Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1779-1788.DOI: 10.3969/j.issn.1004-1524.2021.09.22
• Review • Previous Articles
GUO Jia1,2(), MEN Xiaoming2, DENG Bo2, XU Ziwei2,*(
)
Received:
2021-02-07
Online:
2021-09-25
Published:
2021-10-09
Contact:
XU Ziwei
CLC Number:
GUO Jia, MEN Xiaoming, DENG Bo, XU Ziwei. Advances of function, expression of animal selenoproteins and their regulation mechanism on meat quality[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1779-1788.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.09.22
功能分类 Functional classification | 名称 Name | 简写 Abbreviation | 生理功能 Physiological function | 分布 Distribution |
---|---|---|---|---|
氧化还原功能 Redox function | 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 | GPX1 | 减少细胞内H2O2,参与胰岛素信号转导 Reduce intracellular H2O2, participated in insulin signal transduction | 细胞质、线粒体 Cytoplasm, mitochondria |
谷胱甘肽过氧化物酶2 Glutathione peroxidase 2 | GPX2 | 减少胃肠道过氧化物,抑制炎症反应 Reduce gastrointestinal peroxides, inhibit inflammation | 消化道上皮细胞 Digestive tract epithelial cells | |
谷胱甘肽过氧化物酶3 Glutathione peroxidase 3 | GPX3 | 减少血浆过氧化物,抑制血栓形成 Reduce plasma peroxides, inhibit thrombosis | 血浆 Plasma | |
谷胱甘肽过氧化物酶4 Glutathione peroxidase 4 | GPX4 | 减少脂质过氧化物,调节铁死亡和胚胎发育 Reduce lipid peroxides, regulate iron death and embryonic development | 体细胞、生殖细胞 Somatic cells, germ cells | |
谷胱甘肽过氧化物酶6 Glutathione peroxidase 6 | GPX6 | 修复嗅觉系统,调节精子头部获能 Repair the olfactory system, regulate sperm head capacitation | 嗅觉和生殖细胞 Olfaction and germ cells | |
硫氧还蛋白还原酶1 Thioredoxin reductase 1 | TXNRD1 | 还原硫氧还蛋白二硫键,影响胚胎发育 Reduced thioredoxin disulfide bond, influence embryonic development | 细胞质、细胞核 Cytoplasm, nucleus | |
硫氧还蛋白还原酶2 Thioredoxin reductase 2 | TXNRD2 | 还原硫氧还蛋白和谷氧还蛋白,影响胚胎发育 Reduced thioredoxin and glutaredoxin, influence embryonic development | 线粒体 Mitochondria | |
硫氧还蛋白还原酶3 Thioredoxin reductase 3 | TXNRD3 | 二硫键形成,催化GPx和TXN系统特异 反应,促进精子成熟 Form disulfide bond, catalyze the specific reaction of GPx and TXN system, promote sperm mature | 睾丸 Testis | |
硒蛋白K Selenoprotein K | SELENOK | 调节内质网Ca2+流量 Regulate the Ca2+ flow of endoplasmic reticulum | 内质网 Endoplasmic reticulum | |
硒蛋白W Selenoprotein W | SELENOW | 调节细胞周期,抗炎作用,免疫作用 Regulate cell cycle, anti-inflammatory effect, immune effect | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白R Selenoprotein R | MSRB1 | 还原甲硫氨酸亚砜化合物 Reduced methionine sulfoxide compound | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白H Selenoprotein H | SELENOH | 核仁氧化还原酶 Nucleolar oxidoreductase | 细胞核 Nucleus | |
硒蛋白T Selenoprotein T | SELENOT | 参与神经细胞Ca2+调节 Participated in nerve cell Ca2+ regulation | 内质网 Endoplasmic reticulum | |
硒蛋白O Selenoprotein O | SELENOO | 与线粒体氧化还原反应有关 Related to mitochondrial redox reaction | 线粒体 Mitochondria | |
甲状腺激素代谢调节功能 Regulatory function of thyroid hormone metabolism | 1型脱碘酶 Type 1 deiodoinases | DIO1 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 细胞膜 Cell membrane |
2型脱碘酶 Type 2 deiodoinases | DIO2 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 内质网、细胞核 Endoplasmic reticulum, nucleus | |
