English abstract) | |
| [5] | 任冬法. 浅谈机械自动化技术在茶叶生产加工方面的应用[J]. 福建茶叶, 2020, 42(6):29-30. |
| REN D F. Application of mechanical automation technology in tea production and processing[J]. Tea in Fujian, 2020, 42(6):29-30.(in Chinese) | |
| [6] | 夏华鹍, 史必高, 黄海霞, 等. 图像处理在茶叶嫩芽智能采摘中的应用进展[J]. 安徽农学通报, 2019, 25(9):133-134. |
| XIA H K, SHI B G, HUANG H X, et al. Application progress of image processing in intelligent picking of tea sprouts[J]. Anhui Agricultural Science Bulletin, 2019, 25(9):133-134.(in Chinese with English abstract) | |
| [7] | 唐仙, 吴雪梅, 张富贵, 等. 基于阈值分割法的茶叶嫩芽识别研究[J]. 农业装备技术, 2013, 39(6):10-14. |
| TANG X, WU X M, ZHANG F G, et al. Contrastive research on tender tea recognition based on multiple threshold segmentation methods[J]. Agricultural Equipment & Technology, 2013, 39(6):10-14.(in Chinese with English abstract) | |
| [8] | 汪建. 结合颜色和区域生长的茶叶图像分割算法研究[J]. 茶叶科学, 2011, 31(1):72-77. |
| WANG J. Segmentation algorithm of tea combined with the color and region growing[J]. Journal of Tea Science, 2011, 31(1):72-77.(in Chinese with English abstract) | |
| [9] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. IEEE, 2014: 580-587. |
| [10] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
DOI URL |
| [11] | 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5):28-33. |
| GUO L L, DING S F. Research progress on deep learning[J]. Computer Science, 2015, 42(5):28-33.(in Chinese with English abstract) | |
| [12] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile. IEEE, 2015: 1440-1448. |
| [13] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
DOI URL |
| [14] | 房靖晶, 成金勇. 基于改进的Faster R-CNN的目标检测与识别[J]. 图像与信号处理, 2019, 8(2):43-50. |
| FANG J J, CHENG J Y. Target detection and recognition based on improved Faster R-CNN[J]. Image and Signal Processing, 2019, 8(2):43-50.(in Chinese with English abstract) | |
| [15] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
DOI URL |
| [16] |
SHINDE S, KOTHARI A, GUPTA V. YOLO based human action recognition and localization[J]. Procedia Computer Science, 2018, 133:831-838.
DOI URL |
| [17] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer vision: ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
| [18] | 林君宇, 李奕萱, 郑聪尉, 等. 应用卷积神经网络识别花卉及其病症[J]. 小型微型计算机系统, 2019, 40(6):1330-1335. |
| LIN J Y, LI Y X, ZHENG C W, et al. Classifying flowers and their diseases by using convolutional neural network[J]. Journal of Chinese Computer Systems, 2019, 40(6):1330-1335.(in Chinese with English abstract) | |
| [19] | 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2):237-244. |
| LIU X G, FAN C, LI J N, et al. Identification method of strawberry based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2):237-244.(in Chinese with English abstract) | |
| [20] | YAN L, PANG L, WANG H, et al. Recognition of different Longjing fresh tea varieties using hyperspectral imaging technology and chemometrics[J]. Journal of Food Process Engineering, 2020, 43(4):e13378. |
| [21] | 吕军, 夏华鹍, 方梦瑞, 等. 基于AlexNet的茶叶嫩芽状态智能识别研究[J]. 黑龙江八一农垦大学学报, 2019, 31(2):72-78. |
| LYU J, XIA H K, FANG M R, et al. Research on intelligent identification of tea sprouts state based on AlexNet[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(2):72-78.(in Chinese with English abstract) | |
| [22] | 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2):211-216. |
| SUN X X, MU S M, XU Y Y, et al. Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2):211-216.(in Chinese with English abstract) | |
| [23] | ZHANG X L, DONG X P, WEI Q J, et al. Real-time object detection algorithm based on improved YOLOv3[J]. Journal of Electronic Imaging, 2019, 28(5):1. |
| [24] | 刘连忠, 李孟杰, 宁井铭. 基于时序巡航图像的茶树生长监测研究[J]. 浙江农业学报, 2020, 32(5):886-896. |
| LIU L Z, LI M J, NING J M. Tea plant growth monitoring based on time series cruise images[J]. Acta Agriculturae Zhejiangensis, 2020, 32(5):886-896.(in Chinese with English abstract) | |