3型脱碘酶 Type 3 deiodoinases | DIO3 | 参与甲状腺激素分解代谢 Participated in thyroid hormone catabolism | 细胞膜、细胞核 Cell membrane, nucleus | |
硒蛋白转运合成功能 Transport and synthesis function of selenoprotein | 硒磷酸合成酶2 Selenophosphate synthetase 2 | SEPHS2 | 合成硒磷酸 Synthetic selenophosphate | 细胞质 Cytoplasm |
硒蛋白P Selenoprotein P | SELENOP | 转运Se元素,参与胰岛素信号转导 Se transport, participated in insulin signal transduction | 细胞外 Extracellular | |
蛋白质折叠功能 Protein folding function | 硒蛋白F Selenoprotein F | SELENOF | 影响癌症与白内障发生 Influence cancer and cataract occurrence | 内质网 Endoplasmic reticulum |
硒蛋白S Selenoprotein S | SELENOS | 抗炎作用、调节细胞因子产生 Anti-inflammatory effect, regulate cytokine production | 内质网 Endoplasmic reticulum | |
硒蛋白N Selenoprotein N | SELENON | 与肌肉稳定、功能有关 Related to muscle stability and function | 内质网 Endoplasmic reticulum | |
其他功能 Other functions | 硒蛋白M Selenoprotein M | SELENOM | 参与能量代谢调节 Participated in energy metabolism regulation | 内质网、高尔基体 Endoplasmic reticulum, Golgi |
硒蛋白Ⅰ Selenoprotein Ⅰ | SELENOI | 参与磷脂生物合成 Participated in phospholipid biosynthesis | 生物膜 Cell membrane | |
硒蛋白V Selenoprotein V | SELENOV | 抵抗氧化应激、抑制细胞凋亡 Resist oxidative stress and inhibit cytotoxicity | 睾丸 Testis |
Table 1 Functional classification and expression distribution of main selenoproteins in animals[12-13,21-22]
功能分类 Functional classification | 名称 Name | 简写 Abbreviation | 生理功能 Physiological function | 分布 Distribution |
---|---|---|---|---|
氧化还原功能 Redox function | 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 | GPX1 | 减少细胞内H2O2,参与胰岛素信号转导 Reduce intracellular H2O2, participated in insulin signal transduction | 细胞质、线粒体 Cytoplasm, mitochondria |
谷胱甘肽过氧化物酶2 Glutathione peroxidase 2 | GPX2 | 减少胃肠道过氧化物,抑制炎症反应 Reduce gastrointestinal peroxides, inhibit inflammation | 消化道上皮细胞 Digestive tract epithelial cells | |
谷胱甘肽过氧化物酶3 Glutathione peroxidase 3 | GPX3 | 减少血浆过氧化物,抑制血栓形成 Reduce plasma peroxides, inhibit thrombosis | 血浆 Plasma | |
谷胱甘肽过氧化物酶4 Glutathione peroxidase 4 | GPX4 | 减少脂质过氧化物,调节铁死亡和胚胎发育 Reduce lipid peroxides, regulate iron death and embryonic development | 体细胞、生殖细胞 Somatic cells, germ cells | |
谷胱甘肽过氧化物酶6 Glutathione peroxidase 6 | GPX6 | 修复嗅觉系统,调节精子头部获能 Repair the olfactory system, regulate sperm head capacitation | 嗅觉和生殖细胞 Olfaction and germ cells | |
硫氧还蛋白还原酶1 Thioredoxin reductase 1 | TXNRD1 | 还原硫氧还蛋白二硫键,影响胚胎发育 Reduced thioredoxin disulfide bond, influence embryonic development | 细胞质、细胞核 Cytoplasm, nucleus | |
硫氧还蛋白还原酶2 Thioredoxin reductase 2 | TXNRD2 | 还原硫氧还蛋白和谷氧还蛋白,影响胚胎发育 Reduced thioredoxin and glutaredoxin, influence embryonic development | 线粒体 Mitochondria | |
硫氧还蛋白还原酶3 Thioredoxin reductase 3 | TXNRD3 | 二硫键形成,催化GPx和TXN系统特异 反应,促进精子成熟 Form disulfide bond, catalyze the specific reaction of GPx and TXN system, promote sperm mature | 睾丸 Testis | |
硒蛋白K Selenoprotein K | SELENOK | 调节内质网Ca2+流量 Regulate the Ca2+ flow of endoplasmic reticulum | 内质网 Endoplasmic reticulum | |
硒蛋白W Selenoprotein W | SELENOW | 调节细胞周期,抗炎作用,免疫作用 Regulate cell cycle, anti-inflammatory effect, immune effect | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白R Selenoprotein R | MSRB1 | 还原甲硫氨酸亚砜化合物 Reduced methionine sulfoxide compound | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白H Selenoprotein H | SELENOH | 核仁氧化还原酶 Nucleolar oxidoreductase | 细胞核 Nucleus | |
硒蛋白T Selenoprotein T | SELENOT | 参与神经细胞Ca2+调节 Participated in nerve cell Ca2+ regulation | 内质网 Endoplasmic reticulum | |
硒蛋白O Selenoprotein O | SELENOO | 与线粒体氧化还原反应有关 Related to mitochondrial redox reaction | 线粒体 Mitochondria | |
甲状腺激素代谢调节功能 Regulatory function of thyroid hormone metabolism | 1型脱碘酶 Type 1 deiodoinases | DIO1 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 细胞膜 Cell membrane |
2型脱碘酶 Type 2 deiodoinases | DIO2 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 内质网、细胞核 Endoplasmic reticulum, nucleus | |
3型脱碘酶 Type 3 deiodoinases | DIO3 | 参与甲状腺激素分解代谢 Participated in thyroid hormone catabolism | 细胞膜、细胞核 Cell membrane, nucleus | |
硒蛋白转运合成功能 Transport and synthesis function of selenoprotein | 硒磷酸合成酶2 Selenophosphate synthetase 2 | SEPHS2 | 合成硒磷酸 Synthetic selenophosphate | 细胞质 Cytoplasm |
硒蛋白P Selenoprotein P | SELENOP | 转运Se元素,参与胰岛素信号转导 Se transport, participated in insulin signal transduction | 细胞外 Extracellular | |
蛋白质折叠功能 Protein folding function | 硒蛋白F Selenoprotein F | SELENOF | 影响癌症与白内障发生 Influence cancer and cataract occurrence | 内质网 Endoplasmic reticulum |
硒蛋白S Selenoprotein S | SELENOS | 抗炎作用、调节细胞因子产生 Anti-inflammatory effect, regulate cytokine production | 内质网 Endoplasmic reticulum | |
硒蛋白N Selenoprotein N | SELENON | 与肌肉稳定、功能有关 Related to muscle stability and function | 内质网 Endoplasmic reticulum | |
其他功能 Other functions | 硒蛋白M Selenoprotein M | SELENOM | 参与能量代谢调节 Participated in energy metabolism regulation | 内质网、高尔基体 Endoplasmic reticulum, Golgi |
硒蛋白Ⅰ Selenoprotein Ⅰ | SELENOI | 参与磷脂生物合成 Participated in phospholipid biosynthesis | 生物膜 Cell membrane | |
硒蛋白V Selenoprotein V | SELENOV | 抵抗氧化应激、抑制细胞凋亡 Resist oxidative stress and inhibit cytotoxicity | 睾丸 Testis |
Fig.1 Sec synthesis process and incorporation of device components Ser, Serine; SerS, Ser-tRNA synthetase; PSTK, phosphoseryl-tRNA[Ser]Sec kinase; SPS2, Selenophosphate synthase 2; SEPSECS, Phosphoryl tRNASec selenium transferase; PSer-tRNA[Ser]Sec, Phosphoseryl-tRNA[Ser]Sec; SRE, Sec redefinition element; SECIS, Selenocysteine insertion sequence; SBP2, SECIS binding protein 2; eIF4a3, Eukaryotic initiation factor 4a3; eEFSec, Selenocysteine-specific elongation factor.
[1] |
HARTIKAINEN H. Biogeochemistry of selenium and its impact on food chain quality and human health[J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4):309-318.
DOI URL |
[2] |
MARIOTTI M, RIDGE P G, ZHANG Y, et al. Composition and evolution of the vertebrate and mammalian selenoproteomes[J]. PLoS One, 2012, 7(3):e33066.
DOI URL |
[3] |
HA H Y, ALFULAIJ N, BERRY M J, et al. From selenium absorption to selenoprotein degradation[J]. Biological Trace Element Research, 2019, 192(1):26-37.