| [25] | 阮秋琦. 数字图像处理学[M]. 2版. 北京: 电子工业出版社, 2007. |
| [26] | 胡琼, 汪荣贵, 胡韦伟, 等. 基于直方图分割的彩色图像增强算法[J]. 中国图象图形学报, 2009, 14(9):1776-1781. |
| HU Q, WANG R G, HU W W, et al. Color image enhancement based on histogram segmentation[J]. Journal of Image and Graphics, 2009, 14(9):1776-1781.(in Chinese with English abstract) | |
| [27] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 936-944. |
| [28] |
WANG X L, WANG S, CAO J Q, et al. Data-driven based tiny-YOLOv3 method for front vehicle detection inducing SPP-net[J]. IEEE Access, 2020, 8:110227-110236.
DOI URL |
| [29] | 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3):164-173. |
| ZHAO D A, WU R D, LIU X Y, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):164-173.(in Chinese with English abstract) | |
| [30] | 周云成, 许童羽, 郑伟, 等. 基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报, 2017, 33(15):219-226. |
| ZHOU Y C, XU T Y, ZHENG W, et al. Classification and recognition approaches of tomato main organs based on DCNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15):219-226.(in Chinese with English abstract) |
| [1] | LYU Yinchun, DUAN Enze, ZHU Yixing, ZHENG Xia, BAI Zongchun. Real-time detection of overturned meat ducks based on YOLOv8-Swin Transformer model [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1556-1566. |
| [2] | ZHENG Hang, FENG Haodong, XUE Xianglei, YE Yunxiang, YU Jianlin, YU Guohong. Study on navigation line extraction algorithm for leaf vegetable ridges based on instance segmentations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 701-711. |
| [3] | CHENG Jiayu, CHEN Miaojin, LI Tong, SUN Qinan, ZHANG Xiaobin, ZHAO Yiying, ZHU Yihang, GU Qing. Detection of peach trees in unmanned aerial vehicle (UAV) images based on improved Faster-RCNN network [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1909-1919. |
| [4] | MA Qiliang, YANG Xiaoming, HU Shuixing, HUANG Zihong, QI Hengnian. Automatic detection method of corn seed germination based on Mask RCNN and vision technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1927-1936. |
| [5] | PAN Pan, ZHANG Jianhua, ZHENG Xiaoming, ZHOU Guomin, HU Lin, FENG Quan, CHAI Xiujuan. Research progress of deep learning in intelligent identification of disease resistance of crops and their related species [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1993-2012. |
| [6] | ZHU Dongqin, FENG Quan, ZHANG Jianhua. Plant disease identification based on pruning [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1462-1472. |
| [7] | BAI Weiwei, ZHAO Xueni, LUO Bin, ZHAO Wei, HUANG Shuo, ZHANG Han. Study of YOLOv5-based germination detection method for wheat seeds [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. |
| [8] | ZHU Shisong, MA Wanli, ZHAO Lishan, ZHENG Yanmei, ZHENG Xianbo, LU Bibo. Apple leaf image segmentation algorithm based on improved LinkNet [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 202-214. |
| [9] | CHEN Daohuai, WANG Hangjun. Detection of forest pests based on improved YOLOv4 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1306-1315. |
| [10] | CHAI Qinqin, ZENG Jian, ZHANG Xun. Identification of fake Anoectochilus roxburghii based on Bayesian optimized convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 391-396. |
| [11] | LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541. |
| [12] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
| [13] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
| [14] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
| [15] | ZHANG Shanwen, HUANG Wenzhun, YOU Zhuhong. Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network [J]. , 2017, 29(11): 1868-1874. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||