DOI URL |
[4] | MIHARA H, TOBE R, ESAKI N. Mechanism, structure, and biological role of selenocysteine lyase[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 113-123. |
[5] |
PEDROSA L F C, MOTLEY A K, STEVENSON T D, et al. Fecal selenium excretion is regulated by dietary selenium intake[J]. Biological Trace Element Research, 2012, 149(3):377-381.
DOI URL |
[6] |
BIERLA K, SZPUNAR J, YIANNIKOURIS A, et al. Comprehensive speciation of selenium in selenium-rich yeast[J]. TrAC Trends in Analytical Chemistry, 2012, 41:122-132.
DOI URL |
[7] |
ARNÉR E S J. Selenoproteins: what unique properties can arise with selenocysteine in place of cysteine?[J]. Experimental Cell Research, 2010, 316(8):1296-1303.
DOI URL |
[8] |
MOUSA R, NOTIS DARDASHTI R, METANIS N. Selenium and selenocysteine in protein chemistry[J]. Angewandte Chemie International Edition, 2017, 56(50):15818-15827.
DOI URL |
[9] | LOBANOV A V, HATFIELD D L, GLADYSHEV V N. Eukaryotic selenoproteins and selenoproteomes[J]. Biochimica et Biophysica Acta (BBA): General Subjects, 2009, 1790(11):1424-1428. |
[10] |
ESWORTHY R S, YANG L X, FRANKEL P H, et al. Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice[J]. The Journal of Nutrition, 2005, 135(4):740-745.
DOI URL |
[11] |
JIN R C, MAHONEY C E, COLEMAN ANDERSON L, et al. Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo[J]. Circulation, 2011, 123(18):1963-1973.
DOI URL |
[12] |
LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: molecular pathways and physiological roles[J]. Physiological Reviews, 2014, 94(3):739-777.
DOI URL |
[13] |
PITTS M W, HOFFMANN P R. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis[J]. Cell Calcium, 2018, 70:76-86.
DOI URL |
[14] |
ZHANG L, ZHU J H, ZHANG X, et al. The thioredoxin-like family of selenoproteins: implications in aging and age-related degeneration[J]. Biological Trace Element Research, 2019, 188(1):189-195.
DOI URL |
[15] |
HAN S J, LEE B C, YIM S H, et al. Characterization of mammalian selenoprotein O: a redox-active mitochondrial protein[J]. PLoS One, 2014, 9(4):e95518.
DOI URL |
[16] |
HORIBATA Y, ELPELEG O, ERAN A, et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans[J]. Journal of Lipid Research, 2018, 59(6):1015-1026.
DOI URL |
[17] |
SIES H. Role of metabolic H2O2 generation: redox signaling and oxidative stress[J]. Journal of Biological Chemistry, 2014, 289(13):8735-8741.
DOI URL |
[18] |
MATHEW O P, RANGANNA K, MILTON S G. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation[J]. Pharmaceuticals (Basel, Switzerland), 2014, 7(11):1008-1027.
DOI URL |
[19] |
XU X M, CARLSON B A, IRONS R, et al. Selenophosphate synthetase 2 is essential for selenoprotein biosynjournal[J]. The Biochemical Journal, 2007, 404(1):115-120.
DOI URL |
[20] |
SAITO Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess[J]. Journal of Clinical Biochemistry and Nutrition, 2020, 66(1):1-7.
DOI URL |
[21] |
CHEN Y, WANG K, ZHANG D L, et al. GPx6 is involved in the in vitro induced capacitation and acrosome reaction in porcine sperm[J]. Theriogenology, 2020, 156:107-115.
DOI URL |
[22] |
ZHANG X, XIONG W, CHEN L L, et al. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants[J]. Free Radical Biology and Medicine, 2020, 160:670-679.
DOI URL |
[23] | 郁军超, 薛连璧. 机体ROS的产生及对生物大分子的毒性作用[J]. 山东医药, 2012, 52(8):94-96. |
YU J C, XUE L B. Production of ROS in body and its toxic effect on biological macromolecules[J]. Shandong Medical Journal, 2012, 52(8):94-96.(in Chinese) | |
[24] | MÉPLAN C, HESKETH J. Functional genomics of selenoproteins and Se-responsive pathways[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 151-173. |
[25] |
SEYEDALI A, BERRY M J. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency[J]. RNA, 2014, 20(8):1248-1256.
DOI URL |
[26] | BULTEAU A L, CHAVATTE L. Update on selenoprotein biosynjournal[J]. Antioxidants & Redox Signaling, 2015, 23(10):775-794. |
[27] | HOWARD M T. Probing selenoprotein translation by ribosome profiling[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 25-37. |
[28] | 王建强, 崔璐莹, 李建基, 等. 硒蛋白的功能及其对动物免疫的作用[J]. 动物营养学报, 2019, 31(9):4008-4015. |
WANG J Q, CUI L Y, LI J J, et al. Functions of selenoprotein and its effects on animal immunity[J]. Chinese Journal of Animal Nutrition, 2019, 31(9):4008-4015.(in Chinese with English abstract) | |
[29] |
LATRÈCHE L, JEAN-JEAN O, DRISCOLL D M, et al. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine[J]. Nucleic Acids Research, 2009, 37(17):5868-5880.
DOI URL |
[30] | SEEHER S, ATASSI T, MAHDI Y, et al. Secisbp2 is essential for embryonic development and enhances selenoprotein expression[J]. Antioxidants & Redox Signaling, 2014, 21(6):835-849. |
[31] |
MINIARD A C, MIDDLETON L M, BUDIMAN M E, et al. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression[J]. Nucleic Acids Research, 2010, 38(14):4807-4820.
DOI URL |
[32] |
BUDIMAN M E, BUBENIK J L, MINIARD A C, et al. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation[J]. Molecular Cell, 2009, 35(4):479-489.
DOI URL |
[33] |
CARLSON B A, XU X M, GLADYSHEV V N, et al. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA[J]. Journal of Biological Chemistry, 2005, 280(7):5542-5548.
DOI URL |
[34] |
HOWARD M T, COPELAND P R. New directions for understanding the codon redefinition required for selenocysteine incorporation[J]. Biological Trace Element Research, 2019, 192(1):18-25.
DOI URL |
[35] |
ZOIDIS E, DEMIRIS N, KOMINAKIS A, et al. Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues[J]. Animal, 2014, 8(4):542-554.
DOI URL |
[36] |
ZHANG K, ZHAO Q Y, ZHAN T F, et al. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs[J]. Biological Trace Element Research, 2020, 196(2):463-471.
DOI URL |
[37] | KIPP A P, FROMBACH J, DEUBEL S, et al. Selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynjournal[J]. Methods in Enzymology, 2013, 527:87-112. |
[38] |
BERMINGHAM E N, HESKETH J E, SINCLAIR B R, et al. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: a meta-analysis[J]. Nutrients, 2014, 6(10):4002-4031.
DOI URL |
[39] | ZAHIA T H, YONA L, ANNE-LAURE B, et al. Selective up-regulation of human selenoproteins in response to oxidative stress[J]. Free Radical Biology & Medicine, 2014, 75(Suppl.1):S25. |
[40] |
RAMAN A V, PITTS M W, SEYEDALI A, et al. Selenoprotein W expression and regulation in mouse brain and neurons[J]. Brain and Behavior, 2013, 3(5):562-574.
DOI URL |
[41] | 王晓龙, 许凯, 秦藕菊, 等. SelW基因转录后沉默对小鼠骨骼肌细胞内GSH及GPx影响研究[J]. 畜牧兽医学报, 2009, 40(7):1013-1018. |
WANG X L, XU K, QIN O J, et al. The influence of SelW on GSH and GPx after post-transcriptional gene silencing in mouse skeletal muscle cell[J]. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(7):1013-1018.(in Chinese with English abstract) | |
[42] |
JING C L, DONG X F, WANG Z M, et al. Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens[J]. Poultry Science, 2015, 94(5):965-975.
DOI URL |
[43] |
WHITE L, ROMAGNÉ F, MÜLLER E, et al. Genetic adaptation to levels of dietary selenium in recent human history[J]. Molecular Biology and Evolution, 2015, 32(6):1507-1518.
DOI URL |
[44] |
MALLONEE D H, CROWDUS C A, BARGER J L, et al. Use of stringent selection parameters for the identification of possible selenium-responsive marker genes in mouse liver and gastrocnemius[J]. Biological Trace Element Research, 2011, 143(2):992-1006.
DOI URL |
[45] |
HUANG J Q, REN F Z, JIANG Y Y, et al. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling[J]. Free Radical Biology and Medicine, 2015, 83:129-138.
DOI URL |
[46] |
CASTETS P, LESCURE A, GUICHENEY P, et al. Selenoprotein N in skeletal muscle: from diseases to function[J]. Journal of Molecular Medicine, 2012, 90(10):1095-1107.
DOI URL |
[47] |
ARBOGAST S, BEUVIN M, FRAYSSE B, et al. Oxidative stress inSEPN1-related myopathy: from pathophysiology to treatment[J]. Annals of Neurology, 2009, 65(6):677-686.
DOI URL |
[48] | 樊路杰, 窦鸣乐, 王小宇, 等. 宰后肌肉抗氧化能力与肉品质的关系[J]. 动物营养学报, 2018, 30(5):1676-1680. |
FAN L J, DOU M L, WANG X Y, et al. Relationship between antioxidant capacity of postmortem muscle and meat quality[J]. Chinese Journal of Animal Nutrition, 2018, 30(5):1676-1680.(in Chinese with English abstract) | |
[49] | CALVO L, TOLDRÁ F, RODRÍGUEZ A I, et al. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs[J]. Food Science & Nutrition, 2017, 5(1):94-102. |
[50] |
CALVO L, TOLDRÁ F, ARISTOY M C, et al. Effect of dietary organic selenium on muscle proteolytic activity and water-holding capacity in pork[J]. Meat Science, 2016, 121:1-11.
DOI URL |
[51] |
LIU B, XIONG Y L, JIANG J, et al. Cellular antioxidant mechanism of selenium-enriched yeast diets in the protection of meat quality of heat-stressed hens[J]. Food Bioscience, 2021, 39:100798.
DOI URL |
[52] |
CALVO L, SEGURA J, TOLDRÁ F, et al. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium[J]. Food Science and Technology International, 2017, 23(8):716-728.
DOI URL |
[53] |
LI J G, ZHOU J C, ZHAO H, et al. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast[J]. Meat Science, 2011, 87(2):95-100.
DOI URL |
[54] | 黄家强, 姜云芸, 郭慧媛, 等. 硒蛋白基因W和N与鸡肉品质的相关性研究[J]. 中国食品学报, 2016, 16(11):83-88. |
HUANG J Q, JIANG Y Y, GUO H Y, et al. Association analysis between selenoprotein genes (Selw and Seln) and meat quality traits in chicken[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11):83-88.(in Chinese with English abstract) | |
[55] |
KO K Y, LEE J H, JANG J K, et al. S-glutathionylation of mouse selenoprotein W prevents oxidative stress-induced cell death by blocking the formation of an intramolecular disulfide bond[J]. Free Radical Biology and Medicine, 2019, 141:362-371.
DOI URL |
[56] |
CHEN W, ZENG Y Q, CUI J X, et al. Effects of phospholipid hydroperoxide glutathione peroxidase mRNA expression on meat quality of M. longissimus dorsi in pigs[J]. European Food Research and Technology, 2011, 232(3):433-440.
DOI URL |
[57] |
YAO H D, ZHAO W C, ZHAO X, et al. Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles[J]. Biological Trace Element Research, 2014, 161(3):318-327.
DOI URL |
[58] | INGOLD I, BERNDT C, SCHMITT S, et al. Selenium utilization by GPX4 was an evolutionary requirement to prevent hydroperoxide-induced ferroptosis[J]. Free Radical Biology and Medicine, 2017, 112:24. |
[59] | 郑良焰, 张琴, 刘碧涛, 等. 不同硒浓度日粮对小鼠肝脏和睾丸组织中部分硒蛋白mRNA水平的影响[J]. 中国畜牧兽医, 2013, 40(3):38-42. |
ZHENG L Y, ZHANG Q, LIU B T, et al. Effect of different dietary selenium concentration on mRNA levels of some selenoprotein in mice liver and testis[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(3):38-42.(in Chinese with English abstract) | |
[60] |
STEINBRENNER H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism[J]. Free Radical Biology and Medicine, 2013, 65:1538-1547.
DOI URL |
[61] |
WANG X, WU H, LONG Z, et al. Differential effect of Se on insulin resistance: regulation of adipogenesis and lipolysis[J]. Molecular and Cellular Biochemistry, 2016, 415(1/2):89-102.
DOI URL |
[62] |
PINTO A, JUNIPER D T, SANIL M, et al. Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs[J]. Journal of Inorganic Biochemistry, 2012, 114:47-54.
DOI URL |
[63] |
PUERTO M D, OLIVERO R, TEREVINTO A, et al. Dietary organic and inorganic selenium on liver glycogen and lactate, pHu, color and drip loss of chicken Pectoralis and Gastrocnemius muscles[J]. Open Journal of Animal Sciences, 2016, 6(1):59-67.
DOI URL |
[1] | FANG Xiang, YANG Gangqiao, HUANG Dan. Multifunctional performance evaluation and obstacle factor analysis of rural industrial convergence [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 932-943. |
[2] | YANG Xiaopan, LIU Lili, HUANG Zhengdi, LI Yuanyuan, HAO Weiming, ZHANG Mengjun, SHI Shengjuan. Changes of rheological properties and proteins components of egg albumin during storage at room temperature [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 526-533. |
[3] | LI Ruyi, YIN Junfeng, ZOU Chun. Research status of Kombucha in the world [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2291-2302. |
[4] | YAN Jingqiuzi, LI Gangtie, LIU Yujun, MA Yunxia, YANG Ying. Evaluation of salt and alkali resistance of Pennisetum giganteum Z. X. Lin seedlings based on principal component analysis and membership function method [J]. , 2019, 31(9): 1531-1540. |
[5] | ZOU Chuan, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, DING Nengfei, LI Ningyu, LI Hua. Effects of humic acid particles with different sizes on available cadmium in soil [J]. , 2019, 31(4): 616-623. |
[6] | WANG Qingxia, CHEN Xijing, YU Man, SHEN Alin. Research progress on effects of straw returning on nitrogen cycling microbes and functional genes in paddy soil [J]. , 2019, 31(2): 333-342. |
[7] | YANG Youbing, BIAN Junping, WU Yan, LOU Ran, LI Shihao. Association analysis between polymorphism in FTO gene and meat quality traits in pigs [J]. , 2019, 31(12): 1971-1978. |
[8] | LU Xin, ZHOU Jinghang, YANG Chaoyun, ZHANG Menghua, YE Lianmeng, LI Shuzhen, HUANG Xixia, MA Yun, WANG Xingping, SHI Yuangang. Functional annotation of candidate genes for milk production and reproductive traits in Xinjiang Brown cattle [J]. , 2019, 31(12): 1987-1995. |
[9] | GUO Yanhong, ZHANG Jingxing, YANG Yongjuan, CHEN Juntong, SUN Ming, LIAO Jing. Response of six germplasms of Chrysanthemum and related genera to drought stress [J]. , 2018, 30(8): 1349-1354. |
[10] | HOU Yanhua, ZHANG Kai, WANG Lei, SUN Jing, WANG Xurong, ZHANG Kang, WANG Xuezhi, LI Jianxi, ZHANG Jingyan. In vitro culture of CD103+ DCs from mouse bone marrow and effects of LPS on its morphology and functional characteristics [J]. , 2018, 30(7): 1122-1131. |
[11] | WANG Hua, WANG Wangwei, WANG Dongliang, ZHANG Shihu, HU Xinfang, LU Shiyu, GONG Xuemei. De novo assembly and functional annotation of transcriptome data of Rhododendron pulchurum cv. Baifeng 4 leaf [J]. , 2018, 30(7): 1149-1159. |
[12] | JIANG Yefeng, GUO Xi. Prediction of soil organic matter distribution based on auxiliary variables and regression-radial basis function neural network (R-RBFNN) model [J]. , 2018, 30(4): 640-648. |
[13] | ZHU Mingfen. Research on rural housing land property right power development and specification: based on reform practice of rural housing land ‘three rights separations’ in Yiwu, Zhejiang [J]. , 2018, 30(11): 1972-1980. |
[14] | NIU Jingyan, LIU Zhancai. Effect of Hg2+on antioxidant function of Ctenopharyngodon idella [J]. , 2017, 29(9): 1451-1457. |
[15] | LI Like, LUO Qihui, HUANG Chao, CHEN Xiaolin, CHEN Ping, LI Yifan, LIU Wentao, CHEN Zhengli. Effects of soy isoflavones on expression of IL-2, IL-4, TNF-α and INF-γ in male rats' spleen [J]. , 2017, 29(9): 1458-1464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||